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Abstract—Chain graphs and threshold graphs play a very
important role in Spectral Graph Theory, since the maximizers
for the largest eigenvalue of the adjacency matrix (for graphs of
fixed order and size, either connected or disconnected) belong
to these classes (threshold graphs in the general case, and chain
graphs in the bipartite case). Nesting in the neighborhood of
vertices in these graphs has gained the attention of various
researchers. Motivated by this structure, we generalize and
define a new class of graphs named it as ’partial threshold
graphs’ and study the properties. In this article, we give bounds
and expressions for the Wiener index and Hyper-Wiener index
of a partial threshold graph. We extend the study further and
give a set of integers, except which every other integer is the
Wiener index of some partial threshold graph. The highlight of
the article is an algorithm for the inverse Wiener index problem
of partial threshold graphs.

Index Terms—Chain, bipartition, Wiener index, hyper-
Wiener index, inverse Wiener index.

I. INTRODUCTION

GRAPHS considered in this paper are simple, finite,
undirected and connected with vertex set V(G) and

edge set E(G). A collection S = {S1, S2, · · · , Sn} of sets
is said to form a chain with respect to set inclusion, if for
every Si, Sj ∈ S either Si ⊆ Sj or Sj ⊆ Si. We write u ∼ v

if the vertices u and v are adjacent in G, u ≁ v if they are
not. The neighborhood of the vertex u ∈ V (G) is the set
N(u) consisting of all the vertices v such that v ∼ u in G.
Readers are referred to [18] for all the elementary notations
and definitions not described but used in this article.

Definition 1.1: A chain graph is a bipartite graph in which
the neighborhoods of the vertices in each partite set form a
chain with respect to set inclusion.

In other words, for every two vertices u and v in the same
partite set and their neighborhoods N(u) and N(v), either
N(u) ⊆ N(v) or N(v) ⊆ N(u). We note that, every partite
set in a chain graph has at least one dominating vertex, that
is, a vertex adjacent to all the vertices of the other partite
set. The color classes of a chain graph G(V1 ∪ V2, E) can
be partitioned into h non-empty cells given by

V1 = V11 ∪ V12 ∪ . . . ∪ V1h and V2 = V21 ∪ V22 ∪ . . . ∪ V2h
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such that N(u) = V21 ∪ V22 ∪ . . . ∪ V2 h−i+1, for any
u ∈ V1i, 1 ≤ i ≤ h. If mi = |V1i| and ni = |V2i|,
then we write G = DNG(m1, . . . ,mh;n1, . . . , nh). Due to
this nesting property, the chain graphs are also called double
nested graphs (DNGs). If mi = ni = 1 for all 1 ≤ i ≤ h,
then the graph is called half graph.

A split graph is a graph which admits a partition of its
vertex set into two parts W1 and W2 such that W1 induces
a complement of a clique (co-clique) and W2 induces a
clique. Every other edge, called a cross edge, joins a vertex
of W1 with a vertex of W2. A threshold graph is a split
graph in which the adjacencies defined by the cross edges
satisfy the following nesting property. Both W1 and W2 can
be partitioned into h cells, say,

W1 = W11∪W12∪. . .∪W1h and W2 = W21∪W22∪. . .∪W2h

such that N(u) = W21 ∪W22 . . .W2 h−i+1, for any vertex
u ∈ W1i, 1 ≤ i ≤ h. It is also called a nested split graph
(NSG). If mi = |W1i| and ni = |W2i|, then we write G =

NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh).
The readers are referred to [1], [2], [3] and [8] for more

results on chain and threshold graphs.
Recently in 2022, motivated by the nesting property, the
authors of the article [12] defined a partial chain graph (PCG)
and studied its properties. Also, by extending the concept of
nesting from a bipartite graph to a k-partite graph, a k-nested
graph is defined in [16].

Motivated by the nesting property of these extremal graphs
(chain and threshold graphs), we define a new class of
graphs, whose vertex set can be partitioned into two disjoint
subsets V1 and V2 such that ⟨V1⟩ ∼= ⟨V2⟩ and has the nesting
property. Formally, we define the same as follows.

Definition 1.2: A graph G on n vertices is said to be a
partial threshold graph if its vertex set can be partitioned
into two disjoint subsets V1 and V2 such that the following
conditions are satisfied.

1 ⟨V1⟩ ∼= ⟨V2⟩.
2 The set {Vi ∩N(v)} ̸= ϕ form a chain with respect to

set inclusion for every v ∈ Vj , j ̸= i, 1 ≤ i, j ≤ 2.

We denote N1(u) = N(u) ∩ V1, u ∈ V2 and
N2(v) = N(v) ∩ V2, v ∈ V1. The subsets V1 and V2

can be further partitioned into h cells V1 = V11 ∪ . . . ∪ V1h

and V2 = V21 ∪ . . . ∪ V2h which satisfies the following
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nesting property:
For every vertex u ∈ V1i, 1 ⩽ i ⩽ h,N2(u) =

V21 ∪ . . . ∪ V2 h−i+1 and for v ∈ V2j , 1 ⩽ j ⩽ h,
N1(v) = V11∪ . . .∪V1 h−j+1. If |V1i| = mi and |V2i| = ni,
then we write G = PTG(m1,m2, . . . ,mh;n1, n2, . . . , nh).
From the condition 1 of Definition 1.2, it is clear that n

must be even and |V1| = |V2| = n
2 . When V1 or V2 is

independent, we get a threshold graph.
Unlike the chain or threshold graphs, G =

PTG(m1, . . . ,mh;n1, . . . , nh) is not representing a
single graph, instead it represents a graph family Gf with
nesting property as explained earlier. It does not specify
the structure of ⟨V1⟩ or ⟨V2⟩. Thus, we write Gf =

PTG(m1, . . . ,mh;n1, . . . , nh) (instead of just G). We
use the notion G ∈ Gf = PTG(m1, . . . ,mh;n1, . . . , nh)

of graphs which have the bipartition V (G) = V1 ∪ V2

such that ⟨V1⟩ ∼= ⟨V2⟩. Observe that the complete graph
K2 = PTG(1; 1) = NSG(1; 1) = DNG(1; 1) and
K4 \ e = PTG(2; 2) = NSG(2; 2).

