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Abstract—Multiple Object Tracking (MOT) aims to employ
computer vision techniques for real-time tracking and recogni-
tion of multiple objects within video sequences. It encompasses
the tasks of detection, tracking, and Re-identification (ReID)
of objects to achieve continuous tracking of targets over both
temporal and spatial domains. MOT makes up a significant
challenge within the domain of computer vision. This paper pro-
poses Hyper DeepSORT, an advanced MOT model integrating
three significant innovations: HyperNMS, Hyper Kalman Filter,
and MTRNet. HyperNMS, a novel Non-Maximum Suppression
(NMS) technique, leverages parallel matrix operations to per-
form NMS in a single iteration, enhancing object recognition
accuracy and system efficiency. The Hyper Kalman Filter, an
adaptive variant of the traditional Kalman filter, dynamically
adjusts noise covariance based on detection confidence, im-
proving the tracker’s adaptability and robustness. Additionally,
MTRNet incorporates ReID technology to refine feature rep-
resentation within the DeepSORT framework, encompassing
attributes like colour, texture, shape, and motion parameters,
bolstering tracking performance. Experimental evaluations on
multiple MOT datasets show Hyper DeepSORT outperforms
existing models. Specifically, it shows average improvements
of 12.75%, 5.37%, 7.20%, 9.94%, 4.90%, and 12.25% over
current mainstream models in mAP, MOTA, IDF1, IDSW,
FP, and FN metrics, respectively. These results underscore
Hyper DeepSORT’s superior accuracy and efficiency in complex
tracking scenarios.

Index Terms—Multi-Object Tracking, Deep learning, Deep-
SORT, Kalman Filter

I. INTRODUCTION

THE expeditious progression of computer vision technol-
ogy has engendered a plethora of prospects for applica-

tions spanning diverse domains. One of them is the field of
Multiple Object Tracking (MOT). MOT tasks are pivotal for
real-time surveillance, autonomous vehicular navigation, in-
telligent security systems, and allied domains. MOT endeav-
ours to attain precision, real-time tracking, and localisation
of multiple dynamic entities within video datasets, furnishing
nuanced data support for various application scenarios.

MOT tasks confront challenges emanating from the di-
versity of video content, occlusion phenomena, variations in
scale, and fluctuations in illumination[1]. To redress these
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challenges, investigators initially used statistical methodolo-
gies, such as Kalman filters[2] and particle filters[3]. In
recent epochs, concomitant with the rapid evolution of deep
learning methodologies, incorporating technologies such as
Siamese Networks[4], Twin Networks[5], and Convolutional
Neural Networks (CNN)[6] have markedly propelled the field
of MOT. This paper introduces a novel deep learning-based
MOT model, denoted as Hyper DeepSORT, distinguished by
the ensuing innovations:

1) This paper introduces HyperNMS as a substitution
for conventional Non-Maximum Suppression (NMS). Hyper-
NMS achieves NMS in a singular iteration through parallel
matrix operations, thereby augmenting the precision of object
recognition without the necessity for iterative processes.

2) Aiming to improve the persistent challenge of a constant
noise scale in traditional Kalman algorithms, this paper
posits the Hyper Kalman Filter—an adaptive mechanism for
computing noise covariance. This adaptation is contingent
upon fluctuations in detection confidence, thereby enhancing
the adaptability of the tracking mechanism.

3) This paper enhances the MultiTrack Reid Net by util-
ising uniformly larger convolutional kernels and introducing
attention mechanisms in both directions of the image. Experi-
mental results show the model’s efficient ReID performance.
Even under challenging conditions such as noise, lighting
variations, and occlusion, the method achieves continuous
and accurate tracking of targets in video sequences.

This paper aspires to furnish a more sophisticated and
resilient tracking solution through these novel contributions,
thereby surmounting the intricate challenges of MOT tasks.

II. RELATED WORK

A. MOT Task Methodologies

The two primary approaches to addressing the MOT task
are Motion Feature Tracking (MFT)[7] and Tracking-by-
Detection (TBD)[8].

MFT primarily relies on the motion features of objects
between consecutive frames, such as optical flow and motion
vectors, to achieve object tracking. The MFT method first ex-
tracts motion information from each frame using optical flow
algorithms, such as the Lucas-Kanade optical flow and dense
optical flow or other motion estimation methods. Then, the
extracted motion information is used to predict the object’s
position in the next frame. Finally, the object’s trajectory is
updated based on these motion features, including position
and velocity information.

