
 

  

Abstract—Contemporary advancements in deep learning 

have spurred widespread adoption of spatio-temporal 

prediction across various scientific disciplines. Nonetheless, 

traffic flow prediction, as a quintessential spatio-temporal task, 

continues to present significant challenges, such as the accurate 

modeling of complex dependencies and dynamic changes over 

time and space. To address these issues, this paper introduces 

the Dual-Branch and Multi-Temporal Resolution Convolutional 

Network with an Adaptive Graph Neural Ordinary 

Differential Equation (DM-AGODE) model. This innovative 

approach integrates an optimized graph neural ordinary 

differential equation with an adaptive correlation adjacency 

graph, ensuring precise feature propagation across the network. 

The model incorporates a Dual-Branch Learning (DBL) 

mechanism to effectively differentiate between short-term 

dynamics and long-term trends, while the Multi-Temporal 

Resolution Convolution (MTRC) method enhances the 

processing of temporal data across multiple scales, critical for 

capturing the complex behaviors of traffic flow. Furthermore, to 

demonstrate the effectiveness of our model, we conducted a 

comprehensive evaluation of our model using six widely 

recognized real-world datasets, which highlighted its superior 

adaptability to complex traffic flow patterns. Compared to the 

leading baseline model, our approach achieves an improvement 

in prediction accuracy exceeding 8% and significantly enhances 

efficiency in processing. 
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I. INTRODUCTION 

HE forecasting of spatio-temporal data, especially the 

task of spatio-temporal traffic forecasting in Intelligent 

Transport Systems(ITS) [1-3], has garnered significant 

attention in recent years. Accurate traffic predictions are 

vital for enhancing urban mobility and efficiency. By 

leveraging deep learning methods in conjunction with traffic 

network topology modeling, traffic management centers can 
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accurately predict flow trends for individual road segments. 

This capability is fundamental for effective road planning, 

resource allocation, and scheduling within intelligent 

transportation systems [4]. 

Spatio-temporal data, which depends on both time and 

space, also finds applications in various other fields. For 

instance, similar methodologies are used in forecasting the 

capacity or load of wind power stations [5], monitoring air 

quality, and predicting weather conditions [6]. However, 

despite the advancements, spatio-temporal traffic flow 

forecasting still faces numerous challenges. The dynamic 

and complex nature of traffic patterns requires continuous 

improvement and refinement of predictive models to ensure 

accuracy and reliability [7]. However, the task of spatio-

temporal traffic flow forecasting still encounters numerous 

challenges at present. 

In academic research, it is crucial to consider the spatial 

correlation of traffic sensors when investigating spatio-

temporal traffic forecasting. The correlation between traffic 

patterns at different nodes in the road network is not always 

directly related to their physical distance. For example, both 

the office area and the industrial area shown in Fig. 1 are 

work zones, and their traffic flow trends display similarities. 

This indicates a strong spatial association between these 

seemingly distant areas.  

Nevertheless, it is important to recognize that significant 

differences in the functions of two traffic areas can reduce 

their similarity, even if they are geographically close. For 

example, as illustrated by the business district and the office 

area in Fig. 1, Fig. 1(a) shows the geographical topology of 

the traffic road network, while Fig. 1(b) presents the 

semantic association graph structure obtained after 

calculation. In such cases, relying solely on distance-based 

adjacency relationships may introduce noise, adversely 

affecting the model's predictive accuracy. Therefore, one of 

the key challenges addressed in this paper is developing an 

appropriate correlation graph design to extract the profound 

spatial correlations among traffic nodes.  

Furthermore, in traffic flow prediction research, the 

predominant approach is data-driven [8, 9]. This method 

involves extracting time series features from historical data 

trends. However, it is crucial to acknowledge the intricate 

nature of oscillation periodicity in traffic flow, which 

becomes more pronounced in long-term predictions. Thus, 

accurately extracting node-specific time trend features is 

another vital factor contributing to the enhanced accuracy of 

prediction results in this study. 

Addressing these key research issues may significantly 

improve traffic forecasting methodologies, resulting in more 

accurate and reliable predictions for intelligent transportation 

systems. This paper presents a novel spatio-temporal
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Fig. 1. Real road network connection and semantic connection.  

 jointprediction framework, specifically designed to 
optimize the utilization of extracted spatio-temporal 
features. The main contributions of this paper are as follows: 

1) We developed a novel spatio-temporal correlation graph 
to reflect traffic network node dependencies. This graph 
captures both global time pattern similarities and local 
spatial correlations among nodes. Additionally, we 
introduced an equal interval sampling technique to 
measure node similarity efficiently, thereby reducing the 
time required for pre-constructing the graph. 

2) We constructed an optimized Adaptive Graph Neural 
Ordinary Differential Equation (AGODE) to extract 
association information, providing a detailed derivation. 
This method addresses the limitations of discrete layers, 
enabling efficient distribution of node features across the 
system. 

3) We introduced the Dual-Branch Learning and Multi-
Temporal Resolution scale joint learning method to 
capture time-dependent features. This approach uses two 
parallel modules for time feature extraction, leveraging 
dilated convolution in Temporal Convolutional Networks 
(TCN) to enhance efficiency. Each module captures 
distinct temporal correlations within traffic sequences, 
offering a comprehensive approach to feature extraction. 

II.  RELATED WORK 

A. Forecasting Methods based on Temporal Feature 

In classical traffic flow prediction methods, time series 
prediction models are widely employed, utilizing the time 
series characteristics of traffic flow for further predictions. 
Initially, parametric methods such as the Autoregressive 
Integrated Moving Average (ARIMA) [10] model were 
commonly used to fit the changing trend of traffic flow. 
Over time, researchers have explored various ARIMA 
variants tailored for traffic flow forecasting [11, 12]. 
However, due to the nonlinear nature of traffic data, the 
focus has shifted from parametric to nonparametric time 
series prediction methods. 

Lippi et al. introduced the Support Vector Regression 
(SVR) supervised learning algorithm [13], integrating it 
with the concept of the SARIMA model [14]. This hybrid 
approach leveraged the seasonality of traffic data to obtain 
more accurate forecasting results. Similarly, Lv et al. 

employed a stacked Autoencoder (SAE) model to learn 
general traffic flow features, which led to improved 
accuracy in predicting future traffic flow [15]. 