The graphs G1, G2 ∈ Gf = PTG(1, 2, 1; 1, 1, 2) as
shown in Figure 1 are such that ⟨U1⟩ ≇ ⟨V1⟩ and ⟨U2⟩ ≇
⟨V2⟩. Both the graphs G1, G2 have 8 vertices and 15 edges.

Fig. 1. G1, G2 ∈ Gf = PTG(1, 2, 1; 1, 1, 2)

For the graph G1, we observe that ⟨U1⟩ ∼= ⟨U2⟩ and for
G2, ⟨V1⟩ ∼= ⟨V2⟩.
The graphs H1, H2 ∈ Hf = PTG(1, 3; 1, 3) as shown in
Figure 2 are such that ⟨U1⟩ ∼= ⟨V1⟩ and ⟨U2⟩ ∼= ⟨V2⟩, but
they are not isomorphic to each other.

Fig. 2. H1, H2 ∈ Hf = PTG(1, 3; 1, 3)

For all the 4 graphs G1, G2, H1 and H2, we observe that
N2(d) ⊆ N2(c) ⊆ N2(b) ⊆ N2(a) and N1(h) ⊆ N1(g) ⊆
N1(f) ⊆ N1(e).

The rest of the paper is organized as follows; Section 2
deals with the properties of partial threshold graphs. A few
bounds and expressions for the Wiener index of a partial
threshold graph (strong partial threshold graph) are discussed
in Section 3. About few results on Hyper-Wiener index is
discussed in Section 4. The list of integers which would never
be the Wiener indices of any strong partial threshold graph
is obtained in Section 5. We conclude the article with the
algorithm for the inverse Wiener index problem of strong
partial threshold graphs.

II. PROPERTIES

In this section, we study few basic properties of a partial
threshold graph.
By the definition of a partial threshold graph, it is clear that
the partite set V1 has at least one vertex, say u, such that
N2(u) = V2, we call that vertex as dominating vertex in V1

(dominating with respect to the other partite set). Similarly,
V2 also has at least one dominating vertex.
We note that when n > 2, none of the tree, complete
graph, cycle graph is a partial threshold graph. All the
graphs G ∈ Gf = PTG(m1,m2, . . . ,mh;n2, n2, . . . , nh)

have the same number of edges and vertices. For further
discussions we use u1, u2, . . . , un

2
to denote the vertices of

V1 and u′
1, u

′
2, . . . , u

′
n
2

to denote the vertices of V2 in any
partial threshold graph on n vertices.

Theorem 2.1: Let G be any partial threshold graph with
the maximum degree ∆(G) and minimum degree δ(G).
Then,

n

2
+ 1 ≤ ∆(G) ≤ n− 1,

1 ≤ δ(G) ≤ n

2
+

⌊
n− 2

4

⌋
.

Proof: The upper bound for the maximum degree, ∆(G)

is attained for a dominating vertex ui (or u′
i) of the set V1 (or

V2) of a partial threshold graph when ui (or u′
i) is adjacent

to all other vertices of V1 (or V2). Any threshold graph with
|V1| = |V2| = n

2 has ∆(G) = n−1. The dominating vertex of
any partial threshold graph is adjacent to n

2 vertices of other
partite set. Suppose the dominating vertex say, u1 ∈ V1 is
not adjacent to any vertex of V1, then u′

1 ∈ V2 is adjacent
to u1 of V1, and to all the other vertices of V2. In this case,
the maximum degree is achieved by the vertex u′

1 ∈ V2 and
deg(u′

1) =
n
2 + 1.

It can be easily noted that a partial threshold graph can
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have pendant vertex. Hence, δ(G) = 1. When G ∈ Gf =

PTG(n2 ;
n
2 ) all the vertices are adjacent to n

2 vertices of
other partite set. Apart from this any vertex v is adjacent to⌊
n−2
4

⌋
vertices in side the partite set where it belongs. Then

δ(G) = n
2 +

⌊
n−2
4

⌋
.

Theorem 2.2: There exists a regular partial threshold
graph on n = 8k+2, k ≥ 1 vertices with regularity n

2 +
n−2
4 .

Proof: Let G ∈ Gf = PTG(n2 ;
n
2 ). In order to get a

regular partial threshold graph, degree of every vertex ui in
⟨V1⟩ and u′

i in ⟨V2⟩ must be equal. This is possible only if
both ⟨V1⟩ and ⟨V2⟩ are

(
n−2
4

)
-regular, for which n−2

4 must
be an integer (i.e., n = 4k + 2, k ≥ 1 or n

2 should be odd).
Since n

2 is odd and ⟨Vi⟩, i = 1, 2 is a regular graph of degree
n−2
4 implies n−2

4 even. This implies n = 8k + 2, k ≥ 1.
Hence the proof.

Theorem 2.3: The diameter of any partial threshold graph
G is 2 or 3.

Proof: Two vertices which are in same partite set are at
distance at most 2, as either they are adjacent or commonly
adjacent to a dominating vertex of another set. Consider any
two non adjacent vertices ui ∈ V1 and u′

j ∈ V2. If either ui

is adjacent to a dominating vertex of V1, or u′
j is adjacent to

a dominating vertex of V2, then d(ui, u
′
j) = 2. If ui is not

adjacent to any dominating vertex of V1 and u′
j is also not

adjacent to any dominating vertex of V2, then d(ui, u
′
j) = 3.

Hence the diameter of G is 2 or 3.

In the next theorem, we characterize all partial threshold
graphs with diameter equal to 2.

