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Abstract—Wild Horse Optimizer (WHO) is a swarm-based
meta-heuristic algorithm inspired by animal behavior, which
mainly imitates the decent behavior, grazing behavior, mating
behavior and leadership dominance behavior of wild horses in
nature in their lives for finding the optimal. The location
update method of WHO is prone to low convergence accuracy,
poor global search ability and local optimum problems. With
the aim of balancing global searchability and exploitation
performance, an improved WHO that incorporates a dual
weight starvation strategy and a random convergence factor is
proposed. In the exploration stage, the starvation strategy is
inspired by the starvation characteristics of animals, so that
the algorithm can continuously adjust the stallion position
according to the starvation level and automatically adjust the
distance between the stallion and the wild horse according to
the changing adaptation value, which improves the global
search performance and can jump out of the local optimum at
the same time. In the exploitation stage, a convergence factor
is added to help it jump out of the local optimum and continue
to search for a better solution. The simulation experiment on
23 benchmark functions is to verify the effectiveness of the
proposed algorithm being compared with Whale Optimization
Algorithm (WOA), Moth-Flame Optimization (MFO), Rat
Swarm Optimizer (RSO), Multi-Verse Optimizer (MVO),
Gray Wolf Optimizer (GWO0) and Artificial Bee Swarm
Optimizer (ALO). Finally two real engineering design
problems were solved. The simulation results show that the
proposed SD3IWHO has a strong seeking capability and
optimization performance.

Index Terms—wild horse optimizer, dual weight starvation
strategy, convergence factor, function optimization,
engineering optimization

I. INTRODUCTION

HE growing complexity and hardness of real-world
problems in latest decades has led to the need for more
reliable optimization techniques to solve problems with
stochastic, while they are able to estimate optimal solutions
to diverse optimization problems [1]. Optimization refers to
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the selection of the best set of solutions from all solutions
in solving a problem, and the objective function, decision
variables, and constraints are the three important factors of
optimization [2]. The process of optimizing a problem is to
obtain the optimal value of the decision variables for the
problem by solving the objective function for the optimal
value. Some practical problems with high complexity and
long computation time with unknown search space are a
challenge for many algorithms. Usually, deterministic
algorithms [3] are prone to obtain the same solution in
solving a problem if the starting point and conditions are
the same. This behavior tends to lead to local optimal
stagnation, in which the algorithm is stuck in a local
solution and cannot step out of it [4].

Meta-heuristic algorithms are becoming increasingly
popular as one of the techniques designed to solve
optimization problems with some flexibility and can be
applied to many different types of problems. Compared
with traditional optimization algorithms, the stochastic
nature of meta-heuristic algorithms can effectively reduce
the generation of local optimum, while allowing a large
search of the space, and their search strategies are mainly
exploration and exploitation strategies [5-6], and the ability
to effectively balance these two strategies 1s one of the
factors to measure the excellent performance of the
algorithm. Most of their inspirations are simple, by
modeling different natural concepts, such as animal
behavior or evolution, physical phenomena.

Evolutionary algorithms are mainly inspired by the
concept of natural evolution by. They simulate the basic
laws in natural evolution, design basic models based on the
laws of biological sciences and genetics, and use operators
driven by biological behaviors such as natural selection,
crossover and mutation [7]. Genetic algorithms (GA) [8]
are one of the most representative evolutionary algorithms,
which are driven by Darwinian evolutionary ideas. The
optimization 1is based on the imitial solution of the
evolutionary algorithm, and iterative optimization is
performed by iteratively repeating this pattern by
continuously mutating and combining to renew the
population generation after generation, where the better the
individual is, the higher the chance of entering the new
population. For example, the biogeography-based
optimization algorithm (BBO) [9], which is inspired by
bio-geography, investigates the effect of migration and
mutation on different inhabitants or other species in
bringing about the stabilization of the ecosystem under this
influence.
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Distinct from evolutionary algorithms are algorithms
inspired by physical phenomena, who use physical rule sets
to write algorithms that allow populations to be iteratively
updated continuously in a specific search space. Examples
are physical concepts such as gravity, inertial forces,
electromagnetic forces, gravity, black holes, etc. The
gravitational search algorithm (GSA) [10] is a typical
example, which is designed based on the law of gravity and
particle swarm interactions as a model, where in iteration
after iteration, objects are mutually attracted by the
gravitational force between them, and the gravitational
force moves all objects toward the object with heavier mass,
and the maximum mass represents the optimal solution in
the true search space. There are also multiverse algorithms
(MVQO) [11], as well as atomic search optimization
algorithms (ASO) [12], and Big Bang optimization
algorithms (BBOC) [13], which are designed based on the
concept of black and white holes and wormholes of
multiverse theory.

The swarm intelligence optimization algorithm is mainly
used to find the best by simulating the group behavior that
ammals have when they are in motion or hunting, and
during the search process of this algorithm, information
about the characteristics and locations of all animals is
shared and the algorithm is able to preserve the information
iterations of the search space. Compared to evolution-based
algorithms, swarm intelligence optimization algorithms
have very few operators, are very easy to implement, and
are capable of keeping information throughout the
searching space.

The most prevalent algorithm among swarm intelligence
algorithms 1s particle swarm optimization (PSO) [14],
which is on the basis of social behaviors inspired by birds,
animals, etc. Each particle in this algorithm can move
throughout the search space, and the particles use
information about their historical best position and
neighborhood best position to adjust their flight speed, and
then gradually gather near the best particle and update the
distance between their respective positions and the global
best solution simultaneously [15-16]. There are other
popular population intelligence-based techniques, such as
the Whale Optimization Algorithm (WOA), which
performs optimization by simulating the bubble net hunting
method performed by humpback whales [17], the Moth
Flame Optimizer (MFO), which performs optimization
based on the path of the spiral flight of a moth's navigation
mechanism [18], the Rat Swarm Optimizer (RSO), which
performs optimization by simulating the behavior of a rat
chasing and attacking its prey [19], Gray Wolf Optimizer
(GWO) that employs hierarchical leadership behavior
modeling and strategies of gray wolves during hunting [20],
Ant Lion Optimizer (AlLO) that performs optimization by
simulating the behavior of ant lions preying on ants in
nature [21], Ant Colony Optimization Algorithm (ACO)
where each individual interacts indirectly through
pheromone trajectories [22], and some other swarm-based
algorithms. Such as Raccoon Optimization Algorithm
(ROA) [23], Grasshopper Optimization Algorithm (GOA)
[24], Crow Search Algorithm (CSA) [25], Tune Swarm
Algorithm (TSA) [26], and Marine Predator Algorithm
(MPAj[27].