To better capture the nonlinear and stochastic 
characteristics of traffic flow, Fu et al. adopted two types of 
Recurrent Neural Network (RNN) models, specifically Long 
Short-Term Memory (LSTM) and Gated Recurrent Unit 
(GRU). Combining these two modules, they successfully 
predicted highway traffic flow with superior performance 
compared to classical parametric methods [16]. This shift 
towards nonparametric time series prediction techniques has 
opened new avenues for achieving more accurate and robust 
traffic flow forecasts. 

B. Forecasting Methods based on Spatio-Temporal Features 

Non-parametric time series prediction methods excel in 
capturing random and nonlinear features from time series 
data. However, in the context of traffic flow prediction, the 
detection nodes in the traffic network are not entirely 
independent. As the magnitude of available traffic data 
increases with the advancement of Internet of Things 
technology, researchers have recognized the importance of 
considering both spatial and temporal characteristics of the 
traffic network to achieve more accurate and convincing 
prediction results. Consequently, recent work in traffic flow 
prediction has increasingly focused on the extraction and 
fusion of spatio-temporal features. 

In 2018, Yu et al. proposed the spatio-temporal feature 
extraction framework STGCN [17]. Their approach 
involved constructing a spatial graph based on the 
geographic distance of traffic detectors, employing graph 
convolution modules to extract spatial features, and using 
one-dimensional convolutional neural networks for 
capturing temporal dependencies. This model marked the 
first application of graph convolution in traffic prediction. 
Li et al. represented pairwise spatial correlations between 
traffic sensors using a directed graph and introduced the 
Diffusion Convolutional Recurrent Neural Network (DCRNN) 
to model spatial dependence [18]. Zhou et al. extended the 
diffusion convolutional neural network to a directed graph 
and incorporated an attention mechanism for modeling the 
spatial correlation of sensors [19]. Wu et al. proposed Spatio-
Temporal Synchronous Graph Convolutional Network 
(STSGCN) [20]. STSGCN considered the time step in the 
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(a) Geographical topology structure of 
traffic road network
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spatial graph, integrating multiple adjacency matrices and 
self-connection matrices into a large matrix, and concurrently 
extracted spatial and temporal dependence through the graph 
convolution module. Building upon this progress, STFGNN 
introduced the notion of node similarity and further expanded 
the dimension of the spatio-temporal graph [21].  

III. METHODOLOGY 

A. Problem Definition 

Traffic flow prediction is a sequence prediction task, 
wherein the objective is to forecast future data at time step

T   based on past data at time step T . In the context of 
traffic flow prediction, we are provided with node graph 

information denoted as G . The sequence data of N  input 

sensors, i.e., the graph signal, is represented by N H dX   , 

where H  represents the time steps in the past, and d  

denotes the features of the input data. 
To accomplish the traffic flow prediction task, we aim to 

learn a mapping function f  with learnable parameters. This 

function takes the input sequence data X  and produces the 

output sequence data   N Ff X Y    representing the 

predicted traffic flow at time step T  . The goal is to train 

the mapping function f  to accurately forecast the traffic 

flow at steps T   into the future:  

 ,
f

i j
n nX G Y     (1) 

Where 0 i T   represents the past time steps, and

'T j T   represents the future time steps to be predicted. 

The objective is to effectively model the dependencies 
between the graph signal and the graph information to 
achieve accurate and reliable traffic flow predictions at 
desired future time steps. 

B. Adjacency Matrix Construction Method 

In the context of traffic space modeling, the spatial 
distance between detector nodes in the traffic network is a 
straightforward indicator of spatial association. However, 
for complex traffic correlations, deriving the adjacency 
relationship demands a more encompassing similarity 
calculation method, considering macroscopic factors and 
broader spatial considerations.  

 

Fig. 2. Pairs of correlated nodes in a complex traffic road 
network 

Consider two complex traffic routes that intersect or share 
similarities, such as the expressway network in Fig. 2. In 
this scenario, detector nodes 1 and 2 are on divergent roads 

with distinct destinations, while nodes 3 and 4 are on 
opposing routes. Despite differing endpoints, the spatial 
distances between these detector pairs are minimal. Relying 
solely on spatial distance for the correlation adjacency 
matrix could harm model learning due to strong node 
correlations. We term these links "pseudo-connections." 

In practical traffic flow modeling, the presence of pseudo-
connections in the adjacency matrix can significantly impact 
graph learning. Existing distance-based adjacency matrix 
construction methods are prone to generating numerous 
pseudo-connections. Nodes 5 and 6 in Fig. 2 are common in 
the road network, representing detector nodes before and 
after traffic diversion. Despite their considerable distance, 
they still display strong flow trend correlation. However, 
non-adjacent road sections' traffic flow exhibits a time-shift 
property as distance increases. Therefore, we propose a 
method fusing Earth Mover's Distance (EMD) [22] and 
Dynamic Time Warping (DTW) [23] to gauge node 
correlations, yielding a distinctive adjacency matrix. This 
method effectively blends global node correlation and trend 
similarity at comparable time points, enhancing the graph's 
refined and accurate spatio-temporal representation.  

Different from other distance measures such as Euclidean 
distance and Manhattan distance, EMD evaluates the 
similarity between a pair of distributions based on the 
transportation cost required to transform one distribution 
into the other. For a pair of traffic flow sequences

11 2{ , , , }LX X X X   and 21 2{ , , , }LY Y Y Y  , EMD 
calculates the similarity of these distribution sequences 
using the following formula: 

     , ,Γ ,
,

, i j i jX Y
i j

EMD X Y min M





   (2) 

Where M is the distance matrix constructed using 
Euclidean distance, and ,i jM is the distance between iX  and 

jY . Γ( , )X Y   is a transition strategy from X  to Y , 
represented as an 1 2L L  matrix, where ,i j denotes the 
transition cost of transferring the i-th element of X to the j-th 
element of Y. Γ  is the set of all feasible transition strategies. 