Theorem 2.4: A partial threshold graph G on n vertices
is of diameter 2 if and only if any one of the following case
is true.

1) G ∈ Gf = PTG(n2 ;
n
2 ).

2) G is a NSG with |V1| = |V2| = n
2 .

3) For every pair of non adjacent vertices ui, u
′
j , either

there should exists a vertex say, uk ∈ V1, such that
ui ∼ uk and uk ∼ u′

j or a vertex u′
l ∈ V2 such that

u′
j ∼ u′

l and u′
l ∼ ui.

Theorem 2.5: Let G be any partial threshold graph on n

vertices and m edges. Then,(n
2

2

)
+ n− 1 ≤ m ≤

(n
2

2

)
+

n2

4
.

Proof: We know that |E(⟨V1⟩)|+ |E(⟨V2⟩)| =
(n

2
2

)
. The

minimum number of cross edges possible in a PTG is n−1

and hence the lower bound. Similarly, the maximum number
of cross edges possible is n2

4 , and hence the upper bound.

The conditions for the addition of edges to a chain
(threshold) graph G such that the resultant graph is also a

chain (threshold) graph is given in [3] ( [11]). The following
theorem gives the conditions for the addition of the edges to
a partial threshold graph G such that the resultant graph is
also a partial threshold graph.

Theorem 2.6: Let G ∈ Gf =

PTG(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a partial thresh-
old graph on n vertices, where mj = |V1j | and nj = |V2j |
for 1 ≤ j ≤ h. The graph G + e obtained by adding
an edge e = (uk, u

′
l) to G is a partial threshold graph

if and only if uk ∈ V1i and u′
l ∈ V2 h−i+2, for some

2 ≤ i ≤ h, 1 ≤ k, l ≤ n
2 .

III. WIENER INDEX

The Wiener index is one of the oldest and most studied
topological indices, both from theoretical point of view and
applications. Due to its strong connection to chemistry, where
molecules have a tree-like structure, a lot of research was
done on acyclic graphs (see [6] for survey). The Wiener index
W (G) of a graph G is the sum of all distances between all
pairs of vertices in G.

W (G) =
∑

{u,v}∈V (G)

d(u, v).

In this section, we give an expression as well as bounds
for the Wiener index of partial threshold graphs.

Theorem 3.1: Let G be a partial threshold graph on n =

2p vertices and size m. Then the Wiener index of G is given
by

W (G) = 5

(
p

2

)
+ 3p2 − 2m− k, (III.1)

where k is number of pairs of vertices (a, b) with distance
2, such that a ∈ V1 and b ∈ V2.

Proof: The total number of pairs of vertices which are
adjacent in either ⟨V1⟩ or in ⟨V2⟩ is equal to

(
p
2

)
. Hence, total

number of pairs of vertices (a, b) which are at distance 2 such
that either a, b ∈ V1 or a, b ∈ V2 is

(
p
2

)
. There are p2−m+

(
p
2

)
pairs of non adjacent vertices such that the distance between
them is either 2 or 3 with a ∈ V1 and b ∈ V2. Therefore,
there are p2 −m+

(
p
2

)
− k pairs of vertices (a, b) which are

at distance 3 with a ∈ V1 and b ∈ V2. Hence,

W (G) = m+ 2

((
p

2

)
+ k

)
+ 3

(
p2 −m+

(
p

2

)
− k

)
= 5

(
p

2

)
+ 3p2 − 2m− k.

Corollary 3.2: Let G be a partial threshold graph on n =

2p vertices and m edges with diameter 2. Then the Wiener
index of G is given by

W (G) = 4

(
p

2

)
+ 2p2 −m. (III.2)
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Proof: As G is of diameter 2, proof follows by substi-
tuting k = p2 −m+

(
p
2

)
in Equation III.1.

The following corollary gives the bounds for the Wiener
index of partial threshold graphs on n = 2p vertices of
diameter 2 in terms of p.

Corollary 3.3: Let G be a partial threshold graph on n =

2p vertices and m edges with diameter 2. Then the Wiener
index of G satisfies the relation

3

(
p

2

)
+ p2 ≤ W (G) ≤ 3

(
p

2

)
+ 2p2 − 2p+ 1.

Proof: From Theorem 2.5, we have 2p−1+
(
p
2

)
≤ m ≤

p2 +
(
p
2

)
. Proof follows by substituting these bounds of m

in Equation (III.2).

Next, we give the bounds for the Wiener index of any
partial threshold graphs on n = 2p vertices in terms of p.

Theorem 3.4: Let G be a partial threshold graph on n =

2p vertices and size m. Then the Wiener index of G satisfies
the relation

3

(
p

2

)
+ p2 ≤ W (G) ≤ 9p2 − 13p+ 6

2
.

Proof: The expression in Equation (III.1) is minimum
when 2m+k is maximum i.e., when m = p2+

(
p
2

)
and k = 0.

The lower bound is attained by substituting m = p2 +
(
p
2

)
and k = 0.
Similarly, the expression in Equation (III.1) is maximum
when 2m+k is minimum. We know that the minimum value
of m is

(
p
2

)
+2p− 1. Also, k ̸= 0, as among the p2− 2p+1

pairs of vertices (a, b) which are not adjacent with a ∈ V1

and b ∈ V2, all pairs cannot be at distance 3.
Suppose the dominating vertex of V1 say, u1 is adjacent to
at least one vertex uj ∈ V1, 2 ⩽ j ⩽ p, then d(uj , u

′
k) =

2, 2 ⩽ k ⩽ p. Hence the value of k is at least p−1. Suppose
the dominating vertex of V1 say, u1 is not adjacent to any
vertex uj ∈ V1, 2 ⩽ j ⩽ p, and u′

1 is not the dominating
vertex of V2. Then as u′

1 is adjacent to all the vertices of V2,
we have d(u′

1, uj) = 2, 2 ⩽ j ⩽ p. Hence k ≥ p− 1.