Wild Horse Optimizer (WHO) is a new intelligent
optimization algorithm proposed in 2021, which is inspired
by the social life behavior of wild horses, and performs the
optimization by simulating the life behavior of wild horse
populations [28-30] Wild horses usually live in herds,
including a stallion and several mares and foals. Horses
exhibit many behaviors such as grazing behavior, chasing
behavior, dominance behavior, leadership behavior and
mating  behavior. One fascinating behavior that
distinguishes horses from other ammals 1s equine decency.
Equine decency behavior allows the horse's foals to
separate from the group and join other groups before they
reach puberty. Such leaving is done to prevent the father
from mating with his daughter or siblings. It 1s inspired by
the decent behavior of horses, with a strong merit-seeking
ability and a fast convergence rate. However, in the
exploration stage, the wild horse optimizer is prone to make
the global search range of the algorithm too large, resulting
n a part of wild horses being too far away {rom the leader
to get the optimal value.

To improve this situation, this paper proposes a
starvation strategy incorporating double weights to balance
exploration and exploitation, which to some extent can
continuously change the position of the leader according to
the hunger level of the horse, while continuously and
dynamically adjusting the distance between the group
members and the leader. The distance between the group
members and the leader is constantly and dynamically
adjusted, so that the group members can be stable near the
leader. In the development stage, the search for the optimal
position 1s very fine leading the algorithm to fall into local
optimum easily.

In this paper, a random convergence factor is added to
help the algorithm jump out of the local optimum. For the
WHO (SD3WHO) that incorporates the dual weight
starvation strategy and the random convergence factor, 23
benchmark test functions are used to verify the
convergence effect by using the mmproved algorithm
SD3IWHO  and seven intelligent optimization algorithms,
WHO[31], WOA[17], MFO[18], RSO[19], MVO[11],
GWOQO[20], and ALO[10]. In addition, two real engineering
problems are solved and the performance of the original
WHO is compared with the improved algorithm and other
algorithms to verify the effectiveness of the SD3IWHO.
Specifically, the paper includes the following contends.
Section 2 introduces the WIHO; Section 3 introduces the
improved WHO; Section 4 conducts simulation
experiments and engineering optimization and Section 5
draws conclusions.

II. 'WILD HORSE OPTIMIZER

A. Population Initialization Stage

Wild horses leave their parents before puberty, with
adult males joining a single group to seek mating
opportunities and females choosing to join another family
to prevent mating among relatives. Competition among
groups of wild horses is required to gain access to water
sources.

By dividing the initial population into groups and setting
the number of populations to N, the number of stallion
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groups is G = N X P5. PS is the percentage of stallions
in the total population. Thus we can get the leader stallion
{(6¢) and the rest of the members (N — ) are equally
distributed among these groups.

B. Grazing Behavior

During grazing, other members of the population graze
around the stallion in order to allow the wild horses to
gather more. Eq. (1) was used to analog the grazing
behavior of wild horses.

ﬁig = 2Qcos(2nrQ) x (Stallionf - PiG) + Staltion (1)

where, PJ;‘,G is the present position of the group members,
Stallion’ 1is the position of the stallion, @ is calculated by
Eq. (5), 7 is a random number in the range [-2,2] , and the
new location of the members of the population at the time
of grazing is ﬁi(;

1

TDR =1 — iter x (——) (2)
C=7% <TDR (3)
IDX=(C==0) (4)

Q=r,OIDX+7 8 (-IDX) (3)

where, iter 1s the current iteration and maxiter is the
maximum number of iterations of the algorithm. TDR is
the adaptive parameter whose value starts from 1 and
decreases during the execution of Eq. (1). Cin Eq. (2)is a
vector consisting of O, 1 equal to the problem dimension,
¥y and 73 in Eq. (3) are random vectors uniformly
distributed in the range [0,1], while v, in Eq. (3) is a
random number in the distribution. In Eq. (3), the random
vector 7y of the IDX index needs to satisfy the
condition(C == 0) to return. Eq. (5) results in O at the end
of the algorithm execution.

C. Muating Behavior

For horses, before reaching puberty, the foal will choose
to leave the herd. And after reaching puberty, the foal will
begin to search for a mate. During this process, males will
usually choose to join a single herd, while females will
choose to join ancther family herd. This behavior is a
decent one for the horse, mainly to prevent the father {rom
mating with his daughters or siblings. The cyclic pattern of
horses leaving, mating, and reproducing would be repeated
over and over agamn, which would also require simulating
the mating behavior of horses. During the simulation, Hq.
(6) and Eq. (7) uses the same cross operator as the mean
Cross operator.

P = Crossover(Pg;, P’E”,-) ©
rossover=Mean )

where, P7, is the foal from the &-th group horse position
z. The i-th group P{; foal m leaves the group and its
mating with the horse n in position Pg; after puberty,
and the mated horse joins the group k.

D. Leadership Team

Each team in the wild horse population competes for a
limited water source, and after the leader of the team
succeeds in grabbing it, no other team is allowed to use it,

and the losing leader and his group members can only wait
until the last successful team leaves before they can use the
water source, or they can choose to move in the direction of
other water sources that are more likely to be occupied.
Based on this behavior of wild horses, Eq. (8)-(9) propose
this model of leading teams.

Stalliong;
_ {2Qcos(2ZrrQ) X (WH — Stalliong) + WH if 3> 0.5
N {ZQcos(ZmQ) X (WH — Stalliong;) — WH if r3 <0.5

(8)

Stalli  (Pgy if cost(Ps;) < cost(Stalliong;) o
talliong, = {Stallionai if cost(Pg;) < cost(Stalliong;) @

where Stalfiong; is the next position of the leader of the
first group, Stalliong; is the current position of the leader
of the ith group, WH is the position of the water source,
and @ is the computed adaptive mechanism proposed by

Eq. (6). v is a uniform random number in the range [ —
2, 2]

III. WHO wiTH DUAL WEIGHT STARVATION STRATEGY
AND RANDOMIZED CONVERGENCE FACTOR

A. Dual Weight Starvation Strategy

In nature, starvation 1s one of the most critical reasons
for determining the behavior of animals in their lives.
When food is abundant, a variety of external stimuli and
competing demands constantly affect the quality of life of
animals. However, when food is scarce, animals choose to
search for food rather than choose to cope with stimuli and
mutual competition unrelated to food, when the pursuit of
food sources becomes their top prionty [28]. To prevent
food shortages, animals regularly search for food, they
constantly hover around it, and they snatch it through
competitive and defensive behaviors [29]. Smart and
powerful animals have more advantage in finding food,
while the survival space of weak animals is decreasing time
and time again, and every wrong decision may lead to the
death of an individual or even the extinction of the whole
species[30]. Therefore, when food sources are limited,
starving animals adopt various strategies to cope with and
win the situation, and ammals with different levels of
starvation and different thirst for food will adopt different
coping strategies.