EMD is impervious to real-world node distances, 
considering distribution shape and topology comprehensively. 
This makes EMD well-suited for complex distribution series 
like traffic flow. Yet, it lacks time translation and sequence 
scaling capabilities within time series. To address these, we 
combine DTW distance for optimization. The DTW formula 
is as follows:  

    1 2, ,DTW X Y D L L  (3) 

Given the same distance matrix M as defined in Equation 
(2), ( , )D i j  in the above equation can be calculated using the 
following recursive formula:  

 
 

      
,,

    1, , , 1 , 1, 1

i jD i j M

min D i j D i j D i j

 

   
 (4) 

The recursive formula for  ,D i j  is as follows: 

  
0 0

0 0 0 0

0 0

0 , 0 0

, , 0 0

 , 0 0?

i and j

D i j i and j

i and j

 


   
  

 (5) 

 DTW method adapts well to sequence length changes 
and handles time translation and scaling matches effectively. 
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This complements EMD distance's correlation calculation 
on time-shifted sequences. For adjacency graph construction, 
we use normalized correlation values as weights. Hence, our 
final similarity measure is:  

 
   

,

,

0 ,
DE DE

i j

exp R if exp R
A

otherwise

  
 


 (6) 

Where DER  is defined by the following equation: 

 
   2 2

, ,

2

( ) 1i j i j

DE

DTW EMD
R

 







  (7) 

  in Equation (6) and   in Equation (7) are threshold 
parameters that control the sparsity of the matrix, and   is 
the weight coefficient. These parameters play a crucial role 
in determining the strength and density of connections in the 
adjacency graph, allowing us to fine-tune the representation 
of the correlation between traffic nodes. 

Since the above two methods are two sequence similarity 
evaluation methods with complex calculation, we have also 
proposed a dense sequence equal interval sampling method 
to efficiently preprocess the data and reduce the time cost. In 
this method, we set the interval step number as φ, and 
extract subsequences from the original data sequence 

1, 2{ , , }i i i i
LX X X X   to create a new sequence 'iX 

, 2 /{ , , }i i i
LX X X      

 ,where iX  represents the observed 
data sequences of node i  , and    represents the integer 
operation. The resulting subsequence, 'iX , has a length of 
L   which satisfies the condition (1/ )L L   . 

This sampling method retains most of the sequence 
characteristics, has minimal impact on the measurement of 
sequence similarity, and significantly reduces the time 
required for constructing the adjacency matrix. This is 
especially beneficial for datasets with dense intervals and 
large amounts of data.  

C. Adaptive Graph Neural ODE Network 

The graph neural network aggregates the features of 
neighbor nodes in an iterative manner [24], diffusing the 
feature information of each node on the graph to nearby 
nodes through discrete aggregation layers, thereby updating 
the feature information of each node. The common iterative 
formula of a graph neural network based on spectral graph 
theory [25] is as follows: 

     1l lS AS W    (8) 

 Where  1l
S

  is the output state of the l-th layer,  is the 
activation function,  lS is the feature matrix obtained from 
the l-th layer, 1l ld dW   is the weight matrix of the l-th 
layer, and N NA    is the pre-constructed regularization 
adjacency matrix after normalization. This form of graph 
convolution is simple yet effective. However, there are still 
some problems with this model. 

Firstly, traditional graph convolution methods based on 
spectral graph theory are discrete. They involve computing 
graph Laplacian eigenvectors and eigenvalues for spectral 
domain filtering, this can lead to over-smoothing when 
using multi-layer convolutions, limiting the depth to around 
3 layers at most. Secondly, these models update node 
features discretely in layers, restricting graph propagation 
depth by layer count. This hampers hierarchical feature 
update structures, making it hard to determine the optimal 
number of layers. Lastly, real-world node correlation can 

change with time, yet traditional graph neural networks 
assume a static graph structure. This hinders effective 
learning of spatio-temporal sequences. 

Considering these limitations and the intricate nature of 
real-world traffic flow, this paper aims to establish an 
efficient graph ODE to enhance traffic spatio-temporal 
learning. Building upon previous research [9, 26], we 
introduce a straightforward discrete dynamic as follows: 

      1 0

1 2 3

n n

N T CS S A W W W S        (9) 

Where  n N T CS    represents the output state of the n-
th layer, i  denotes element-wise multiplication between 
tensors of different dimensions and the corresponding 
dimension in the matrix, ensuring smooth calculation during 
subsequent ODE derivations.  0

S  corresponds to the 
residual term of the initial distribution, which is a crucial 
component to prevent over-smoothing issues [27]. 

1 1 1
T

NW P q P  is the spatial dimension weight, 2 2 2
T

TW P q P

is the time dimension weight, and 3 3 3
T

CW P q P is the 
feature parameter matrix. These three weight matrices are 
constructed using learnable orthogonal matrices P  and 
vectors q , guaranteeing their diagonalizability. The matrix 
tuple { }, ,N T CW W W  transforms and adjusts the feature 
matrix in the simulated dynamic system, allowing the ODE 
solver to better fit the data. This combination with the neural 
ODE forms the graph neural ODE, facilitating the 
continuous diffusion of high-dimensional features 
throughout the entire graph structure. By using inductive 
method, we can derive the explicit formula of this dynamic 
system in the following form: 

     0

1 2 3
0

n
n i i i i

N T C
i

S S A W W W


       (10) 

Equation (10) with the discrete propagation layer n  can 
be transformed into a continuous variable t  to construct 
graph neural ODEs. By considering Equation (10) as a 
Riemann sum of integrals from time 0t   to t n , and 
setting ( 1) / ( 1)t t n    ,we can derive the following 
equation when t n : 

 
     

     

0 1

1
1 1 1

1 2 3

(

)

n
n i t

i
i t i t i t

N T C

S S A

W W W t

 


     

 

    

 
(11) 

As n  tends to infinity, we can further obtain the 
following equation: 

    1 0

1 2 30

tn

N T CS S A W W W d   




       (12) 

According to the derivative rule, we can easily obtain the 
second derivative of the above formula as follows: 

 

     

   

2

12

2 3

ln ln

ln ln

t t t

N

t t

T C

d S dS dS
A W

dt dt dt
dS dS

W W
dt dt

   

   


 (13) 

 Integrating t  from the Equation (13) reveals that the 
discrete dynamics in Equation (11) is a discretization of the 
following ODE:  

 
 

   

     

1

0

2 3

t
t t

N

t t

T C

dS
S lnA S lnW

dt
S lnW S lnW S

   