TBD employs a detect-then-track strategy. Initially, all
objects in the video are identified using an object detector[9],
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and these objects are then associated across different frames
using an association algorithm to achieve tracking. The TBD
model uses pre-trained object detection models, such as
YOLO and Faster R-CNN, to detect all objects in each frame.
Subsequently, matching algorithms are employed to associate
the detection results. Standard matching algorithms include
the Hungarian algorithm, the Kalman filter, and the Hungar-
ian algorithm combined with appearance features. Ultimately,
the trajectory of each object is established and maintained,
including the initialisation of new objects, handling of object
loss, and termination of trajectories[10].

The MFT approach is more suitable for scenarios with
high real-time requirements and relatively stable objects,
such as video stabilisation and motion analysis. In contrast,
the TBD method is appropriate for scenarios with many
objects requiring high detection accuracy, such as intelligent
surveillance and autonomous driving. Currently, mainstream
MOT models, such as YOLO, Faster R-CNN, and the im-
proved DeepSORT model used in this paper, all employ the
TBD approach.

B. DeepSORT

DeepSORT, an extension of the SORT framework, is a
deep learning-based model crafted for MOT[11]. Its structure
diagram is shown in Fig. 1. DeepSORT employs advanced
techniques to elevate target tracking performance in intricate
scenarios, emphasising the resolution of target association
challenges and the acquisition of target feature representa-
tions.

The methodology of DeepSORT is initiated with a target
detector that provides bounding boxes and category infor-
mation for identified targets. Subsequently, deep learning
techniques extract features characterising target appearance
and motion attributes, enhancing the tracker’s discriminative
capabilities. Components for motion estimation and trajec-
tory prediction, often involving Kalman filters, are then
utilised to model and estimate target motion, addressing
uncertainties and dynamic variations in video sequences[12].

To resolve the challenge of multiple target associations,
DeepSORT employs a Hungarian algorithm-based method.
This algorithm efficiently matches targets in the current
frame with those in the preceding frame, constructing mo-
tion trajectories. DeepSORT introduces a Deep Association
Metric, leveraging learned deep feature representations to
enhance the accuracy of target associations. Furthermore,
DeepSORT facilitates differentiation by assigning unique
identification numbers (IDs) to targets, supporting prolonged
tracking scenarios and multi-target environments. Despite
its proven effectiveness in MOT tasks, DeepSORT exhibits
potential shortcomings:

1) DeepSORT encounters challenges in scenes involving
target occlusion or partial occlusion, as the appearance infor-
mation of targets may be compromised, leading to tracking
instability.

2) The robustness of DeepSORT is a challenge when
dealing with rapidly moving targets. Swift motion can cause
substantial positional variations between adjacent frames,
thereby increasing tracking difficulty[13].

3) DeepSORT has experienced performance bottlenecks
when dealing with large-scale target groups, entailing more

complex target association and trajectory management chal-
lenges.

Addressing these challenges, researchers have proposed
improved target association algorithms for enhanced per-
formance in target-dense scenarios and introduced more
sophisticated appearance models, leveraging deep learning
methods to fortify tracking robustness.

C. Kalman Filtering

Kalman filtering, a recursive and dynamic state estimation
methodology, is widely used in MOT tasks. Its primary
function is to manage the state information about targets, en-
compassing parameters such as their positions and velocities
within video sequences. The overarching goal is to elevate
the precision and robustness of target tracking[14].

The Kalman filtering process involves estimating a target’s
state utilising observational data, such as the target’s position,
coupled with a system model. The target’s state typically
comprises position and velocity parameters in MOT tasks.
Kalman filtering not only provides estimates of the current
target state but also facilitates the prediction of the subse-
quent target state based on the underlying system model,
thus enabling proactive anticipation of target motion[15].