Wild horses are a population with social behavior in their
search activities and, like other animals, their behavior is
often influenced by hunger in their daily lives and
constantly changes. Hunger is one of the most critical
influences in the life of wild horses, and their search
activity 1s directly proportional to the level of hunger.
Based on the effects of hunger on animals, the
mathematical model W) simulates the hunger
characteristics of individuals in the searching wild horse
population, representing the effect of hunger on the activity
range of each individual. One of the equations related to
hunger Stave(i) is defined as follows:

L F(i) == BF
vae(t)_{stave(i)+5, r)=pr 10
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C(SLx(1+71), ST < SL
5= {ST, ST = SL (a0

where, Stave(i} represents the hunger of the wild horses
and SStave represents the total hunger of the whole wild
horse population, which is short for sum(stave). F(i) is the
fitness value of each individual in the current iteration, BF
1s the best fitness value in the current iteration and the
hunger of the best individual in the whole population is set
to 0. For the other individuals, a new hunger value (5) is
added to the 1nitial hunger 1s increased, from which we can
be sure that for different individuals, his hunger value (5)
1s different. In order to make the performance of the
starvation strategy superior, we require the starvation value
{5) to take the maximum of ST and SL, when the lower
bound of § 1s the value around SL, which 1s set to 100 in
this paper. 4 1 a random number in the range [0,1].

F(i)—BF
WF—BF

ST =

X 15 X 2 X (UB — LB) (12)

where, WF denotes the worst fitness value obtained in the
current iteration, UB denotes the upper limit in the feature
space, and LB denotes the lower limit in the feature space.
F(i) — BF represents the amount of food required for an
individual not to be hungry, and in each iteration, the
individual’'s hunger changes and the amount of food

required changes. WF — BF represents the total foraging
F()—BF
WF—BF
hunger rate. s is a random number in the range [0,1], and
r; X 2 represents the positive or negative effect of
environmental factors on hunger.

W(i’,) — (1 _ e*|5tave(£)75’5’tave|) X 1g X y) (13)

capacity of the individual, and represents the

where, r, is a random number in the range [0,1].

P!, = W(i) x (Stallion’ — P, .} + ST. « Stallion) (14)

4

Taking the possible effects of starvation on wild horses
as inspiration, the design proposes a starvation value S and
a starvation weight W({i). The upper limit of the starvation
value depends on the magnitude of the starvation rate
F(i)}-BF
WF—EF
of horses in the whole population, the greater the effect on
the population.

W() is an exponential mathematical model, which
performs a strong global search in the early stage of the
algorithm, and adjusts the position of the stallion according
to the effect of the hunger value ST on the stallion as
iterations continue, and automatically adjusts the distance
between the group members and the stallion depending on
the change of the fitness value. The search step length of
the algorithm 1s reduced compared with the original
algorithm, which can effectively avoid the situation that the
wild horses are far away from the stallion due to the
distance between them. It can quickly locate the
approximate position of the global optimal solution in the
search space and ensure that the members of the group are
not far away from the leader. Review the fitness value of
the group members after each adjustment, and continuously
adjust the position of the stallion according to the changes.
On this basis, the algorithm can effectively balance

in ST, which means that the greater the starvation

exploration performance and exploitation performance to
ensure that the algorithm can perform sophisticated search
near the optimal solution while improving the global search
capability.

B. Randomized Convergence Factor

To further enhance the exploration capability and
convergence precision of the algorithm, a convergence
factor I 1s introduced in the development phase. In the
early stage of the search, the overall convergence factor 1is
larger, and the algorithm focuses more on global
optimization, but due to the presence of random
perturbations, the convergence factor has the opportunity to
get smaller values in some of the optimization-seeking
iterations, which allows the algorithm to perform local
optimization, and this strategy can improve the
convergence speed. At the later stage of the search, the
convergence factor is smaller overall and the algorithm
focuses on local optimization. Again, due to the random
perturbation, the convergence factor takes larger values in
some of the optimization-seeking iterations, and the
algorithm can search for optimization in a larger space,
which helps to jump out of the local optimum. In this paper,
the stochastic convergence factor from the five
manifestations of cosine function, sine function, tangent
function, power function and exponential function are
proposed as shown in Egs. (15)-(19), and the improved
position update formula is shown in Eq. (20).

The random convergence factor in cosine functional
form 1s as follows:

1

maxiter

Dy =9%(1—cos{

— 0.35 %1 ) * (rand — 0.5)
(15)

The random convergence factor in the form of a sine
function 1s as follows:

maxiter

D2=4*(1+sin( iter +n))*(rand—0.5) (16)

The stochastic convergence factor in the form of a
tangent function is as follows:

D3 =2 % (2 —tan (iter/maxiter) ) = (rand — 0.5) (17)

The stochastic convergence factor in power function
form is as follows:
Dy=4x(1— (———))+(rand—0.5)  (18)
The stochastic convergence factor 1n exponential
functional form is as follows:

Ds = 4% (2 — el « (rand — 05) (19

Stalliong;
(P (2Qcos(2mrQ) x (WH — Stalliong ) + WH) if +3>0.5
N {D * (2Qcos(2ZarQ) X (WH — Stalliong;) —WH) if r3 <05

(20)

where, dim is the dimension of the current algorithm,
iter 1is the current iteration value, and maxiter is the
maximum iteration value. The movement trend of the
stochastic convergence factor with increasing number of
iterations is shown in Fig. 1.
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IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS

Due to evaluate the optimization ability of WHO with
double-weighted  starvation strategy and random
convergence factor and explore the optimization space of
the algorithm, it is tested and compared with seven
algorithms, namely, ALO[10], MVO [11],WOA [17], MFO
[18], RSO [19], GWO [20]and WHO[31],.

Due to the randomness and instability of the algorithms,
for the sake of realistic and fair experiments, each group of
experiments was chosen to run 30 times independently, and
the average value was obtained on this basis, and the
maximum number of iterations was set to 500 and the
number of populations was set to 30. To further verify the
effectiveness of the algorithms, two practical engineering
optimization problems were used to verify the optimization
performance of the algorithms again in this experiment.

A. Test Functions

In order to test the proposed SD3WHO algorithm, 23
standard test functions were selected for this experiment,
including single-peak function F{~F5, multi-peak function
Fg~F (4, and fixed-dimension multi-peak functionF,~Fo.
The 23 test functions are shown in Table I. No. denotes the
function serial number, Function represents the function
expression, dim means dimension, Range signifies the
upper and lower limits, and fmn means the minimum value.

B. Performance Comparison and Result Analysis of
Improved WHO

The performance of the algorithm was tested using 23
test functions for the six improvement schemes proposed
by WHO. Due to the randomness of the algorithms, in
order to make the experimental results more accurate, the
algorithms were run 30 times each time and then the
average of all the results was taken, and the maximum
number of iterations of all the algorithms was set to 500,

compared with the convergence curves of the original
WHO as shown in Fig.3, and the calculation results in the
form of statistics of mean and variance are shown in Table
1I.