    

  (14) 

The logarithm of the matrix in Equation (14) is complex 
in the model calculation, and it is generally approximated by 
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the first-order Taylor expansion method in the neural ODE. 
The approximation is performed according to the following 
equation:  

  ln ln
X I A

X I X A A I
 

      (15) 

where I  is the identity matrix of the same size as A . By 
using the above approximation, we can rewrite Equation (14) 
as follows: 

 
 

     

   

1

0

2 3

( ) ( )

( ) ( )

t
t t t

N

t

T C

dS
A I S S W I S

dt
W I S W I S

      

     

  (16) 

Equation (14) approximates the differential equation in 
the ODE solver. Traffic data dynamics are typically 
complex and varied, often displaying non-smooth behavior 
over time. This implies changing node associations over time. 
However, traditional spatio-temporal graph convolution 
models rely on time-invariant adjacency matrices. Their 
fixed graph structure can depict global connections for 
intricate traffic flow tasks but falls short in capturing local 
temporal correlation changes. To overcome this limitation, 
we introduced a dynamic optimization graph integrated with 
the graph ODE. Specifically, consider: 

  1

2
T

w w wA A A A     (17) 

Where 
wA  is the adaptive parameter matrix, which can be 

learned during the training process. This allows the graph 
adjacency matrix to be continuously fine-tuned with the 
gradient through wA , leading to the gradual adjustment of 
the original system to a more accurate dynamic system. As a 
result, a more representative adjacency matrix is obtained. It 
is important to note that Equation (17) ensures that the 
optimized adjacency matrix wA  of the traffic graph remains 
a real symmetric matrix, as the nodes in the traffic network 
are usually associated with each other. 

Finally, the optimized form of Equation (16) is obtained 
as follows: 

 
 

     

   

1

0

2 3

( ) ( )

( ) ( )

t
t t t

w N

t

T C

dS
A I S S W I S

dt
W I S W I S

      

     

  (18) 

Equation (18) represents the final form of our Adaptive 
Graph neural Ordinary Differential Equation (AGODE). We 
treat this ODE as a dynamic system to be solved, and the 
original data is only used through feature embedding as the 
initial state of the system '

0S . We then adjust the time point 
tensor to be solved, 0 1[ , , , ]nt t t t  , where  0,it    is used 
as input to initialize the solver. This represents any point in 
time at which the ODE is expected to be solved in continuous 
time. Finally, various numerical methods can be applied to 
solve the ODE at that point in time. In comparison, the 
explicit method is faster and has lower computational 
complexity. By solving the ODE, we can obtain the numerical 
solution of the dynamic system as follows: 

    
 

 0
'0 , , 0 ,

tdS
S S S t ODE S t

dt

 
    

 

 (19) 

Where   /tdS dt is consistent with the expression in 
Equation (18), and  ODE   represents the solution process 
of the differential equation. Finally, the numerical solution 

 S t  at all time steps in t  will be used for further analysis in 
the downstream module. 

D. Dual-Branch and Multi-Temporal Resolution 
Convolutional Network 

The Adaptive Graph Neural ODE offers a strong spatial 
representation capacity. However, traffic flow prediction 
inherently involves time series forecasting. Given the 
diverse factors affecting travel patterns, extracting temporal 
features becomes essential for spatio-temporal sequence 
prediction.  

To address this, we propose the Dual-Branch and Multi-
Temporal Resolution Convolutional Network (DB-MTRC), 
which combines two distinct techniques: Multi-Temporal 
Resolution Convolutional (MTRC) and Dual-Branch 
Sequence Learning (DBL). Specifically, distant historical 
data imparts long-range momentum to forecast outcomes, 
uncovering broader traffic flow patterns. Within this range, 
the future traffic flow exhibits variability due to the higher 
randomness stemming from the time interval between long-
term-historical data and the data to be predicted, 
contributing to the model's improved accuracy in capturing 
overall historical patterns. 

Conversely, recent-historical data, closer to the prediction 
time, provides real-time information, offering micro-
fluctuation trends to predictive data. These points reveal 
more short-term fluctuations and trend characteristics, 
granting the model more control in its feature learning. 
Utilizing near-historical data brings in more current 
information, bolstering prediction stability. This stability 
fortifies the model's robustness in forecasting long-term 
traffic flows. 

Considering the issue of overfitting and the presence of 
odd-numbered historical data, we set a shared intermediate 
time step section for the two sub-sequences. Specifically, if 
the input sequence has a time step of n , the shared time 
steps are denoted as c .To avoid interruptions between 
historical and predictive data, we prefer both n and c to be 
even numbers. However, if the historical time step is not 
even, we can pad the left end of the sequence with zeros. 
The complete historical time sequence is then divided into 
two parts, each having a length of ( ) / 2n c , as shown in 
the following equation: 
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2 2
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1 1
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 (20) 

Moreover, for an improved ability to generalize the model 
to new data and enhance its directional understanding of the 
input sequence, we conducted one-sided padding operations 
on the two sub-sequences. The padding length, represented 
as p , relies on the length n  of the original input sequence 
S  and the sub-sequences' lengths: 

 
2

n c
p


  (21) 

MTRC focuses on capturing time series features at different 
temporal resolutions, enabling the model to consider various 
time-step dependencies and fluctuations, enhancing its 
understanding of temporal patterns. Conversely, DBL aims to 
comprehend the segmentation dependence between prediction 
results and historical data, providing a comprehensive viewof 
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Fig. 3. Details of the DB-MTRC module 

temporal dynamics in traffic flow. The integration of these 
approaches in DB-MTRC creates a potent framework that 
enhances the model's perception of time-domain 
fluctuations. 

From a broad viewpoint, traffic flow data showcases 
abundant trends and periodic patterns. Yet, at a finer level, 
traffic flow changes aren't exclusively driven by periodic 
patterns. Hence, we factor in time features at various scales 
within the sequence and create sparse resolution and dense 
resolution blocks for MTRC, each tied to modules with 

distinct receptive field resolutions. The sparse module 
captures broader temporal context features, focusing on 
global patterns and overall trends, and the dense module 
captures finer-grained temporal context features, capturing 
local and specific patterns in the time series data. 