We show the existence of a partial threshold graph H ∈
Hf = PTG(1, p−1; 1, p−1) with k = p−1. Without loss of
generality assume that u1, . . . , up and u′

1, . . . , u
′
p are vertices

of V1 and V2 respectively. Let u1 and u′
p be the dominating

vertex of V1 and V2 respectively, and u′
1 ∼ u′

j , 2 ⩽ j ⩽ p

and ⟨u2, . . . , up⟩ ∼= Kp−1. The graph H attains the bound
for k i.e., k = p − 1. Hence, substituting k = p − 1 and
m =

(
p
2

)
+ 2p − 1 in Equation (III.1), the upper bound of

W (G) is attained.

Corollary 3.5: Let G ∈ Gf = PTG(1, p − 1; 1, p − 1)

be a partial threshold graph. Then, the Wiener index of G

satisfies the relation

7p2 − 7p+ 2

2
≤ W (G) ≤ 9p2 − 13p+ 6

2
.

Proof: We know that the number of edges in G is
(
p
2

)
+

2p−1. The lower bound is attained when there is no pairs of
vertices in G which are at distance 3. This can be attained
when G = NSG(1, p − 1; 1, p − 1). The upper bound is
attained when G = H ∈ Hf = PTG(1, p − 1; 1, p − 1) of
Theorem 3.4.

Corollary 3.6: Let G ∈ Gf = PTG(p; p) be a partial
threshold graph. Then,

W (G) = 3

(
p

2

)
+ p2.

Proof: Proof follows from the fact that G is of diameter
2 and substituting m =

(
p
2

)
+ p2 in Equation (III.2).

For further results we impose some strong conditions on a
partial threshold graph and name it as strong partial threshold
graph. For a partial threshold graph G(V1 ∪ V2, E) with
V1 = {u1, u2, . . . , up} and V2 = {u′

1, u
′
2, . . . , u

′
p}, we have

N2(ui) = N(ui)∩V2 and N1(u
′
i) = N(u′

i)∩V1, 1 ≤ i ⩽ p.

Definition 3.1: Consider a partial threshold graph G(V1∪
V2, E) with V1 = {u1, u2, . . . , up} and V2 =

{u′
1, u

′
2, . . . , u

′
p} and N2(ui) ⊆ N2(ui−1), 2 ⩽ i ⩽ p. Then

G is said to be a strong partial threshold graph if there exists
a bijective mapping Φ : V1 → V2 satisfying the following
conditions:
(i) ui ∼ uj implies Φ(ui) ≁ Φ(uj), for all 1 ≤ i ̸= j ≤ p.
(ii) N1(Φ(ui)) ⊆ N1(Φ(ui−1)), 2 ⩽ i ⩽ p.

Without loss of generality we denote Φ(ui) by u′
i.

The nested split graphs with |V1| = |V2| and PTG(p; p) are
also strong partial threshold graphs. But PTG(1, p−1; 1, p−
1) is strong PTG if and only if Φ(u) = v, where u ∈ V1 and
v ∈ V2 are the dominating vertices.
The graphs G1 and G2 of Figure 1 are strong partial
threshold graphs with Φ(a) = e,Φ(b) = f,Φ(c) = g and
Φ(d) = h. Also the graph H1 as shown in Figure 2 is strong
PTG. But for H2 of Figure 2, Φ(a) = h,Φ(b) = g,Φ(c) = f

and Φ(d) = e and N2(d) ⊆ N2(c) ⊆ N2(b) ⊆ N2(a). But
as N1(e) ⊈ N1(f) ⊈ N1(g) ⊈ N1(h), H2 is not a strong
PTG.

Let u1, u2, . . . , un
2

be the vertices of V1 and let
u′
1, u

′
2, . . . , u

′
n
2

be the vertices of V2 in any strong par-
tial threshold graph on n vertices. Then, deg⟨V1⟩(ui) +

deg⟨V2⟩(u
′
i) =

n
2 − 1.

We obtain the bounds for the Wiener index of a strong
partial threshold graphs in the following theorems.

Theorem 3.7: Let G ∈ Gf =

PTG(1, 1, . . . , 1; 1, 1, . . . , 1) be a strong partial threshold
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graph on n = 2p vertices. Then, the Wiener index of G

satisfies the relation

3p2 − 2p ≤ W (G) ≤


25p2−14p−8

8 if p even

25p2−16p−1
8 if p odd

.

Proof: Lower bound is attained by a
NSG(1, 1, . . . , 1; 1, 1, . . . , 1).
To obtain upper bound we consider p even and odd cases
separately. We obtain the minimum value of k of the
Equation (III.1).

(i) p even : There are p2− p(p+ 1)

2
non adjacent pairs of

vertices (a, b), such that a ∈ V1 and b ∈ V2. Let the vertices
of G be labeled as in Definition 3.1. We know that either
u1 ∼ u2 or u′

1 ∼ u′
2. Suppose u1 ∼ u2 then d(u2, u

′
p) = 2,

which implies k ≥ 1. Similarly, if we assume u1 ∼ uj , 2 ⩽

j ⩽ p+2
2 , implies that k ≥ 1 + 2 + . . . + p

2 . Also as u′
1 ∼

u′
j ,

p+4
2 ⩽ j ⩽ p, gives d(ur, u

′
s) = 2, p+4

2 ⩽ r, s′ ⩽ p.

Hence k ≥ (1 + 2 + · · · + p
2 ) + (p−2

2 )2 = 3p2−6p+8
8 . Then,

there are p2− p(p+1)
2 − 3p2−6p+8

8 pairs of vertices (a, b) such
that d(a, b) = 3, where a ∈ V1, b ∈ V2.
We show the existence of a strong PTG which satisfies k =
3p2−6p+8

8 . Consider a strong partial threshold graph H ∈
Hf = PTG(1, . . . , 1; 1, . . . , 1), with u1 ∼ uj , 2 ⩽ j ⩽ p+2

2 ,
and u′

1 ∼ u′
j ,

p+4
2 ⩽ j ⩽ p.