It is clear from Fig. 3 and Table I that the convergence
effect and the average best-fit value of the improved
algorithms are better than WHO for most of the tested
functions, especially SD3WHO, which incorporates the
dual weight starvation strategy and the random
convergence factor, has a better finding ability than WHO
for most of the tested functions, both in terms of
convergence speed and mean, variance and most optimum.
For the single-peaked test functions F1-F7, the mean,
variance and most values of all improved algorithms in
F1-F4 functions (including SWHO, SDIWHO, SD2WHO,
SDIWHO, SD4WHO, and SD5WHO) are optimal, the
mean and variance of F5-F7 are optimal, and the F5 and F7
have the best most values.

For the multi-peak test functions F8-F13, the best values
were found for F8 and F9, and the best means and
variances were found for the F9, F10 and F12, while the
best mean value was found for F13. For the
fixed-dimensional multi-peak test functions F14 to F23, the
mean and variance of F15 and F22 are the best. From Fig. 3
it can be seen that SD3WHO has the fastest convergence
speed. Most of the improved algorithms are more
competitive than the original WHO, and the improved
algorithms are more advantageous in terms of convergence
speed and convergence accuracy, and basically find the
optimal solution faster. From the comprehensive view of all
the above algorithms, the effect of SD3WHO 1s the most
obvious, the improved algorithm can i1mprove the
algorithm's global search ability, and can reduce the
possibility of its falling into the local optimum, in
improving the algorithm's local search ability as well as to

E

. . improve is the exploration accuracy i1s also ve

and 30 populations were set at the same time. The P P y i
o . advantageous.
convergence curves of the six improved algorithms are
TABLE I. DESCRIPTION OF THE 23 BENCHMARK FUNCTIONS
No. Function dim Range fouin
n
F, fi(x)=z x? 30 [-100,100] 0
i=1
F, fa(x) =2H\xf| +l_[H\xi\ 30 [-10,10] 0
n i
F; Fa(x) =Z (Z x)* 30 [-100,100] 0
i=1 -1
F, Folx) = max{|x,), 1 « i « n} 30 [-100,100] 0
n—1
Fs oY= (100G %Y + (i 7] 30 [3030] 0
=1
Fq fo(x) =Z ([x +051%) 30 [-100,100] 0
=1
n
F- F() = Z ix} + random [0,1) 30 [-1.28,1.28] 0
=1
Fy Fa) =Z — x;sin (] ) 30 [-500,500] -418.982
i=1

Fq Falx) = [xf — 10 cos (Zmx) + 10] 30 [-5.12,5.12 0
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F o FEE 5 cosmn) 30 3232 0
10 F1o(x) = —20e I +20+e [ ]
TL 2
F = :—1 = | | 1 30 -600,600 0
1 fuu(x) = 0 E:Ic:os (\/_) + [ ]
T n—1 3
T foG) = {10 5in (ay,) + Z (i — 2 [1 + 10sin? @y )l + @ — 1% + Z (%, 10,100,4) ) 30 [-50.50] 0
i=1 i=1
¥
f13(x) = 01{10sin* (3mx;) + Z (e, — 12 [1 + sin?@rx; + 1]+ (x, — 1?[1 + sin?(2rx,)]
Fis L et 30 [-50,50] 0
- Z e 5,100,4)}
=1
F X Z = 2 -65,65 1
14 fralx) = 5000 i—1j+ 37 1(x+au) 5 [ ]
11 x,(bF + b; %2) 1,
F Z — 4 55 0.00031
15 fis(x) = a b2+bx3+x4] [-5.5]
Fie fie(x) = 4x? — 2.1x% + 3 + XXy — 4x5 + 4x3 2 [-5.5] -1.0316
5.1 S5x 1
Fiy Firl) = (x, — xl + 22— 67 41001 — =) cos x; +10 2 [-5,10] 0.398
Py f1a0) = [1+ (g +x, + 1)2(19 — 14, +3xI — 14x, + 6x:%, +3%3)] % [30 4+ (2%, — 3%,)% x (18 — 32x, 5 [2.2] 5
+ 12x% +48x, — 36x,x, + 27x%]) ’
4
Fio Fro(x) =— Z e TGP’ 3 [1.3] 3.86
=1
4 _ B " 2
Fa Fao(x) =— Z e T WO 6 [0.1] 3.32
i=1
5
Fyy Far() =— Z X —a)(X —a) +c]? 4 [0,10] -10.1532
=1
7
Fy, Fanl) =— Z X —a)(X —a) +c¢]? 4 [0,10] -10.4028
i=1
10
Fyy Foz() =— Z (X —a)(X —a) +c]? 10 [0,10] -10.5363
i=1
YL T T T e BT T — —
\ WHO —bB—WwWHo 10 [_B WHO 4
10° \ swHO | ] 10 SWHO
| . o / ©— SD1WHO SD1WHO
; —p—sD2wHo 2, —b— SD2WHO
5 —%— SD3WHO 8 SD1WHO —%— SD3WHO
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TABLE [I. PERFORMANCE COMPARISON RESULTS OF THE 23 BENCHMARK FUNCTIONS OPTIMIZATION