To manage parameter costs, we employ dilated 
convolutions in the MTRC module. Finally, we combine 
predictions from the two branches at various time steps for 
the ultimate output. The overall architecture of the DB-
MTRC module is depicted in Fig. 3.  

 

Fig. 4. Framework Details of DM-AGODE
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E. DM-AGODE 

Given the complexity of real-world transportation 
systems, it's vital to shield the original historical data from 
the intricacies of additional convolutional layers during 
modeling. To harness AGODE's capacity for capturing 
underlying patterns and DB-MTRC's perceptual aptitude for 
traffic flow patterns, we introduced a new parallel spatio-
temporal feature synchronous extraction framework named 
DM-AGODE. This framework employs exclusively feature-
embedded raw data as input for both DB-MTRC and ODE-
solver. The final model is illustrated in Fig. 4, where Fig. 
4(a) represents the input and output representation of the 
whole framework, graph structure Ã is the adjacency matrix 
after normalization, Fig. 4(b) illustrates the fusion mode of 
internal modules of DM-AGODE, and Fig. 4(c) showcases 
the stacking mode of DM-AGODE, integrates residual 
connections in Fig. 4(b) and (c) to prevent loss of low-level 
features when capturing spatio-temporal dependencies. As 
shown in Fig. 4, the predicted sequence from ODE-solver is 
also input to the MTRC module, running in parallel with 
DB-MTRC to boost global temporal features. 

IV. EXPERIMENTS  

A. Datasets  

We validated the performance of the DM-AGODE model 
using six widely recognized public datasets, as detailed in 
Table Ⅰ. These datasets include the popular PEMS series and 
the METR-LA dataset, both of which are commonly used in 
baseline models. The PeMS series datasets, collected and 
curated by the California Performance Measurement System 
(PeMS) [28]. They are divided into PeMS03, PeMS04, 
PeMS07, PeMS08, and PeMS-BAY, based on their 
collection time and region. All datasets offer traffic flow 
data with an initial time resolution of 5-minute intervals. 

TABLE Ⅰ 
DATASETS DETAILS 

Datasets Data Source Region 
Number 

of Sensors 
Total Time 

Steps 

PeMS03 Northern California 358 26208 

PeMS04 San Francisco Bay Area 307 16992 

PeMS07 Los Angeles 883 28224 

PeMS08 Santa Clara County region 170 17856 

PeMS-BAY Los Angeles Bay Area 325 52116 

METR-LA Los Angeles 207 34272 

Indeed, the PeMS series datasets include genuine 
distances between nodes, which are essential for creating 
accurate traffic adjacency matrices. In contrast, the METR-
LA dataset employs an adjacency matrix formed through a 
thresholder Gaussian kernel, as provided by the authors of 
DCRNN. Although our model does not inherently depend 
on these matrices, we integrated them into our reproduction 
of baseline model testing experiments to ensure a consistent 
comparison. 

B. Baseline Models for Comparison 

We compare DM-AGODE with the following baseline 
models: 

1) FC-LSTM [21]: Long Short-Term Memory Network, 

which is the classical contrast model constructed in the 
paper of STFGNN, It is a recurrent neural network with 
fully connected LSTM hidden units.  

2) STGCN[17]: Spatial-Temporal Graph Convolutional 
Network, which first applied graph convolution to the 
traffic prediction problem, and the structure of each 
module consisted of two gated sequence convolution 
layers and a spatial graph convolution module in the 
middle. This temporal-spatial-temporal structure was 
later called "Sandwich structure". 

3) DCRNN [18]: Deep Convolutional Recurrent Neural 
Network, which combines traffic flow with a diffusion 
process to model the spatial dependence, which is 
governed by a random walk strategy. 

4) ASTGCN(r) [29]: Attention-based Spatial-Temporal 
Graph Convolutional Network with Residuals, which 
utilizes graph convolutional networks with attention 
mechanisms and residual connections to capture spatial 
and temporal dependencies. 

5) GraphWaveNet [30]: Graph WaveNet, which designs a 
novel adaptive dependency matrix and learns the spatial 
dependencies between traffic nodes through node 
embedding, and adopts the methods of dilated 
convolution and causal convolution to capture the 
dependencies on the time axis. 

6) STSGCN [20]: Spatial-Temporal Synchronous Graph 
Convolutional Networks, an extension of the STGCN 
model, introduces multiple modules with different time 
periods to capture local spatio-temporal graph 
heterogeneity. It also employs a spatio-temporal 
synchronization modeling mechanism to capture 
complex local spatio-temporal correlations. 

7) STFGNN [21]: spatial-temporal Fusion Graph Neural 
Networks, which is an extension of the STSGCN model 
that proposes a temporal graph based on the similarity 
between time series, and integrates it with the original 
distance matrix to form a spatio-temporal fusion graph 
to capture the hidden spatio-temporal correlation. 

8) STGODE [26]: Spatial-Temporal Graph Ordinary 
Differential Equation Networks, which still uses the 
semantic connection and the original distance 
connection to model the spatial dependence of traffic 
flow, and proposes a new optimized continuous 
representation of GCN to increase the depth of GCN to 
capture deeper spatio-temporal dependence. 

C. Experiment Settings 

For a fair comparison in our experiments, we divided all 
benchmark datasets into training, validation, and test sets in 
a 6:2:2 ratio. We used the Adam optimizer with an initial 
learning rate of 0.001 and applied a learning rate decay 
strategy, reducing the rate by 0.2 at 20 and 40 epochs. The 
batch size was set to 32, and training lasted for 50 epochs, 
utilizing the Euler method for ODE solving within the ODE-
Solver. We employed three evaluation metrics: Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), and 
Mean Absolute Percentage Error (MAPE). The loss function 
is Huber Loss [31]. All experiments were conducted on a 
Linux server with the following specifications: CPU - 
Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, GPU - 
NVIDIA RTX 3090 (24GB). 
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TABLE Ⅱ 
PERFORMANCE COMPARISON OF DM-AGODE AND BASELINE MODELS ON PEMS DATASETS  