A pivotal challenge in MOT tasks revolves around asso-
ciating target positions across different frames to construct
coherent target trajectories. By modelling target trajecto-
ries, Kalman filtering offers substantial support for data
association. By weighing the disparities between predicted
and measured target positions, Kalman filtering imparts a
refined structure to data association, thereby augmenting its
accuracy[16]. Another concern within MOTA tasks is the
inherent uncertainty associated with target motion. Kalman
filtering tackles this challenge by eliminating process noise
terms within the model. This strategic inclusion enhances
the model’s ability to handle uncertainties in target motion,
ultimately bolstering the robustness of the tracking system.
Notably, Kalman filtering exhibits adaptability to variations
in target speed, accommodating changes induced by acceler-
ation or deceleration.

D. ReID

Re-identification (ReID) technology is employed for the
cross-camera tracking of identical targets within a given
scene. The primary objective of ReID technology is to
mitigate the substantial variations in the appearance of the
same target across diverse camera perspectives, locations,
angles, and lighting conditions[17].

This technological focus on extracting features from tar-
gets aims to construct a robust representation for consistent
target identification across varied scenes and viewpoints.
These features predominantly encapsulate appearance char-
acteristics such as colour, texture, and attire. In recent years,
notable strides in ReID have emerged through integrating
deep learning techniques, wherein CNNs play a pivotal
role in learning discriminative target features. These models
adeptly extract high-level semantic features from images,
thereby elevating the precision of target identification.

Metric learning methods are frequently employed in ReID
technology to acquire a distance metric capable of gauging
the similarity between two targets. Loss functions, including
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Fig. 1. Overview of DeepSORT

Triplet loss, help to drive the features of the same target
closer. The calculation method for Triplet loss, expressed by
Equation (1):

L = max (0, d(a, p)− d(a, n) + α) (1)

In this Equation, L represents the Triplet loss result,
d(a, p) signifies the distance between the anchor a and
positive p examples (typically Euclidean or cosine distance),
and d(a, n) denotes the distance between the anchor a and
negative n examples. α serves as the margin, a predefined
constant ensuring that the distance between features of the
same target is smaller than between features of different
targets.

Within MOT tasks, ReID technology assumes a pivotal
role in associating targets originating from distinct cam-
eras. The system can recognise identical targets through
the comparative analysis of ReID features across different
cameras, thereby establishing cross-camera trajectories for
these targets[18].

III. HYPER DEEPSORT MODEL

A. Hyper Kalman Filter

To employ the Kalman filter for estimating the inter-
nal state of an observed process from a series of noisy
observational data, it is crucial to formulate the process
within the Kalman filter framework. At each step k, matrices
FK , HK ,QK , RK , and BK are defined. The Kalman filter
assumes that the true state xk at time k and its corresponding
measurement zk evolve from the state at time k−1 according
to the following Equations (2) and (3):

xk = Fkxk−1 +Bkuk + wk (2)

zk = Hkxk + vk (3)

In the above Equations, FK represents the state transition
model acting on xk−1, BK represents the input-control
model acting on the control vector uk, wk represents process
noise assumed to follow a multivariate normal distribution
with zero mean and covariance matrix QK . Additionally, HK

represents the observation model mapping the actual state
space to the observation space, vk represents the observation
noise with zero mean, covariance matrix RK , and it follows
a normal distribution.

The Kalman filter operates as a recursive estimation,
enabling the computation of the current state estimate with
knowledge of the previous moment’s estimated state and the
current state’s observation. Thus, there is no need to keep a
history of observed or estimated information. The state of the
Kalman filter comprises the estimate of the state at time k,
denoted as x̂k|k, and the posterior estimate error covariance
matrix Pk|k, reflecting the accuracy of the measurement
estimate.

The Kalman filter’s operation comprises two stages: pre-
diction and update. In the prediction phase, the filter utilizes
the estimate from the previous state to project an estimate for
the current state. In the update phase, the filter refines the
predicted value obtained in the prediction phase using the
observed value of the current state. Equations (4) and (5)
are employed in the prediction phase to update the predicted
state x̂k|k−1 and the predicted estimate covariance matrix
Pk|k−1.