I WHO SWHO SDIWHO SD2WHO SD3WHO SD4WHO SDSWHO
Ave 1.7205e-43 0 0 0 0 0 0
Fy Std 7.1576e-43 0 0 0 0 0 0
Best 1.9328-50 0 0 0 0 0 0
Ave 2.4586e-25 0 0 0 0 0 0
F, Std 5.0028e-25 0 0 0 0 0 0
Best 5.5889e-29 0 0 0 0 0 0
Ave 9.4851e-26 0 0 0 0 0 0
F; Std 4.8173e-25 0 0 0 0 0 0
Best 1.2255e-32 0 0 0 0 0 0
Ave 1.1527e-16 0 0 0 0 0 0
Fy Std 2.2502e-17 0 0 0 0 0 0
Best 5.0634e-20 0 0 0 0 0 0
Ave 30.8733 0.0064 0.0069 0.0060 0.0028 0.0070 0.0048
Fy Std 78.1933 0.0128 00142 0.0060 0.0036 0.0120 0.0107
Best 25.8200 8.7292¢-06 1.8654e-04 1.1060e-05 1.2294e-006 1.7366e-04 1.4398e-05
Ave 0.0032 4.4407e-05 6.9086e-05 1.2967e-04 4.2400e-05 6.5602e-05 1.2332e-04
Fe Std 0.0083 6.8081e-05 6.7833e-05 4.0731e-04 5.7715e-05 6.9954e-05 1.9354e-04
Best 1.3207e-07 5.8474e-07 9.9241e-07 1.3323e-07 9.5478e-07 7.2406¢-09 3.6920e-07
Ave 0.0014 1.7878e-04 1.5819¢-04 1.4922e-04 1.3345¢-04 2.0084e-04 1.9903e-04
F; Std 0.0012 1.4150e-04 1.5868e-04 1.3073e-04 1.1622e-04 2.032e-04 2.0031e-04
Best 1.2855¢e-04 4.3637e-06 5.5619%¢-07 5.7083e-06 3.2798e-00 1.4588e-05 5.2697e-06
Fy Ave -8.9255¢+03 -1.2061e+04 -1.1634e+04 -1.2236e+04 -1.2017et+04 -1.1947e+04 -1.1838e+04
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Std 575.7809 $48.2062 1.2892¢+03 571228 743.6616 1.0479e+03 1.0025e+03
Best -1.01406+04 -1.256%+04 -1.256%+04 -1.256%+04 -1.2569e+04 -1.2569¢+04 -1.2569¢+04
Ave 1.0566 0 0 0 0 0 0
Fo Std 5.7874 0 0 0 0 0 0
Best 0 0 0 0 0 0 0
Ave 1.3619¢-15 8.8818c-16 8.8818c-16 8.8818c-16 8.8818c-16 8.8818¢-16 8.8818¢-16
Fio 5w 1.2283¢-15 0 0 0 0 0 0
Best §.8818¢-16 8.8818¢-16 §.8818¢-16 8.8818¢-16 8.8818¢-16 §.8818¢-16 §.8818¢-16
Ave 0 0 0 0 0 0 0
Fi,  Su 0 0 0 0 0 0 0
Best 0 0 0 0 0 0 0
Ave 0.0242 3.8615¢-06 4.8298¢-06 5.6592¢-06 2.147%-06 1.8935¢-06 4.5792e-06
F, 5w 0.0931 5.7022¢-06 6.4331¢-06 8.1597¢-06 1.8592¢-06 9.1400¢-06 6.8396¢-06
Best 7.6710¢-08 3.5374e-09 5.2198¢-08 1.5079¢-07 5.9868¢-07 7.9483¢-09 2.6485¢-10
Ave 0.0201 5.4634¢-05 7.4137¢-05 7.1158¢-05 4.445%¢05 5.1368¢-05 1.0685¢-04
Fi. 5w 0.0335 9.06766-05 7.9329¢-05 9.5369¢-05 7.3507¢-05 6.5796e-05 2.3083¢-04
Best 5.2320e-05 1.8767e-09 1.1913¢-07 3.8234e-07 1.1640e-07 2.8144e-07 1.1076e-06
Ave 2.0504 0.9980 0.9980 0.9980 1.0010 0.9981 1.0055
Fi. 5w 1.9912 3.7201e-12 2.2702¢-05 2.0177¢-08 0.0114 3.9357¢-04 0.0411
Best 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980
Ave 0.0014 4.5769¢-04 4.2689¢-04 6.2398e-04 4.0526¢-04 6.6108e-04 1.9634¢-04
Fis 5w 0.0036 4.0066¢-04 1.9866¢-04 5.6060¢-04 1.0624e-04 6.2424e-04 3.5840e-04
Best 3.0768¢-04 3.074%-04 3.1972-04 3.1426e-04 3.1807e-04 3.1232e-04 3.1144e-04
Ave -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Fie  Su 4.7908¢-16 2.5561¢-06 4.5395¢-05 9.8244¢-05 4.2831¢-05 2.9795¢-05 6.6193¢-05
Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Ave 0.3979 0.3979 03988 03986 03985 0.3986 0.3984
Fir  Su 3.2434¢-16 4.0698¢-07 §.3714¢-04 8.6380¢-04 5.3665¢-04 7.6764¢-04 7.3503¢-04
Best 0.3979 03979 03979 03979 03979 0.3979 0.3979
Ave 3.0000 3.0000 3.0022 3.0031 3.0026 3.0045 3.0026
Fia  Su 1.2775¢-15 1.7772¢-08 0.0026 0.0038 0.0036 0.0116 0.0043
Best 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
Ave -3.8628 -3.8612 38572 -3.8554 -3.8584 -3.8551 -3.8564
Fis St 2.6823¢-15 0.0030 0.0065 0.0117 0.0257 0.0201 0.0226
Best -3.8628 -3.8628 -3.8625 -3.8625 -3.8627 -3.8623 -3.8627
Ave -3.2564 -3.2550 -3.0212 -3.0383 -3.0437 -3.0098 -3.0611
Foo S 0.0635 0.0898 02121 0.1446 0.1686 0.2069 0.1400
Best -3.3220 -3.3220 33125 32337 -3.2884 -3.2402 -3.2695
Ave -8.1390 -0.9833 -9.9621 -10.1367 -10.1394 -10.1346 -10.1325
F,,  Su 3.1416 0.9308 0.9458 0.0280 0.0193 0.0390 0.0425
Best -10.1532 -10.1532 -10.1532 -10.1532 -10.1532 -10.1532 -10.1532
Ave -8.2366 -10.4029 -10.3700 -10.3764 -10.3883 -10.3883 -10.3624
Fp,  Su 3.4468 8.1571e-05 0.0679 0.0558 0.0270 0.0322 0.0742
Best -10.4029 -10.4029 -10.4028 -10.4028 -10.4028 -10.4028 -10.4028
Ave -8.5025 -10.5363 -10.5100 -10.4013 -10.5189 -10.5029 -10.5078
Fpy  Su 3.1994 8.3390¢-04 0.0486 0.1010 0.0432 0.0670 0.0786
Best -10.5364 -10.5364 -10.5363 -10.5363 -10.5363 -10.5363 -10.5363

compared with seven algorithms, WHO[31], WOA[17],
MFO[18], RSO[19], MVO[11], GWO[20], and ALO[10],
as shown in Fig. 4. Table III lists their optimal, mean and
variance statistics. Due to the randomness of the algorithms,
in order to make the experimental results more accurate, the

C. Performance Comparison of SD3WHO with Other
Algorithms

To more clearly show the advantage of the improved
algorithm, the convergence plots of the SD3IWHO were
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algorithms were run 30 times each time and then the
average of all the results was taken, and the maximum
number of iterations of all the algorithms was set to 500,
and 30 populations were set at the same time.From Fig. 4
and Table III, it can be seen that SD3WHO has the best
performance with best fitness values compared to other
algorithms. Functions F1-F7, F1-F4 and F6 have the best
mean, variance and best fit values, F5 has the best mean
and F7 has the best mean and variance. As can be seen in
Fig. 4, the convergence speed advantage of SD3WHO is
obvious. For functions F8-F13, F8-F13 have very superior
rate of finding superiority, F9-F13 have the best mean,
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variance and optimum value, while F8 have the best mean
and optimum value. Function F14-F23, F14, F15, F17, F21,
F22 and F23 have the best mean, F15 has the best variance,
and F21 and F23 have the best maxima, which can be seen
inFig. 4, and F14, F15, F21, F22 and F23 have the obvious
convergence advantage. The results of the above
experimental data show that SD3WHO, which integrates
the dual-weight starvation strategy and the stochastic
convergence factor, exhibits strong superiority in search
performance, and is feasible and effective in improving the
global search capability and improving the local search
capability.
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Fig. 4 Convergence comparison on optimization functions.