Data 
    Models 

Metric 
DCRNN STGCN ASTGCN(r) GraphWaveNet STSGCN STFGNN STGODE DM-AGODE 

PeMS03 

MAE 18.18 17.49 17.69 19.85 17.48 16.91 16.50 15.14 

MAPE(%) 18.91 17.15 19.40 19.31 16.78 16.42 16.69 14.19 

RMSE 30.31 30.12 29.66 32.94 29.21 28.37 27.84 25.09 

PeMS04 

MAE 24.70 22.70 22.93 25.45 21.19 20.45 20.84 19.13 

MAPE(%) 17.12 14.59 16.56 17.29 13.90 16.74 13.77 13.26 

RMSE 38.12 35.55 35.22 39.70 33.65 32.49 32.82 31.33 

PeMS07 

MAE 25.30 25.38 28.05 26.85 24.26 23.33 22.59 21.04 

MAPE(%) 11.66 11.08 13.92 12.12 10.21 9.15 10.14 8.91 

RMSE 38.58 38.78 42.57 42.78 39.03 36.50 37.54 34.14 

PeMS08 

MAE 17.86 18.02 18.61 19.13 17.13 16.89 16.81 15.34 

MAPE(%) 11.45 11.40 13.08 12.68 10.96 10.53 10.01 9.31 

RMSE 27.83 27.83 28.16 31.05 26.80 26.20 25.97 24.20 

In the MTRC block, the hidden layer dimensions were 
configured at 8 and 16, while the stacked residual layers 
included four DM-AGODE modules. The threshold values 
for the spatial adjacency matrix were set as follows: 10  
and 0.1  .  

D. Experiment Results and Analysis 

Table II provides a comprehensive comparison of 
predictive performance between DM-AGODE and baseline 
models. Bold numbers highlight predictive results with the 
lowest errors, while underlined numbers indicate second-
best results. Baseline models considering spatio-temporal 
correlations, like STGCN, STSGCN, and STFGNN, 
outperform models like FC-LSTM, which only account for 
temporal dependencies. The utilization of Neural ODE 
enables models to overcome the limitations introduced by 
discrete layers, making STGODE's performance relatively 
more favorable.  

However, it's important to note that using DTW distance 
in STGODE mainly emphasizes local alignment. As a result, 
this approach might not fully capture the broader global 
pattern similarity in sequences. Moreover, within the model 
structure, STGODE employs a spatial distance matrix with 
pseudo connections and a fixed graph layout. This 
integration poses challenges in fully harnessing the potent 
fitting capabilities of ODEs due to the complex interaction 
between the spatial distance matrix and the static graph. 
DM-AGODE showcases a significant improvement in 
predictive Mean Absolute Error (MAE) across four varied 
datasets, achieving enhancements of 8.2%, 6.6%, 6.8%, and 
8.7% compared to top-performing baseline models. This 
consistent superiority highlights DM-AGODE's notable 
advantage across all evaluation metrics. 

 Moreover, to confirm the model's stepwise predictive 
ability, we conducted comparative experiments on stepwise 
prediction using the PEMS-BAY and METR-LA datasets. 
The results in Table Ⅲ reveal an interesting trend when 
compared to baseline models, models with better short-term 
predictive outcomes tend to experience a more pronounced 
decline in accuracy for long-term predictions. Conversely, 
models with weaker predictive performance exhibit 

relatively stable predictive errors. Their performance tends 
to produce smoother and simpler predictive outcomes, 
lacking the detail needed to accurately represent the 
fluctuations and variations in traffic flow. In Table Ⅲ, while 
the performance enhancement of DM-AGODE in short-term 
prediction might not be conspicuous, it effectively 
circumvents the issue of rapid accuracy decline in mid-term 
and long-term predictions. 

Consequently, it achieves superior predictive performance, 
thereby demonstrating that the branch network within our 
model effectively strikes a balance between long-term and 
short-term predictions. This advantage is particularly 
pronounced in the context of the METR-LA dataset, 
renowned for its high complexity. 

E. Ablation Experiments 

To validate the effectiveness of each module and the 
necessity of the structural design, we conducted a series of 
ablation experiments on the PEMS04 and PEMS08 datasets. 
Specifically, we designed seven variants of DM-AGODE, as 
follows:  

1) DM-GNN: We replaced the AGODE module with a 
generic Graph Neural Network (GNN) to assess the 
efficacy of the AGODE design. 

2) DM-GODE: We used the original static graph A  
instead of the dynamically adjusted graph wA , obtained 
through the parameter matrix wA , to contrast the 
performance difference between using static and 
dynamic graphs. 

3) M-AGODE: We solely employed the original sequence 
for temporal feature extraction to assess the 
effectiveness of extracting subsequence order features 
using DBL. 

4) D-AGODE: Similarly, we replaced the MTRC module 
with the original TCN to validate the efficacy of MTRC 
in capturing multi-time-scale features. 

5) DM-AGODE-no-EMD: We replaced the EMD distance 
with the original spatial distance to validate the 
effectiveness of EMD distance in representing overall 
distribution similarity. 
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TABLE Ⅲ 
STEPWISE PERFORMANCE COMPARISON OF DM-AGODE AND 6 BASELINE MODELS ON PEMS-BAY AND METR-LA DATASETS  

Data 
    Metric 

Models 

15 min/3 time steps 30 min/6 time steps 60 min/12 time steps 

MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE 

PeMS-BAY 

FC-LSTM 2.05 4.80 4.19 2.20 5.20 4.55 2.37 5.70 4.96 

DCRNN 1.38 2.90 2.95 1.74 3.90 3.97 2.07 4.90 4.74 

STGCN 1.36 2.90 2.96 1.81 4.17 4.27 2.49 5.79 5.69 

ASTGCN(r) 1.43 3.25 3.05 1.79 4.40 4.06 2.10 5.30 4.77 

Graph WaveNet 1.30 2.73 2.74 1.63 3.67 3.70 1.95 4.63 4.52 

STGODE 1.24 2.63 2.62 1.55 3.67 3.64 1.86 4.34 4.35 

DM-AGODE 1.29 2.65 2.63 1.53 3.52 3.56 1.73 4.05 4.11 

METR-LA 

FC-LSTM 3.44 9.60 6.30 3.77 10.90 7.23 4.37 13.20 8.69 

DCRNN 2.77 7.30 5.38 3.15 8.80 6.45 3.60 10.50 7.60 

STGCN 2.88 7.62 5.74 3.47 9.57 7.24 4.59 12.70 9.40 

ASTGCN(r) 3.01 7.11 5.22 3.36 8.52 6.19 3.94 10.10 7.87 

Graph WaveNet 2.69 6.90 5.15 3.07 8.37 6.22 3.53 10.01 7.37 

STGODE 2.52 6.48 4.85 2.96 7.98 5.92 3.40 9.62 7.40 

DM-AGODE 2.48 6.43 4.87 2.83 7.60 5.72 3.18 9.17 7.09 

6) DM-AGODE-Sandwich: We placed the GODE module 
after the model, allowing it to receive data features 
fitted by TCN, to determine the necessity of directly 
processing raw data with the GODE module. 