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (4)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (5)

In the update phase, the measurement residual ỹk, mea-
surement residual covariance Sk, and optimal Kalman ac-
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Fig. 2. Overview of MTRNet

quire Kk are calculated through Equations (6) to (8):

ỹk = zk −Hkx̂k|k−1 (6)

Sk = HkPk|k−1H
T
k +Rk (7)

Kk = Pk|k−1H
T
k S

−1
k (8)

Subsequently, these values are utilized to update the filter
variables x̂k|k and Pk|k in the update step, as outlined in
Equations (9) and (10):

x̂k|k = x̂k|k−1 +Kkỹk (9)

Pk|k = (I −KkHk)Pk|k−1 (10)

Within the update step, the measurement noise covariance
Rk is employed to represent the noise scale of the measure-
ment. A larger noise scale implies a smaller weight for the
measurement in the state update step, reflecting higher uncer-
tainty. In traditional Kalman algorithms, the noise scale is a
constant matrix. However, different measurements may entail
noise of varying scales, which should adapt to changes in
detection confidence. Hence, this paper proposes an adaptive
equation for computing the noise covariance, termed NSA
noise covariance R̃k, as illustrated in Equation (11):

R̃k = (1− ck)Rk (11)

This equation calculates the noise covariance by multiply-
ing a preset constant measurement noise covariance Rk with
the detection confidence score ck and λ. The Kalman filter
in this paper transforms Equation (7) into (12). Subsequent
experimental results indicate that, despite the simplicity
of this Hyper Kalman approach, it significantly enhances
tracking performance.

Sk = HkPk|k−1H
T
k + R̃k (12)

B. MultiTrack Reid Net

The MultiTrack Reid Net (MTRNet) is designed in this
paper to enhance ReID tasks. The process is shown in Fig.
2, and the implementation steps are as follows.

1) H-Swish Activation Function: The H-Swish function
is introduced as an activation function, optimizing based on
the Swish function[19]. Compared to the Swish function,
H-Swish incurs lower computational costs. Swish involves
sigmoid functions in its computation, while H-Swish requires
simple numerical comparisons and multiplication operations,
making it more efficient under limited computational re-
sources. Furthermore, H-Swish retains the non-linear charac-
teristics of ReLU, enabling better learning of non-linear re-
lationships by neural networks. Even when activation values
are small, H-Swish maintains higher gradients than the Swish
function, avoiding gradient vanishing issues and effectively
activating neurons. Lastly, H-Swish exhibits improved gradi-
ent propagation, addressing the problem of small gradients at
the negative half-axis in the Swish function, thereby aiding
better gradient propagation and enhancing the convergence
speed of neural networks.

2) SE Layer: A novel efficient attention mechanism,
the Squeeze-and-Excitation (SE) Layer[20], is introduced
at the end of the backbone network to ease the loss of
positional information caused by 2D global pooling. Chan-
nel attention is decomposed into x and y directions, two
parallel one-dimensional feature encoding processes that
effectively integrate spatial coordinate information into the
generated attention map. Subsequently, the feature maps
encoding the information in these two embedding directions
are transformed into two attention maps, each capturing
distant dependencies along the spatial direction of the input
feature map. Consequently, positional information is pre-
served in the generated attention map, multiplied by the
input feature map to enhance its representational capacity.
This attention operation distinguishes spatial directions and
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generates coordinate-aware feature maps. Introducing this
efficient attention mechanism enables the backbone network
to preserve positional information better, thereby improving
the model’s perception of spatial features. This is crucial
for tasks requiring accurate positional information, such as
object detection and image segmentation[21].

3) Larger Convolutional Kernel: The size of convolu-
tional kernels often influences network performance. The
MixNet[22] analyzed the impact of different kernel sizes on
network performance and ultimately mixed different-sized
convolutional kernels in the same layer[23]. However, this
mixing approach may decrease the model’s inference speed.
Therefore, this paper attempts to use only one size of the
convolutional kernel in a single layer and ensures the use
of larger convolutional kernels for improved accuracy under
low latency conditions.

4) Adding Larger-Dimension 1×1 Convolutional Layer
After Global Average Pooling (GAP): In MTRNet, the output
dimension after GAP is relatively tiny. Directly appending
the final classification layer may lead to inadequate capture
of feature combinations. To enhance the network’s fitting
capability, a 1×1 convolutional layer with a dimension of
1280 is added after the GAP layer, equivalent to a fully
connected (FC) layer. This design allows the network to store
more model information while only marginally increasing
inference time.