TABLE III. PERFORMANCE COMPARISON RESULTS OF THE 23 BENCHMARK FUNCTIONS OPTIMIZATION

F WHO FHPWHO WOA MFO RSO MVO GWO ALO
Ave 5.4402e-44 0 1.1104e-72 1.3380e+03 3.7682e-252 1.3089 2.0827e-27 0.0017
Fq Std 2.2657e-43 0 4.4417e-72 3.4562e+03 0 0.4125 4.2293e-27 0.0023
Best 5.2641e-51 0 1.6372e-86 0.5309 0 0.5418 3.4540e-29 2.2307e-04
Ave 5.6874e-25 0 3.0019¢-51 32.1642 7.7560e-139 10.7858 9.4580e-17 46.0565
F, Std 1.8056e-24 0 1.6169e-50 20.4751 4.0371e-138 30.3807 7.2697e-17 47.5098
Best 6.1167e-29 0 1.6338e-58 0.2939 0 0.3841 1.5618e-17 1.5557
Ave 6.1876e-25 0 4.1117e+04 1.7287e+04 2.7970e-253 216.4454 2.8308e-05 3.5007e+03
Fyq Std 3.1534e-24 0 1.107%e+04 9.5112e+03 0 §8.4535 8.3925e-05 1.5111e+03
Best 2.2086e-31 0 9.874%9e+03 3.7714e+03 0 81.7330 8.077%-10 1.1172e+03
Ave 3.7431e-17 0 42.6955 68.1003 1.9760e-98 2.1614 8.8722e-07 17.5487
F, Std 8.5250e-17 0 27.5762 9.0472 1.0823e-97 0.7296 8.3010e-07 5.1594
Best 1.4700e-20 0 2.4229 40.7287 0 0.8783 8.9620e-08 6.5131
Ave 36.9045 0.0050 28.0608 5.326e+06 28.8550 205.6537 272102 390.9225
Fe Std 28.5278 0.0059 0.4453 2.0291e+07 0.1795 3243178 0.6532 620.3567
Best 25.9256 2.0596e-05 26.8996 290.0465 28.1718 36.2586 26.0830 21.8765
Ave 0.0361 8.7064¢-05 0.3523 2.0185e+03 3.4097 1.2413 0.7794 0.0018
Fg Std 0.1766 1.7049¢-04 0.1990 4.8574e+03 0.5442 0.2466 0.3912 0.0021
Best 9.6352e-06 1.0399¢-06 0.0927 0.3233 2.1291 0.6904 7.3690e-05 2.4439e-04
Ave 0.0017 1.1919¢-04 0.0036 7.3995 5.1464e-04 0.0320 0.0320 0.0023
Fs Std 0.00122 1.1166¢-04 0.0042 12.6061 4.0315e-04 0.0153 0.0013 0.0889
Best 1.6366e-04 1.1415e-06 1.2002e-04 0.0672 4.5693e-05 0.0107 5.8706e-04 0.1267
Ave -8.8040+03 -1.1867e+04 -1.0145e+04 -8.5273e+03 -5.8968e+03 -7.4626e+03 -5.8945e+03 -5.8259e+03
Fg Std 422.8624 959.4193 1.7401e+03 725.5669 911.2691 811.3362 975.44464 1.2204e+03
Best -9.7433e+03 -1.2569e+04 -1.2568e+04 -1.00097e+04 -6.9750e+03 -9.1820e+03 -7.1796e-+03 -1.1918e+04
Ave 8.9404e-04 0 0 171.6365 0 118.3215 3.5400 83.5108
Fg Std 0.0049 0 0 51.3716 0 28.0849 4.9810 21.3728
Best 0 0 0 §8.7238 0 60.5730 5.6843¢-14 41.7888
Ave 1.95460-15 8.8818e-16 4.5593e-15 13.0138 1.2434e-15 1.8881 1.0155e-13 4.5984
Fig Std 1.655%9e-15 0 2.1847e-15 7.5234 1.0840e-15 0.6143 1.6142e-14 2.3889
Best 8.3818e-16 8.8818¢-16 8.8818e-16 1.1773 8.8818e-16 0.4643 7.5495e-14 2.1203
Ave 0 0 0.0168 37.2234 0 0.8490 0.0046 0
Fyiy Std 0 0 0.0641 55.7152 0 0.0982 0.0086 0.0332
Best 0 0 0 0.6633 0 0.6422 0 0.0184
Ave 0.0213 3.7826e-06 0.0320 §.5334e+06 03456 2.0295 0.0507 13.2602
Fiy Std 0.0788 4.5764¢-06 0.0458 4.6739e+07 0.1316 0.8817 0.0253 54217
Best 3.6006e-07 2.9249¢-08 0.0062 3.1149 0.1284 0.4117 0.0071 4.2210
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Ave 0.0733 4.5313e-05 0.5637 95.1706
Fis Std 0.1244 5.9077e-05 0.2870 394.7437
Best 1.228%9¢-05 6.1501e-08 0.1543 44770
Ave 1.7525 0.9980 3.2569 34228
Fia Std 2.0033 5.4074e-06 33078 3.1890
Best 0.9980 0.9980 0.9980 0.9980
Ave 0.0033 4.7886e-04 6.9431e-04 0.0013
Fis Std 0.0068 4.0240e-04 4.0400e-04 0.0014
Best 3.0749e-04 3.1122¢-04 3.0790e-04 5.3912e-04
Ave -1.031e -1.0316 -1.0316 -1.031e
Fis Std 5.1334e-16 3.4614e-05 6.5053e-10 6.7752¢-16
Best -1.0316 -1.0316 -1.0316 -1.0316
Ave 03979 0.3979 04777 03979
Fis Std 0 6.5917e-04 04370 0
Best 03979 0.3984 03979 03979
Ave 3.9000 3.0023 3.0001 3.0000
Fig Std 4.9295 0.0037 3.0492e-04 2.1630¢-15
Best 3.0000 3.0000 3.0000 3.0000
Ave -3.8628 -3.8580 -3.8540 -3.8625
Fig Std 2.6684¢-15 0.0043 0.0146 0.0014
Best -3.8628 -3.8624 -3.8628 -3.8628
Ave -3.2621 -3.0584 -3.2284 -3.2195
Fap Std 0.0670 0.1767 0.1159 0.0695
Best -3.3220 -3.2986 -3.3214 -3.3220
Ave -8.0495 -10.1186 -8.9387 -5.9657
Fa Std 2.8885 0.0730 2.1797 3.1763
Best -10.1532 -10.1532 -10.1531 -10.1532
Ave -7.5809 -10.3783 -6.8733 -8.3764
Fs, Std 3.3552 0.0494 3.2424 3.2034
Best -10.402% -10.4028 -10.4001 -10.4029
Ave -7.8677 -10.5240 -7.3803 -6.8367
Fos Std 3.5992 0.0207 33264 3.8350
Best -10.5364 -10.3364 -10.5363 -10.5364