Suppose ⟨u1, u2, . . . , u p+2
2
⟩ ∼= K p+2

2
and ⟨u p+4

2
, . . . , up⟩ ∼=

K p−2
2

. Then, d(ui, u
′
j) = 2, 2 ≤ i ≤ p+2

2 , p− i+ 2 ≤ j ≤ p

and d(ur, u
′
s) = 2, p+4

2 ≤ r, s ≤ p. Hence, k = (1 + 2 +

· · · + p
2 ) + (p−2

2 )2 = 3p2−6p+8
8 . Substituting the value of k

in Equation (III.1), we get W (G) = 25p2−14p−8
8 . Hence the

upper bound.

(ii) p odd : Suppose u1 ∼ uj , 2 ⩽ j ⩽ p+1
2 , then

u′
1 ∼ u′

j ,
p+3
2 ⩽ j ⩽ p. Then k ≥ 1 + 2 + · · · + p−1

2 +

(p−1
2 )2 = 3p2−4p+1

8 .
We show the existence of a strong partial threshold
graph H ∈ Hf = PTG(1, 1, . . . , 1; 1, 1, . . . , 1) satisfying
k = 3p2−4p+1

8 . Suppose in H , the graph induced by
the vertices {u1, u2, . . . , u p+1

2
} is isomorphic to K p+1

2
and

⟨u p+3
2
, . . . , up⟩ ∼= K p−1

2
. Then, d(ui, u

′
j) = 2, 2 ≤ i ≤

p+1
2 , p− i+ 2 ≤ j ≤ p and d(ur, u

′
k) = 2, p+3

2 ≤ r, k ≤ p.
Hence value of k is 1+2+ · · ·+ p−1

2 +(p−1
2 )2 = 3p2−4p+1

8 .
Substituting the value of k in Equation (III.1), we get
W (G) = 25p2−16p−1

8 . Hence the upper bound.

Theorem 3.8: Let G be a strong partial threshold graph
on n = 2p vertices and size m. Then the Wiener index of G
satisfies the relation

3

(
p

2

)
+ p2 ≤ W (G) ≤


15p2−16p+4

4 if p even

15p2−16p+5
4 if p odd.

Proof: The expression in Equation (III.1) is minimum

when 2m + k is maximum i.e., when m = p2 +
(
p
2

)
and

k = 0. The lower bound is attained by a NSG(p; p).

Similarly, Equation (III.1) attains maximum value, when
2m+k is minimum. We know that the minimum value of m
is
(
p
2

)
+2p−1. We note that k ̸= 0, as among the p2−2p+1

pairs of vertices (a, b) which are not adjacent with a ∈ V1,
b ∈ V2, all pairs cannot be at distance 3. Let the vertices
ui ∈ V1, and u′

i ∈ V2, 1 ≤ i ≤ p of G be labeled as in
Definition 3.1. Consider G ∈ Gf = PTG(1, p− 1; 1, p− 1).
From condition (iii) of Theorem 2.4, if ui ∼ u1, 2 ⩽ i ⩽ p

or u′
i ∼ u′

1, 2 ⩽ i ⩽ p, then all the p2 − 2p+1 non adjacent
pairs (a, b) of vertices with a ∈ V1, b ∈ V2 are at distance 2.
We obtain the minimum value of k when p is even and odd
separately.

(i) p even : Suppose u1 ∼ ui, 2 ⩽ i ⩽ p+2
2 then

u′
1 ∼ u′

j ,
p+4
2 ⩽ j ⩽ p. Then, d(ui, u

′
j) = 2, 2 ≤ i ≤

p+2
2 , 2 ≤ j ≤ p and d(ur, u

′
s) = 2, p+4

2 ≤ r, s ≤ p. Hence
value of k is p

2 (p− 1) + (p−2
2 )2 = 3p2−6p+4

4 .

We show the existence of a strong partial threshold graph
H ∈ Hf = PTG(1, p−1; 1, p−1) satisfying k = 3p2−6p+4

4 .

Let u1 ∼ ui, 2 ⩽ i ⩽ p+2
2 and u p+2

2 +l ∼ u p+2
2 +l+1, 0 ≤ l ⩽

p
2 − 2. Then, H has k = 3p2−6p+4

4 .

Substituting the value of k in Equation III.1, we get,
W (G) = 15p2−16p+4

4 . Hence, the upper bound.

(ii) p odd : Suppose u1 ∼ uj , 2 ⩽ j ⩽ p+1
2 then

u′
1 ∼ u′

j ,
p+3
2 ⩽ j ⩽ p. Then, d(ui, u

′
j) = 2, 2 ≤ i ≤

p+1
2 , 2 ≤ j ≤ p and d(ur, u

′
s) = 2, p+3

2 ≤ r, s ≤ p. Hence,
k ≥ p−1

2 (p− 1) + (p−1
2 )2 = 3p2−6p+3

4 .
We show the existence of a strong partial threshold graph
H ∈ Hf = PTG(1, p−1; 1.p−1) satisfying k = 3p2−6p+3

4 .

Let ui ∼ uj , 2 ⩽ j ⩽ p+1
2 and u p+1

2 +l ∼ u p+1
2 +i+1, 0 ⩽ l ⩽

p−3
2 . Then, H has k = 3p2−6p+3

4 .

Substituting the value of k in Equation (III.1), we get,
W (G) = 15p2−16p+5

4 . Hence the upper bound.

IV. HYPER-WIENER INDEX

The hyper-Wiener index of a graph G is defined [14] as

WW (G) =
∑

{u,v}∈V (G)

d(u, v) +
∑

{u,v}∈V (G)

d(u, v)2

= W (G) +
∑

{u,v}∈V (G)

d(u, v)2.