C. Hyper Non-Maximum Suppression

The conventional Non-Maximum Suppression (NMS) al-
gorithm initially arranges all bounding boxes in a descending
order based on their classification scores, followed by iter-
ative processing. During each iteration, the bounding box
with the highest classification score is preserved, and the
Intersection over Union (IoU) is computed for this box con-
cerning other bounding boxes. The IoU, a metric quantifying
the overlap between two bounding boxes, is defined by the
Equation (13):

IoU =
Intersection(A,B)

Union(A,B)
(13)

In Fig. 3, Intersection(A,B) represents the area of the
intersection region between two bounding boxes A and B,
and Union(A,B) denotes the area of their union region. The
IoU value ranges from 0 to 1, with higher values indicating
increased overlap between the two bounding boxes.

Intersection(A,B)

Union(A,B)

A

B

Fig. 3. Illustration of IoU

Assuming the existence of initial detection boxes, denoted
as B = {b1, b2, b3, . . . bN}, where bi represents any de-
tection box, and each detection box corresponds to scores
S = {s1, s2, s3, . . . sN}, each bi entails the retention of the
box with the highest classification score. Subsequently, the
IoU is computed concerning this box and other boxes. For
boxes with IoU exceeding or equaling the threshold Nt, they
undergo removal, and the process iterates until no candidate
boxes persist. The mathematical articulation of this process
is shown in Equation (14). This methodology confronts triple
challenges: heightened computational intricacy, sluggish pro-
cessing velocity, and the intricate determination of NMS
thresholds, thereby predisposing the algorithm to potential
false positives or false negatives.

si =

{
si, IoU(M, bi) < Nt

0, IoU(M, bi) ≥ Nt

(14)

To address these issues, this paper amalgamates the con-
cepts of Soft NMS and Fast NMS, proposing an enhanced
NMS method. Specifically, the iterative calculation approach
is replaced with a one-time matrix computation. Initially,
all bounding boxes are sorted in descending order of clas-
sification scores, and then the IoU between all pairs of
bounding boxes is calculated, forming a symmetric matrix.
Subsequently, the matrix is upper-triangularized, and diago-
nal elements are set to 0, indicating the IoU of each bounding
box with itself. The maximum IoU along dimension 0 is
determined, and each IoU is compared against the filtering
threshold. For detection boxes with IoU surpassing the
threshold, the process involves not a simple filter but a
reduction in their confidence score, as outlined in Equation
(15).

si =

{
si, IoU(M, bi) < Nt

si
(
1− IoU(M, bi)

)
IoU(M, bi) ≥ Nt

(15)

D. Hyper DeepSORT

This paper introduces a comprehensive reconfiguration
that integrates NMS, Kalman filtering, and MTRNet, propos-
ing an innovative Hyper DeepSORT framework for MOT
tasks. Primarily, the traditional NMS is replaced with Hy-
perNMS, which executes NMS through parallel matrix op-
erations in a single step, obviating the necessity for multiple
iterations and substantially augmenting recognition accuracy.
Its merits encompass heightened computational efficiency
and remarkable accuracy enhancement.

Subsequently, conventional Kalman filtering techniques
typically utilize a constant matrix to represent the noise scale.
Nevertheless, distinct measurements may exhibit noise of
diverse scales. This paper introduces an inventive method for
adaptively computing the noise covariance within the Kalman
filtering process—the Hyper Kalman Filter to adapt more
effectively to variations in detection confidence. This design
innovation possesses the potential to elevate performance in
tracking tasks by accommodating the dynamic alterations in
measurement uncertainty.

Lastly, in terms of feature sets, this paper adopts the
feature set from MTRNet for target description and differen-
tiation. The feature set encompasses an array of numerical
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values or vectors that depict targets’ appearance and motion
characteristics, including colour, texture, shape, velocity,
acceleration, and other pertinent information. In contrast to
conventional methodologies, a novel neural network, MTR-
Net, is devised in this research, offering robust support for
target identification and tracking tasks.

IV. EXPERIMENT SETTING

A. Datasets

Several mainstream MOT datasets have been selected for
testing to evaluate the performance of the proposed Hyper
DeepSORT and its various components. These datasets in-
clude MOT-16, ETH, KITTI Tracking, and UA-DETRAC.
Below is a brief introduction to each of these four datasets.