3

29015
0.1763
2.8005
29337
2.8028
0.9980
0.0017
0.0037

.8268e-04

-1.0315

2.1259¢-04

—

-1.0316
04110
0.0144
0.3980
3.0001

8773e-04

3.0000
-3.4432
0.3350
-3.8551
4-1.836
04499
-2.6389
-0.6873
0.2445
-1.3926
-1.0828
0.7024
-2.9915
-1.3219
0.8038
-4.2306

0.2164
0.2897
0.0542
0.9980
3.5702e-11
0.9980
0.0034
0.0068
3.2079¢-04
-1.0316
2.4876¢-07
-1.0316
04777
04370
03979
84000
20.5504
3.0000
-3.8628
1.2608¢-06
-3.8628
-3.2698
0.0607
-3.3220
-7.6277
2.8087
-10.1531
-8.9315
2.7705
-10.402%
-9.7406
2.0966
-10.5363

0.6199
0.2249
1.1385¢-04
5.6873
4.8480
0.9980
0.0091
0.0101
3.0788e-04
-1.0316
1.9974-08
-1.0316
03979
3.9391e-08
03979
3.0000
4.6869¢-05
3.0000
-3.8612
0.0028
-3.8628
-3.2495
0.0778
-3.3220
-8.8136
27720
-10.1528
-10.2255
0.9630
-10.4028
-10.2640
1.4812
-10.5360

26.5194
18.5807
0.0037
2.0540
14655
0.9980
0.0036
0.0067
4.88826-04
-1.0316
1.5213¢-13
-1.0316
03979
3.8232e 14
03979
3.0000
9.6869¢-13
3.0000
-3.8628
1.1395¢-12
-3.8628
32744
0.0593
-3.3220
-5.8667
28044
-10.1532
-7.1457
3.1648
-10.4029
-6.5905
33464
-10.5364

D. Engineering Optimization

We solved the following two real-world engineering
problems using the algorithm SD3WHO proposed in this
paper with the aim of verifying its effectiveness, both of
which are mathematical models consisting of multiple
inequality-constrained  single-objective  functions. The
results of 20 runs are averaged and the optimal values of
these functions under the inequality constraints are
obtained using SD3WHO, and the optimal values, means
and variances are simultaneously compared with those of
the improved algorithm and other algorithms to draw
conclusions.

(1) Tension/compression Spring Design

The objective of the extension/compression spring
design problem is to minimize the spring weight while
currently satisfying the constraints of mimimum deflection,
shear stress, impact frequency, outside diameter limits and
design variables. The design problem consists of three
design variables including wire diameter d{X,), average
coil diameter D(X,), and effective number of coils P{X3).

Fig. 5 illustrates the specific model diagram of the problem
with the following constraints and objective function
specifics.

Set X = [X X, X;]=[dDP]

Objective function: f(X) = (X5 + 2)X, X}

. XEX3
Constraints: gi(X)=1— e = O
o axi XX .
g:(X) = 12566(X3Xz—X)  5108X% =0
=1 140.45X -
g S S ———
? X3X3
X +X

g0 ="2-1<0

Boundary constraints: 0.05<X; <2 025<X,<13;
2=X3=15.

The WHO and the improved algorithm were

experimented on the tension/compression spring design
problem and their convergence curves were are shown in
Fig. 6. The experimental data are presented in Table IV,
where the maximum number of iterations 1s set to 100, and
30 experiments were performed for each algorithm. The
data of optimal value, mean and variance are listed in Table
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V, and the best experimental data are marked with bold.

The experimental results show that the improved
algorithms perform better in solving the
tension/compression  spring  design  problem,  with

SD2WHO performing the best and SD3IWHO performing
the second best. The improved WHO and other algorithms
were adopted to solve the tension/compression spring

design problem, and their convergence curves shown in Fig.

7 were compared with the original algorithm. The
simulation data of this experiment is detailed in Table TV,
in which the maximum number of iterations is set to 100,
and the average value is taken in thirty runs. Table VII
records the experimental data in detail. In summary, it can
be seen that SD3IWHO has better data in optimizing the
extension/compression spring design problem. From Table
VII, it can be seen that SD3WHO has better mean and
variance results compared with other algorithms.

(2) Pressure Vessel Design

With regard to the design problem of pressure vessels, it
centers on the search for an optimized solution aimed at
meeting the production requirements while minimizing the
overall cost. This design problem can be summarized as the
search for four design variables (inner radius R(X;), vessel
length L(X;), shell thickness Ty(X3) and head thickness
Tr(X4)) to ensure that the manufacturing cost of the
pressure vessel is minimized while satisfying certain
boundary condition constraints. The model constructed for
this problem is shown in Fig. 8, and its objective function
and constraints are specifically described as follows.

.
|
|

X ¢ N‘ U ot |l
X,

Fig 5 Tension/compression spring design model.

3

—p— WHO

ib 0.0138 SWHO
ot / 1 SD1WHO | |
5 00134 SD5WHO —P— SD2WHO
. % WHO —#— SD3WHO
g 00132 ]
i | spawHo | e
o g e SDTWHO /s SD3WHO | L S25Y0)]
(4} | 2 o018 /
£ 2
g | i 0.0126 /
9 i ——— SD2WH
o 0.0124 ] /
2 | - — SWHO
" 75 80 a5 90 95 100
(5] 1 Iteration
o

/

10 20 30 40 50 60 70 80 90 100
Iteration

Fig. 6 Convergence diagram of the improved algorithm for optimizing
extension/compression springs.

£ T T T T T T
0.085 E
0.06 SD3WHO | i

0.055 | s ifg i
i 1 +—MFO f
0.045 328
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\ SMA
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0.02

0.015

e e L e
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Fig. 7 Convergence of the

diagram
optimizing/stretching compression springs.

improved algorithm  for

TABLE IV. BEST SOLUTION TO THE TENSION/COMPRESSION SPRING PROBLEM FROM IMPROVED ALGORITHMS

WHO SWHO SDIWHO SD2WHO SD3WLO SD4WLO SDSWHO
OO 0.0121078 0.01204146 0.01204577 0.01223485 0.01205398 0.01519645 00123115
X, 0.0532 0.0567 0.0545 0.0535 0.0548 0.0657 0.0543
X, 0.2500 03144 02724 02673 0.2739 0.4405 0.2670
X, 10.8235 7.1708 94630 94215 91357 3.5993 97896
TABLE V. THE RESULTS OBTAINED BY THE IMPROVED ALGORITHM ON THE TENSION/COMPRESSION SPRING PROBLEM