7) DM-AGODE-Full-Seq: In this model, we utilized the 
entire sequence when computing the adjacency matrix, 
without considering time costs due to equidistant 
sampling. We solely compared evaluation metrics to 
assess the impact of equidistant sampling on the results. 

The ablation experiment results are presented in Table Ⅳ. 
Models using static graphs or relying solely on DTW for 
adjacency matrix construction show more noticeable 
performance drops. This underscores the significance of 
dynamic graph fitting optimization and the global association 
extraction using EMD. In the sub-models without the 
temporal feature module, there are impacts on experimental 
results. Specifically, when the dual-branch learning 
mechanism is removed, RMSE errors in predictions are 

affected more than MAE errors. This suggests that the MTRC 
module alone captures general trends and patterns. However, 
for specific cases or notable fluctuations, the dual-branch 
learning mechanism is essential to capture precise sequence 
features. 

When considering sequence similarity computation, 
utilizing the entire sequence data does contribute to relatively 
more accurate predictions. However, the overall improvement 
in accuracy is not significantly substantial. Interestingly, for 
the PEMS08 dataset, we noticed that constructing graphs with 
the entire sequence data resulted in slightly worse MAPE and 
RMSE prediction errors. This phenomenon arises due to the 
equidistant sampling method partially mitigating the impact 
of anomalous fluctuating values in cases where the data is 
relatively smooth. As a result, we choose to stick with the 
equidistant sampling approach for graph construction in the 
final model. This decision significantly reduces the time 
needed for graph pre-construction. 

TABLE Ⅳ 

ABLATION EXPERIMENTS OF DM-AGODE 

Datasets The original model and Variants MAE MAPE (%) RMSE 

PEMS04 

DM-GNN 19.60 13.55 32.04 

DM-GODE 19.45 13.42 31.71 

M-AGODE 19.36 13.42 31.63 

D-AGODE 19.35 13.38 31.44 

DM-AGODE-no-EMD 19.23 13.34 31.51 

DM-AGODE-Sandwich 19.71 13.62 32.07 

DM-AGODE-Full-Seq 19.10 13.26 31.28 

DM-AGODE 19.13 13.26 31.33 

PEMS08 

DM-GNN 16.06 25.12 9.982 

DM-GODE 15.57 24.4 9.45 

M-AGODE 15.61 24.74 9.74 

D-AGODE 15.64 24.68 9.52 

DM-AGODE-no-EMD 15.59 24.87 9.81 

DM-AGODE-Sandwich 15.851 25.02 9.84 

DM-AGODE-Full-Seq 15.32 24.23 9.35 

DM-AGODE 15.34 24.19 9.30 
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Fig. 5. Comparison of our model with STSGCN prediction case 

F. Case Study 

To provide a more intuitive demonstration of the model's 
effectiveness, we selected two traffic nodes from the testing 
dataset of PEMS04 with substantial differences in their daily 
average flow and volatility levels. A comparative analysis 
with the STSGCN model was performed to assess the model's 
performance. As illustrated in Fig. 5, in most cases, DM-
AGODE exhibits higher predictive accuracy compared to the 
STSGCN model. 

Excitingly, our model impressively captures the start and 
end of flow variations in traffic curves with noticeable, 
ongoing oscillations. This sharp awareness arises from our 
subsequence branch learning approach, which swiftly 
integrates deep historical data and emerging trends into its 
overall forecasts—especially beneficial in highly fluctuating 
environments. Additionally, the AGODE module blends 
global and local spatio-temporal relationships through an 
optimized dynamic adjacency matrix, enhancing our 
understanding of complex traffic patterns with the help of 
the ODE-solver's strategic framework.  

In more stable situations, DM-AGODE continues to 
perform well, handling smoother data effectively while still 
detecting oscillatory patterns. This durability is thanks to the 
DB-MTRC module's robust ability to utilize multi-scale 
temporal features, ensuring the model remains adaptive and 
accurate across different traffic conditions. 

G. Hyperparameters Analysis 

In the model presented in this paper, the design of the 
dynamic graph enhances the model's resistance to 

correlation noise and allows it to adaptively adjust the 
correlation degree. The construction of the initial adjacency 
matrix is crucial, as this matrix serves as the starting point 
for the evolution of the dynamic system in the dynamic 
graph neural ODE, directly impacting the graph 
representation learning ability. As such, two hyperparameters 
warrant further analysis: the interval of sampling φ and the 
weight coefficient ε. These hyperparameters significantly 
influence the adjacency matrix's ability to accurately represent 
the associations among traffic nodes. 

 
Fig. 6. Hyperparameter performance of Weight coefficient 

The performance experiments for the hyperparameters 
interval of sampling and weight coefficient are shown in Fig. 
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6 and Fig. 7, respectively. We ultimately determined the 
optimal hyperparameter values to be ε=0.2 and φ=3, as 
indicated by the solid black vertical lines in the figures. 
Notably, while the model's accuracy is not the highest when 
φ=3, considering the significant increase in computation 
time for φ=2 in practical implementation, a comprehensive 
evaluation still suggests that an interval step size of 3 is 
optimal for the even interval sampling method. 

 
Fig. 7. Hyperparameter performance of interval of sampling 

To ensure the fairness of our comparative experiments, 
we consistently applied the same hyperparameters across all 
step size prediction experiments. However, it is important to 
highlight that slightly reducing the ODE solver step size, 
denoted as tend, can further decrease prediction errors for the 
3-step and 6-step forecasts. This improvement occurs 
because the neural ODE in this study is a dynamic system 
parameterized by an adaptive graph neural network, which 
benefits from smaller integration steps when making short-
term predictions. 