1) MOT-16: The MOT-16 dataset makes up a widely
utilized benchmark dataset within the MOT domain, designed
to facilitate advancing and evaluating tracking algorithms.
Comprising 14 high-resolution video sequences, MOT-16
incorporates 7 sequences for training and 7 for testing. These
video sequences encapsulate diverse and complex scenarios,
including varying weather, fluctuations in illumination, and
camera movements. Each video sequence is meticulously
annotated, furnishing detailed information such as object
bounding boxes, object IDs, frame numbers, and visibility
attributes. These annotation data serve as the basis for
evaluating the performance of tracking algorithms. Primarily
focusing on pedestrians, the dataset features a dense pop-
ulation of pedestrians within the video sequences, thereby
increasing the challenge of tracking. Precise annotations of
the positions and IDs of each pedestrian across different
frames ensure consistency and accuracy in evaluation. The
comprehensiveness and high-quality annotations of the MOT-
16 dataset render it a pivotal benchmark within the realm
of MOT, facilitating the advancement and progression of
tracking algorithms.

2) ETH: The ETH dataset is a benchmark MOT and pedes-
trian detection dataset. This dataset primarily focuses on
densely populated urban streets featuring numerous pedes-
trians, including multiple video sequences captured across
various city blocks in Zurich, Switzerland. Consequently, it
provides a suitable environment for evaluating the perfor-
mance of pedestrian detection and tracking algorithms in
high-density scenarios. As the video sequences are filmed in
authentic urban environments, they exhibit high naturalism
and realism, facilitating the assessment of algorithms in
practical applications. The video sequences offer various
urban environmental scenarios, including diverse weather,
illumination variations, and background complexities. Each
video sequence is meticulously annotated, including object-
binding boxes and object IDs. The ETH dataset has made
significant contributions and impacts within pedestrian de-
tection and MOT. Since its highly authentic urban setting
and comprehensive annotation information, the ETH dataset
has become a crucial benchmark for evaluating and compar-
ing the performance of different algorithms, thus fostering
research and development in this domain.

3) KITTI Tracking: The KITTI Tracking dataset serves
as a benchmark dataset for research in autonomous driving,
primarily focusing on the detection and MOT of vehicles and
pedestrians. This dataset includes 21 training and 29 testing

video sequence scenes from roads in Karlsruhe, Germany,
encompassing diverse driving environments such as urban,
rural, and highway settings. Each target in every frame of the
video sequence, including vehicles, pedestrians, and cyclists,
is meticulously annotated, providing information regarding
object categories, bounding boxes, 3D positions, and pose
attributes.

4) UA-DETRAC: The UA-DETRAC dataset is a bench-
mark for vehicle detection and MOT within traffic scenarios.
This dataset includes over 100 video sequences from various
Beijing and Tianjin locations in China, depicting intricate
traffic scenarios. The video sequences span different periods,
including daytime and nighttime, and feature diverse weather
such as clear skies, rain, and fog. Environments include
highways, urban streets, and intersections, among others,
showcasing high diversity and complexity. Each vehicle in
every frame of the video sequence is meticulously anno-
tated, including object IDs, bounding boxes, and category
information. Detailed annotations for each target ensure the
accuracy and consistency of the annotation data. The UA-
DETRAC dataset has made significant contributions and
impacts within vehicle detection and MOT. Its extensive
and high-quality annotation data and its focus on traffic
scenarios provide valuable resources for developing and
evaluating relevant algorithms, thereby driving research and
technological advancements in this domain.

Those four datasets mentioned above present unique chal-
lenges and complexities in MOT tasks. The pedestrian-dense
scenarios in MOT-16 and ETH, the fast-moving vehicles
in KITTI Tracking, and the intricate traffic environments
in UA-DETRAC comprehensively test the performance of
tracking algorithms across various scenarios. In summary,
comparing the performance of MOT tasks using the MOT-16,
ETH, KITTI Tracking, and UA-DETRAC datasets ensures
algorithms’ robustness, generality, and efficiency across a
spectrum of complex and real-world scenarios. This com-
parison facilitates comprehensive and reliable performance
evaluations, providing insights into algorithmic capabilities
within diverse and authentic environments.

B. Evaluation Metrics

The experimental section will employ the following eval-
uation metrics to assess Hyper DeepSORT and other main-
stream MOT models:

1) False Positives (FP): FP represents the number of
detections of non-existent targets, namely the number of false
alarms. A lower count of FP signifies higher precision in
detection and tracking.