WIHO SWIIO SDIWHO SD2WIHO SD3WIO SD4WHO SDSWIIO
Ave 00128 0.0196 0.0126 0.0122 0.0123 0.0124 0.0138
std 0.0022 0.0073 7.1542¢-04 1.9766e-04 5.6006e-04 6.2778¢-04 0.0063
Best 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0121
TABLE VI. THE BEST SOLUTION OBTAINED FROM IMPROVED ALGORITHMS FOR THE TENSION/COMPRESSION SPRING PROBLEM
SD3WHO SCA ALO MFO TSO AOA SMA
OO 0.01204032 0.01208771 0.01228761 0.01204364 0.012107760 0.01934496 0.01210463
X, 0.0544 0.0567 0.0595 0.0543 0.0532 0.0500 0.0533
X, 02719 0.3163 03764 0.2919 0.2500 02500 02508
X, 93421 6.6855 5.0000 8.1528 10.8284 91114 10.7961
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Objective function: f(X) =0.6224X XX, +
1.7781X,X5 + 3.1661X5X, + 19.84X7X,
Constraints: g;(X) =— X; +0.0193X; <0
2.(X) =—X, +0.00954X, <0
g:(X) =— mX3X, — SmX3 + 1296000 < 0
g (X)=X,—-240<0
0<X, €99, 0<X;, £
99, 10 < X3 200,10 <X, < 200,
The WHO the improved algorithm were
experimented on the pressure vessel design problem, and
their convergence curves were compared, as shown in Fig.
9. The results of the experiments are summarized in Table
VIII, where the maximum number of iterations for each
method was 100 and 20 trials were averaged. In Table IX,
we present the optimal, mean, and variance data.The results
of SD3IWHO demonstrate the superior optimization
performance of SD3WHO when solving pressure vessel
design problems.From the results in Table IX, the mean,
variance and optimal results of SD3WHO are better than
other algorithms. The improved WHO with the dual weight
starvation strategy and random convergence factor and
other algorithms were used to solve the pressure vessel
design problem, and their convergence curves were shown
in Fig. 10. The maximum number of iterations is 100. The
experimental results in Table X show that after an average
of 20 experiments, the SD3WHO algorithm performs well
in optimizing the pressure vessel design problem. In terms
of optimal data, mean and variance, the mean and

maximum tesults of SD3WHO in Table XI outperform the
other algorithms.

Boundary constraints:

and

>

<

Fig. 8 Model diagram of pressure vessel design problem.
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Fig. 9 Convergence diagram of improved algorithm to optimize pressure

vessel design.
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Fig. 10 Convergence diagram of the improved algorithm compared with
other algorithms for optimizing pressure vessel design.

TABLE VII. THE BEST SOLUTION OBTAINED FROM OTHER ALGORITHMS AND IMPROVED ALGORITHMS FOR THE TENSION/COMPRESSION SPRING PROBLEM

SD3WHO ALO MFO T8O AQA SMA
Ave 0.01204617 0.01208515 0.01209152 0.01205621 0.01204718 0.01622770 0.01208608
Std 1.0921e-05 3.3109e-05 1.1124e-04 1.2608e-05 3.9455¢-05 0.0027 3.3885¢-05
Best 0.01203017 0.01204409 0.01202211 0.01201961 0.01201954 0.01362958 0.01202854

TABLE VIII. THE BEST SOLUTION OBTAINED FROM IMPROVED ALGORITHMS FOR THE PRESSURE VESSEL DESIGN PROBLEM

WHO SWHO SDIWHO SD2WHO SD3WHO SDAWHO SDSWHO
fx) 0.0121 0.0129 2.8738e-43 9.2361e-45 1.4222e-44 1.0952e-41 0.0121
X, 0.0540 0.0523 3.1148e-15 1.0557¢-15 1.2109e-15 9.8473e-15 0.0534
X, 0.2630 0.2351 2.4684e-15 6.9061e-16 8.082%¢-16 9.4120e-15 0.2605
X3 10 10 10 10 10 10 10
X, 10 10 10 10 10 10 10
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TABLE IX. THE BEST SOLUTION OBTAINED FROM OTHER ALGORITHMS AND IMPROVED ALGORITHMS FOR THE PRESSURE VESSEL DESIGN PROBLEM

WHO SWHO SDIWHO SD2WHO SD3IWHO SD4WHO SDSWHO
Ave 0.0144 0.0195 0.0086 0.0096 0.0069 0.0090 0.0071
Std 0.0169 0.0285 0.0179 0.0172 0.0061 0.0182 0.0063
Best 6.3733¢-23 8.5243¢-47 2.0340¢-46 1.4700e-47 8.3853e-49 6.9602¢-45 2.2411e-47

TABLE X. THE BEST SOLUTION OBTAINED FROM OTHER ALGORITHMS AND IMPROVED ALGORITHMS FOR THE PRESSURE VESSEL DESIGN PROBLEM

SDAWHO ALO DOA MFO BO AOA SMA
FOXO) 0.0121 0.0121 0.0121 0.0121 0.0121 0.0300 1.7672e+12
X 0.0542 0.0533 0.0541 0.0540 0.0540 0.0429 17.8479
X, 0.2604 0.2505 0.2655 0.2630 0.2630 0.0740 2.7081
X, 10 11.0117 10 10 10 200 61.0049
X, 10 121.4207 10 200 10 200 10

TABLE XI. THE RESULTS OBTAINED FROM CHAOS IMPROVED ALGORITHMS FOR THE PRESSURE VESSEL DESIGN PROBLEM

SD3IWHO ALO DOA MFO BO AOA SMA
Ave 0.0073 0.0150 0.0209 0.0124 0.121 0.965 1.7753e+11
Std 0.0062 0.0101 0.0278 9.1683e-04 1.2930e-18 0.0526 5.5855e+11
Best 3.8440e-45 9.2170e-13 0.0121 0.0121 0.0121 1.7311e-42 0.0247

V. CONCLUSION

Since the global search performance of WHO 1s poor and
prone to local optimum, this paper puts forward a improved
WHO that incorporates a dual weight starvation strategy
and a random convergence factor, aiming to strike a
balance between the global and local search ability of the
algorithm. It well solves the disadvantages of local
optimization and enhances the global search performance,
and also improves the convergence speed and convergence
accuracy of the algorithm. The optimization capability of
the improved algorithm 1s examined using 23 benchmark
test functions and a comparison 1s made with seven
algorithms (WHO, WOA, MFO, RS0, MVO, GWO, and
AL Q) with respect to the optimization performance as well
as comparing the experimental data for each function. Seen
form the experimental data results, it can be clearly seen
that the proposed WHO with dual weight starvation
strategy and the random convergence factor has the best
optimization seeking ability. In solving two real
engineering problems, comparing with the WHO with the
improved algorithm and other algorithms, SD3IWHO can
find a faster and better solution with the best optimization.
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