The relation between Wiener index and hyper-Wiener
index has been the subject of study in [9]. The different
methods for calculating the hyper-Wiener index of molecular
structures is discussed in [5], and also computed for the
various operations of graphs in [13].

In this section, we give few results related to hyper-Wiener
index of a partial threshold graph.
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Theorem 4.1: Let G be a partial threshold graph on n =

2p vertices and size m. Then the hyper-Wiener index of G

is given by

WW (G) = 18

(
p

2

)
+ 12p2 − 10m− 6k, (IV.3)

where k is number of pairs of vertices (a, b) with distance
2, such that a ∈ V1 and b ∈ V2.

Proof: Proof follows from Theorem 3.1, and Equation
III.1.

Corollary 4.2: Let G be a partial threshold graph on n =

2p vertices and m edges with diameter 2. Then the hyper-
Wiener index of G is given by

WW (G) = 12

(
p

2

)
+ 6p2 − 4m. (IV.4)

The following corollary gives the bounds for the hyper-
Wiener index of partial threshold graphs on n = 2p vertices
of diameter 2 in terms of p.

Corollary 4.3: Let G be a partial threshold graph on n =

2p vertices and m edges with diameter 2. Then the hyper-
Wiener index of G satisfies the relation

8

(
p

2

)
+ 2p2 ≤ WW (G) ≤ 8

(
p

2

)
+ 6p2 − 8p+ 4.

Theorem 4.4: Let G be a partial threshold graph on n =

2p vertices and size m. Then the hyper-Wiener index of G

satisfies the relation

6p2 − 4p ≤ WW (G) ≤ 16p2 − 30p+ 16.

Proof: Lower bound is achieved by substituting m =

p2+
(
p
2

)
and k = 0 in Equation IV.3. Similarly, upper bound

is achieved by substituting m =
(
p
2

)
+2p− 1 and k = p− 1

in Equation IV.3.
Corollary 4.5: Let G ∈ Gf = PTG(p; p) be a partial

threshold graph. Then,

WW (G) = 6p2 − 4p.

Corollary 4.6: Let G ∈ Gf = PTG(1, p− 1; 1, p− 1) be
a partial threshold graph. Then, the hyper-Wiener index of
G satisfies the relation

10p2 − 12p+ 4 ≤ WW (G) ≤ 16p2 − 30p+ 16.

Proof: Lower bound follows by substituting k = p2 −
2p+1 and m =

(
p
2

)
+2p−1 in Equation IV.3 and the lower

bound is achieved by NSG(1, p− 1; 1, p− 1).

V. INVERSE WIENER INDEX

The term inverse Wiener index problem refers to problem
of constructing the graph of order n, given a Wiener index
W (G) = k. It turned out that every positive integer, except

for two and five, is the Wiener index of some connected
graph. In 1995, Gutman and Ye [10] considered an inverse
Wiener index problem as follows; For which integers n there
exist trees with Wiener index n?

A list of integers which are forbidden values for the
Wiener indices of connected bipartite graphs ( [10]) and
trees, unicyclic graphs ( [17]) has appeared in the literature.
Authors of the article [4] gave a list of integers which would
never be the Wiener indices of any chain / threshold graphs.
In this section, we list all the integers which are forbidden
values for the Wiener indices of partial threshold graphs.

Theorem 5.1: Let A = 3
(
p
2

)
+ p2 and B =

15p2−16p+4
4 if p is even

15p2−16p+5
4 if p is odd

, where p ≥ 2. Then for every

integer k ∈ [A,B], there exists at least one strong partial
threshold graph on n = 2p vertices.

Proof: By Corollary 3.3, if G is a partial threshold graph
on n = 2p vertices, size m and diameter 2, then the Wiener
index of G satisfies the relation 3

(
p
2

)
+ p2 ≤ W (G) ≤

3
(
p
2

)
+ 2p2 − 2p + 1. The upper bound is also satisfied by

G = NSG(1, p − 1; 1, p − 1) (a strong threshold graph).
Let the vertices ui ∈ V1, and u′

i ∈ V2, 1 ≤ i ≤ p of G

be labeled as in Definition 3.1. Suppose if we add edges
ui ∼ u′

j , 2 ≤ i, j ≤ p one by one to NSG(1, p− 1; 1, p− 1)

satisfying the condition given in Theorem 2.6, we observe
that, the Wiener index decreases by exactly one. Adding
exactly p2−2p+1 edges one by one to NSG(1, p−1; 1, p−1)

we get a strong partial threshold graph which is a NSG(p; p).
The graph NSG(p; p) has the least Wiener index given
by 3

(
p
2

)
+ p2. This implies every value in the interval[

3
(
p
2

)
+ p2, 3

(
p
2

)
+ 2p2 − 2p+ 1

]
is a Wiener index of some

strong partial threshold graph G. But the Wiener index of a
strong partial threshold graph G satisfies the relation

3

(
p

2

)
+ p2 ≤ W (G) ≤


15p2−16p+4

4 if p is even

15p2−16p+5
4 if p is odd

.

Next, we show the existence of a strong partial threshold
graph whose Wiener index is every value in the inter-
val

[
3
(
p
2

)
+ 2p2 − 2p+ 2, 15p2−16p+4

4

]
when p is even and[

3
(
p
2

)
+ 2p2 − 2p+ 2, 15p2−16p+5

4

]
when p is odd.

(i) p even : We know that the upper bound is satisfied by a
strong partial threshold graph G = PTG(1, p−1; 1, p−1), in
which u1 ∼ uj , 2 ⩽ j ⩽ p+2

2 and u p+2
2 +i ∼ u p+2

2 +i+1, 0 ≤
i ≤ p

2 − 2.
Suppose if we add edges ui ∼ u′

j , 2 ≤ i ≤ p
2 , 2 ≤ j ≤ p

one by one, we note that it satisfies the condition given in
Theorem 2.6. Then by adding these

(
p
2 − 1

)
(p − 1) edges

one by one, the Wiener index decreases by exactly one. We
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have 15p2−16p+4
4 −

(
3
(
P
2

)
+ 2p2 − 2p+ 2

)
= p2−2p−4

4 . As,
(p−1)(p−2)

2 − p2−2p−4
4 = p2−4p+8

4 ≥ 0, it follows that every
value in the interval

[
3
(
p
2

)
+ 2p2 − 2p+ 2, 15p2−16p+4

4

]
is a

Wiener index of some strong partial threshold graph G.