2) False Negatives (FN): FN represents the number of
undetected genuine targets, indicating the number of missed
detections. A lower count of FN indicates higher complete-
ness in detection and tracking.

3) ID Switches (IDSW): IDSW represents the number
of times target IDs change during the tracking process. A
lower value of IDSW indicates more excellent stability in
the tracking algorithm.

4) ID F1-Score (IDF1): IDF1 represents the degree of
matching between tracked and ground truth trajectories,
considering Precision and Recall. The calculation process is
as Equation (16).
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IDF1 =
2 · IDTP

2 · IDTP + IDFP + IDFN
(16)

IDTP is the number of correctly matched IDs, IDFP is
the number of incorrectly matched IDs, and IDFN is the
number of missed IDs. A higher IDF1 value indicates better
tracking performance.

5) Multiple Object Tracking Accuracy (MOTA): MOTA
represents a metric comprehensively considering FN, FP, and
IDSW. The calculation process is as Equation (17).

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
t GTt

(17)

FNt, FPt, and IDSWt respectively represent the number
of missed detections, false positives, and ID switches at
time t, and GTt denotes the number of ground truth targets
at time t. A higher MOTA value indicates better tracking
performance.

6) mean Average Precision (mAP): mAP is the mean of
Average Precision (AP) across different object categories. AP
measures the combined performance of precision and recall
of a detector on a specific category. As the name suggests,
mAP is calculated by averaging the APs of all categories.
The calculation process is as Equation (18).

mAP =
1

N

N∑
i=1

APi (18)

N is the number of categories, and APi is the average
precision for the i− th category.

7) Frames Per Second (FPS): FPS measures the real-time
performance of a tracking algorithm, indicating the number
of frames processed per second. A higher FPS value signifies
greater efficiency in the algorithm and better meeting the
requirements of real-time applications.

8) FLOPs (Floating Point Operations Per Second): FLOPs
is a critical metric used to measure the performance of
computational systems. It denotes the number of floating-
point operations a system can execute in one second. FLOPs
is essential when assessing high-performance computing
systems’ performance, efficiency, and deep learning models.
Typically, FLOPs is combined with other accuracy metrics,
where, under the premise of maintaining the same level of
accuracy, a model with lower FLOPs is considered more
efficient. Furthermore, the FLOPs value of a model can vary
depending on the size of the input image.

Among these metrics, the values of IDF1 and mAP range
from 0 to 1, while MOTA ranges from -∞ to 1. A nega-
tive MOTA value indicates inferior algorithm performance.
Given that no negative MOTA values were observed in this
experiment, the MOTA values fall within the 0 to 1 range.
This experiment displays the IDF1, mAP, and MOTA values
as percentages to ensure data presentation consistency. The
values for the remaining evaluation metrics range from 0 to
+∞. Higher values of mAP, MOTA, IDF1, and FPS indicate
better model performance, whereas lower values of FP, FN,
and IDSW suggest better model performance. Under the
premise of maintaining the same level of model accuracy, a
lower FLOPs value indicates higher computational efficiency
of the model.

C. Baselines and Equipment

The experimental part uses Hyper DeepSORT and the
following excellent MOT models for comparison.

1) Observation-Centric SORT (OC-SORT)[24]: OC-SORT
represents a motion-model-centric multiobject tracking sys-
tem designed to enhance tracking robustness in congested
scenarios and instances of non-linear object motion. It ad-
dresses and rectifies limitations inherent in the Kalman filter
and SORT, offering flexibility for integrating diverse detec-
tors and matching modules, including appearance similarity.
Emphasizing simplicity, online capability, and real-time op-
eration, OC-SORT caters to dynamic tracking requirements.

2) BoT-SORT[25]: A novel and robust state-of-the-art
tracker is introduced, capable of synergizing motion and
appearance information. It presents a refined Kalman filter
state vector to achieve higher accuracy in object tracking.