 
Fig. 8. Hyperparameter performance of step size of the ODE 

solver solution 
Detailed experiments, shown in Fig. 8, analyzed the 

impact of the solver step size on short-term prediction errors 
using RMSE (Root Mean Square Error) as the metric. When 
the solver step size is smaller, the model focuses more on 
short-term accuracy. The finer granularity allows for more 
precise adjustments at each step, reducing short-term 

prediction errors. Conversely, with a larger step size, the 
model aims to minimize long-term errors. This approach can 
improve accuracy over extended horizons but may increase 
short-term errors due to less frequent updates. 

The parameter performance in Fig. 8 illustrates the 
sensitivity of DM-AGODE to the ODE solution step size. In 
this paper, we place a greater emphasis on challenging long-
term predictions, which led us to ultimately select a solution 
step size of 3.5 and uniformly apply it across all step size 
prediction experiments. The stability of the model error for 
tend>3 further demonstrates the robustness of applying 
AGODE to address the over-smoothing problem.  

H. Time Efficiency 

In addition to focusing on accuracy, we also considered 
the efficiency of the model, which benefits from two aspects: 
 Firstly, in terms of spatial feature extraction, our model uses 
only the adjacency matrix based on Dynamic Time Warping 
(DTW) and Earth Mover's Distance (EMD) as input to the 
AGODE module. This refined dimensionality reduction 
mitigates the time costs associated with handling large input 
graphs while still effectively capturing both local and global 
correlations of traffic nodes. 

Secondly, the proposed temporal feature extraction 
module, DB-MTRC, also offers significant efficiency 
advantages. By leveraging dilated convolutions, the 
branches within the MTRC module extract features at 
varying scales, allowing for the use of lower time 
complexity element-wise products for complementary 
fusion. Furthermore, the parallel fusion structure of these 
two novel modules significantly reduces the time costs 
associated with the previous serial sequential structure. 

In traffic flow and other time series prediction models, the 
convergence speed reflects the model's efficiency in 
capturing spatio-temporal features. We define DM-AGODE 
as an effective spatio-temporal traffic flow prediction model 
that achieves high prediction accuracy while significantly 
improving convergence rate and real-time inference speed. 
To validate this, we conducted comparative experiments 
with recently advanced spatio-temporal prediction models 
using the PEMS04 dataset, employing the same learning 
rates, batch sizes, and loss functions as specified in the 
original papers for each baseline model. 

Fig. 9(a) and Fig. 9(b) compare the efficiency of our 
model with three recent advanced models that incorporate 
spatio-temporal features: STSGCN, STFGNN, and 
STGODE, which uses GODE for spatio-temporal feature 
extraction. It is evident that STFGNN, which employs a 
larger adjacency matrix input, initially exhibits higher 
training loss and validation set MAE. However, from the 
second round onward, both the STGODE and DM-AGODE 
models, utilizing the ODE-solver instead of GNN, 
demonstrate faster convergence. As training progresses, the 
training loss of all models gradually becomes similar. Yet, 
DM-AGODE consistently outperforms the others on the 
validation set.  

Importantly, DM-AGODE's performance on the 
validation set remains more stable due to the ODE-solver 
and the DB-MTRC module directly extracting spatio-
temporal features from raw data, enhancing the model's 
expressiveness in predictions.  
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Fig. 9. Performance of different models

Regarding Fig. 9(c), as spatio-temporal prediction models 

have advanced, improvements have been made to both 

training and inference speeds. Compared to STGODE, DM-

AGODE's training time is reduced by over 40%, resulting in 

a more than 25% reduction in inference time. In summary, 

DM-AGODE achieves substantial enhancements in both 

training efficiency and inference speed. 

V. CONCLUSION 

Traffic flow forecasting is crucial for advancing 

engineering and societal progress, enabling efficient 

transportation planning, congestion alleviation, resource 

allocation, and informed decision-making. This paper 

introduces DM-AGODE, an innovative spatio-temporal 

traffic flow prediction model. By employing a dual-branch 

learning approach, DM-AGODE leverages the strengths of 

both short-term and long-term historical data distributions 

for multi-step forecasting. 

To enhance temporal feature extraction, we developed an 

efficient multi-temporal resolution convolution mechanism. 

Additionally, we established a robust, information-enriched 

adjacency graph that captures both global temporal 

correlations and local spatial relationships among nodes. 

This integration of dynamic graph propagation with an 

optimized adaptive graph neural ODE significantly 

enhances predictive fidelity and improves the model's 

understanding of underlying data dynamics.  

The approaches explored in this study introduce novel 

viewpoints and effective solutions for accurate traffic flow 

prediction. Furthermore, we foresee the possible broader 

application of several of these methods. For instance, the 

data-driven adjacency graph construction and the adaptive 

graph neural ODE have promising potential for extending to 

diverse prediction tasks, even those without geographical 

spatial information. The parallel architecture with feature 

extraction branches warrants special attention, especially in 

scenarios prioritizing temporal efficiency. It's important to 

note that while such parallel architectures offer the potential 

for improved predictions, this isn't a universal guarantee. 

The success of this approach depends on the efficacy of 

information extraction branches, the design of residual 

structures, and the appropriateness of feature fusion 

strategies, among other factors. Rigorous experiments 

confirmed that our methodology not only enhances 

prediction accuracy but also achieves remarkable temporal 

efficiency in both training and inference, showcasing 

substantial practical advantages. 

Amid technological advancements such as the Internet of 

Things and smart urban infrastructure, and the increasing 

availability of datasets, the methods discussed in this paper 

could play a crucial role in shaping more efficient intelligent 

transportation systems. Nonetheless, the field of traffic flow 

prediction still offers substantial potential for further 

exploration. Incorporating varied data sources beyond 

spatio-temporal aspects could enhance predictive accuracy, 

and integrating advanced anomaly detection techniques 

could improve the model's ability to handle unexpected 

disruptions in traffic patterns. 

Our future research will explore broader traffic prediction 

tasks, including urban transit passenger flow evolution and 

more complex origin-destination flow predictions, while 

refining the model for greater robustness and accuracy, 

integrating diverse data sources, and addressing further 

challenges in traffic engineering. 
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