(ii) p odd: We know that the upper bound is satisfied by a
strong partial threshold graph G = PTG(1, p− 1; 1, p− 1),
in which u1 ∼ uj , 2 ⩽ j ⩽ p+1

2 and u p+1
2 +l ∼

u p+1
2 +i+1, 0 ≤ l ≤ p−3

2 . Now suppose if we add edges
continuously to G, such that ui ∼ u′

j , 2 ≤ i ≤ p−1
2 , 2 ≤

j ≤ p it satisfies the condition given in Theorem 2.6.
We note that by adding these

(
p−3
2

)
(p − 1) edges one by

one, the Wiener index decreases by exactly one. We have
15p2−16p+5

4 −
(
3
(
P
2

)
+ 2p2 − 2p+ 2

)
= (p−3)(p+1)

4 . As,
(p−1)(p−3)

2 − (p−3)(p+1)
4 = (p−3)2

4 ≥ 0, it follows that every
value in the interval

[
3
(
p
2

)
+ 2p2 − 2p+ 2, 15p2−16p+5

4

]
is a

Wiener index of some partial threshold graph G.

For the sake of simplicity to address, we define realiz-
ability of a positive integer in the above said context. An
integer k ∈ Z+ is said to be realizable Wiener index for
a partial threshold graph if there exists at least one partial
threshold graph G with the Wiener index k. If not, we say k is
forbidden. For every integer k within the respective bounds,
the next theorem guarantees the existence of at least one
partial threshold graph with the Wiener index k.

Theorem 5.2: An integer k ∈ Z+ is realizable Wiener
index for a strong partial threshold graph if and only if it
satisfies the following condition; k ∈ [3

(
p
2

)
+p2, 15p2−16p+4

4 ],
when p is even or k ∈ [3

(
p
2

)
+ p2, 15p2−16p+5

4 ], when p is
odd.

We characterize the integers which are forbidden to be
the Wiener indices of any partial threshold graph. For all
consecutive integers p and p + 1 whenever p ≥ 6, it is true
that the upper bound of the Wiener index of a strong partial
threshold graph for p is greater than or equal to the lower
bound for p+ 1.
Thus, all the integers k ≥ 81 are realizable Wiener indices.
Further, for p = 1, 2, 3, 4 and 5 the bounds are [1, 1],

[7, 8], [18, 23], [34, 45] and [55, 75] respectively and all the
integers in these intervals are realizable from Theorem 5.2.
Thus, the integers 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16,

17, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 46, 47, 48, 49,

50, 51, 52, 53, 54, 76, 77, 78, 79 and 80 are forbidden to
be the Wiener indices of strong partial threshold graph.

Theorem 5.3: Every integer except 2, 3, 4, 5, 6, 9,

10, 11, 12, 13, 14, 15, 16, 17, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 76, 77, 78, 79 and 80 is
the Wiener index of some strong partial threshold graph G.

As every strong partial threshold graph is also a par-

tial threshold graph, from Theorem 5.2, all the inte-
gers k ⩾ 81 are realizable Wiener indices of a par-
tial threshold graph also. For p = 1, 2, 3, 4 and 5 the
bounds of Wiener indices of a partial threshold graphs
are [1, 1], [7, 8], [18, 24], [34, 49], and [55, 83]. The partial
threshold graphs G1, G2, G3, G4, G5, G6, G7, G8 and G9

having the Wiener indices 24, 46, 47, 49, 76, 77, 78, 79 and
80 respectively are shown in Figure 3.

Fig. 3. Partial Threshold Graphs

With all this theory and conclusions, we now propose the
main theorem of this article.

Theorem 5.4: Every integer except
2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 26, 27, 28, 29,

30, 31, 32, 33, 48, 50, 51, 52, 53 and 54 is the Wiener index
of some partial threshold graph G.

VI. ALGORITHM

An algorithm which finds a tree with a given Wiener index
can be found in [7]. Similarly, an algorithm that returns the
chain graph (threshold graph) with the given Wiener index is
discussed in [4], [15]. In this section we present an algorithm
for the inverse Wiener index problem of partial threshold
graphs. In the following we gave the bounds for number of
vertices of a partial threshold graphs in terms of the Wiener
index which we use in the algorithm to obtain possible p

value.

Theorem 6.1: Let W be any given integer. There exist a
strong partial threshold graph on n = 2p vertices with the
Wiener index W if p satisfies⌈

8 +
√
60W − 11

15

⌉
≤ p ≤

⌊
3 +

√
40W + 9

10

⌋
.
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Proof: Proof follows from Theorem 3.8.

Corollary 6.2: Let W /∈
{24, 46, 47, 49, 76, 77, 78, 79, 80} be any integer. Then
there exist a partial threshold graph on n = 2p vertices with
the Wiener index W if p satisfies⌈

8 +
√
60W − 11

15

⌉
≤ p ≤

⌊
3 +

√
40W + 9

10

⌋
.

The graphs Gmax = NSG(1, p − 1; 1, p − 1) and
Gmin = NSG(p; p) which we use in the algorithm has
the split partition V (G) = V1 ∪ V2 with ⟨V1⟩, ⟨V2⟩ as co-
clique and clique respectively. The graph G∗

1, G
∗
2 ∈ Gf =

PTG(1, p−1; 1, p−1). The vertices of G,G∗
1, G

∗
2 are labeled

as follows: V1 = {1, 2, . . . , p} and V2 = {1′, 2′, . . . , p′}
with Φ(1) = 1′. In G∗

1, 1 ∼ j, 2 ⩽ j ⩽ p+2
2 and

k ∼ k+1, p+2
2 ⩽ k ⩽ p−1 and in G∗

2, 1 ∼ j, 2 ⩽ j ⩽ p+1
2

and k ∼ k + 1, p+1
2 ⩽ k ⩽ p− 1.

If the given input k ∈ {24, 46, 47, 49, 76, 77, 78, 19, 80},
then the algorithm returns the partial threshold graphs
G1, G2, G3, G4, G5, G6, G7, G8, G9 respectively, which are
given in Figure 3. For a given Wiener index k if there does
not exist any possible p value, then the algorithm prints
’There does not exist a PTG with the Wiener index k’. If
k ∈ [3

(
p
2

)
+ p2, 3

(
p
2

)
+ 2p2 − 2p + 1], then the algorithm

adds the required number of edges to Gmax, otherwise the
algorithm add required number of edges to G∗

1 or G∗
2, such

that it results in a partial threshold graph with the given input
as its Wiener index.

Algorithm 1 add edges NSG(G, p,C)
1: for i = 2 to p do
2: for j = 2′ to p′ do
3: if C ̸= 0 then
4: E(G) = E(G) ∪ (i, j)
5: C = C − 1
6: end if
7: end for
8: end for
9: return G =0

Algorithm 2 add edges PTG(G, p,C)
1: for i = 2 to ⌊p

2⌋ do
2: for j = 2′ to p′ do
3: if C ̸= 0 then
4: E(G) = E(G) ∪ (i, j)
5: C = C − 1
6: end if
7: end for
8: end for
9: return G =0

Algorithm 3 PTGWiener(k)
0: Input k
0: Output A PTG with the given Wiener index if exists.
0: INDICES = [24, 46, 47, 49, 76, 77, 78, 79, 80]
1: for i in range 9 do
2: if k == INDICES[i] then
3: return Gi

4: end if
5: end for
5: p = ⌈ 8+

√
60k−11
15 ⌉

5: q = ⌊ 3+
√
40k+9
10 ⌋

5: M = 3
(
p
2

)
+ 2p2 − 2p+ 1

6: if p > q then
7: return ”There does not exist a PTG with the Wiener

index k”
8: else
9: if k == 5p2−3p

2 then
10: return Gmin

11: else if k == M then
12: return Gmax

13: else if k ≤ M then
13: C = M − k
13: G = Gmax

14: return add edges NSG(G, p,C)
15: else
16: A = 15p2−16p+4

4

17: B = 15p2−16p+5
4

18: if k == A then
19: return G∗

1

20: else if k == B then
21: return G∗

2

22: else
23: if p mod 2 == 0 then
24: C = A− k
25: G = G∗

1

26: else
27: C = B − k
28: G = G∗

2

29: end if
30: return add edges PTG(G, p,C)
31: end if
32: end if
33: end if=0

A. Illustrations

We illustrate the algorithm by taking particular values of
k.

Example 6.1: Let k = 8.

1) It is clear that 8 /∈ INDICES. (lines 1-5 of Algorithm
3)

2) p = q = 2 and M = 8 (lines 5 of Algorithm 3);
3) p ̸ > q and hence continue (lines 6-7 of Algorithm 3);
4) 5p2−3p

2 = 7 ̸= k and as k = M = 8 and the algorithm
returns Gmax as output (line 8-12 of Algorithm 3).

Example 6.2: Let k = 20.

1) is clear that 20 /∈ INDICES and hence continue (lines
1-5 of Algorithm 3);
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2) p = q = 3 and M = 22 (line 5 of Algorithm 3)

3) p ̸ > q and hence continue (lines 6-7 of Algorithm 3)

4) As 5p2−3P
2 = 18 ̸= k, M = 22 ̸= k, and

k ≤ 22, C = 22 − 20 = 2 and set G = Gmax

(minimal threshold graph on 2p vertices) hence return
add edges NSG(Gmax, 3, 2) (lines 8-14 of Algorithm
3) and proceed to Algorithm 1.

5) Since C = 2 ̸= 0 add the edge (2, 2′) to G and update
the value of C with C − 1 = 1 (lines 1-5 of Algorithm
1).

6) Now, C = 1 ̸= 0, add the edge (2, 3′) to G. By updating
the value of C, we get C = 0 and hence it returns G

(lines 1-9 of Algorithm 1) with E(G) = {E(G max)∪
(2, 2′) ∪ (2, 3′)}.

B. Time Complexity

The maximum number of edges that can be added in
Algorithm 1 is (p−1)2 and in algorithm 2 it is (p2−1)(p−1).

Hence, the time complexity of the Algorithm 1 and 2 is
O(n2). If the graph has been returned in the lines 1-5,
the time required is constant, i.e., O(1). If there does not
exist any partial threshold graph with the given integer as
the Wiener index, Algorithm 3 stops in constant time. If
the input value is equal to the Wiener index of Gmin or
Gmax, then also the algorithm returns the graph in constant
time. Suppose k ≤ M , then the maximum value of C is
equal to (p − 1)2 and hence the time required to return
the graph is the constant times the time complexity of the
function add edges NSG(G, p,C) (Algorithm 1), that is
equal to O(n2). Suppose k > M and either k = A or
k = B, the graph will be returned in constant time. Suppose
k > M and neither k = A nor k = B, the time required
to return the graph is constant times the time complexity
of the function add edges PTG(G, p,C) (Algorithm 2).
Therefore, the time complexity of the algorithm is O(n2).

VII. CONCLUSION

The highlight of the article is the list of integers which
would never be the Wiener indices of any partial threshold
graphs. Analogous to the algorithm for the inverse Wiener
index problem for chain graphs and threshold graphs, we
carry out a similar study and present an algorithm for partial
threshold graphs. Further, other topological indices of a
partial threshold graph can be studied.
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