3) CenterTrack[26]: This model is a dedicated deep-
learning framework tailored for MOT. The seamless inte-
gration of object detection and tracking significantly ad-
vances the real-time performance of object tracking. The
core concept involves representing objects by estimating
their centre points, departing from the conventional practice
of using the corners of the bounding box. This center-
point representation enhances the model’s adaptability to
object motion and deformation variations. CenterTrack also
capitalizes on motion information and feature extraction to
enhance tracking precision, adopting a real-time design to
meet the demands of applications that require instantaneous
response.

In addition to experimenting with the backbone network,
this paper also conducts experimental validation on the ReID
section. The following are mainstream ReID networks used
in this paper for comparison:

1) RestNet-101[27]: RestNet is a deep neural network
architecture that introduces the concept of residual learning,
addressing the vanishing gradient problem in deep networks
through skip connections. The core idea is for network layers
to learn the residual between input and target mappings,
making the network easier to train and capable of achieving
greater depth. ResNet has demonstrated excellent perfor-
mance in tasks such as image classification and has been a
widely used architecture in deep learning. This paper selects
RestNet-101, a variant with 101 layers, for experimental
validation.

2) Efficient-B4[28]: EfficientNet is an efficient convolu-
tional neural network architecture that maintains model ac-
curacy while reducing computational complexity, parameter
count, and memory usage. Efficient-B4 represents the fourth
variant of EfficientNet, optimizing the network’s depth,
width, and resolution dimensions for balanced performance
in a relatively smaller model size. Consequently, Efficient-B4
exhibits higher computational efficiency and is suitable for
scenarios with limited computational resources. In this paper,
Efficient-B4 is chosen as one of the comparative models.

3) Visual Geometry Group Network (VGGNet)[29]: VG-
GNet is a convolutional neural network architecture pro-
posed by the Visual Geometry Group at the University of
Oxford, achieving significant results in the 2014 ImageNet
Large Scale Visual Recognition Challenge. One of the main
features of VGGNet is its simple and regular structure,
with fundamental building blocks consisting of multiple
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3x3 convolutional layers followed by a max-pooling layer,
resulting in an intense network. In this paper, VGGNet is
selected as one of the comparative models for the ReID
section and is used in experimental validation.

Those models mentioned above were implemented using
the Python-based PyTorch deep learning framework. Model
training and validation were conducted on a Linux server
equipped with an Intel(R) Xeon(R) Platinum 8352V @
3.50GHz processor and an NVIDIA RTX 4090 (24GB) GPU.
As mentioned earlier, the input image size was set to default.
All datasets were divided into training, validation, and testing
sets in a 6:2:2 ratio. The experimental results presented
in this chapter represent the average of five independent
experiments. The best results are displayed in bold, while
the second-best results are underscored. If multiple models
achieve the same best or second-best results, they are marked
in order of model sequence, with only the first being labelled.

V. RESULT AND ANALYSIS

A. Performance Validation and Analysis of MTRNet as a
ReID Module in MOT Tasks

The experimental section first verifies the performance of
MTRNet as a ReID module in Multiple Object Tracking
(MOT) tasks. Using the original DeepSORT as the backbone
network, the effectiveness of different ReID modules was
evaluated through comparative experiments, with the results
detailed in Table I. The results indicate MTRNet achieved
the best or second-best scores across almost all evaluation
metrics in various datasets. Among all the baseline models,
ResNet-101 performed the best and is referred to as the
optimal baseline model for subsequent comparisons.

Specifically, in the MOT-16 dataset, MTRNet achieved
the best results in six metrics: mAP, MOTA, IDF1, IDSW,
FP, and FN, improving by 2.71%, 5.37%, 5.47%, 16.34%,
4.97%, and 14.21%, respectively, compared to the optimal
baseline model. It achieved the second-best results in FPS

and FLOPs, trailing the best results by 12.62% and 15.79%,
respectively. In the ETH dataset, MTRNet also achieved the
best results in the same six metrics, with improvements of
2.72%, 5.37%, 5.38%, 16.33%, 4.67%, and 14.37%, respec-
tively. It achieved the second-best results in FPS and FLOPs,
trailing the best results by 14.47% and 16.30%, respectively.
In the KITTI Tracking dataset, MTRNet achieved the best
results in the same six metrics, with improvements of 8.12%,
7.17%, 8.10%, 12.50%, 5.98%, and 15.21%, respectively. It
achieved the second-best results in FPS and FLOPs, trailing
the best results by 14.69% and 9.20%, respectively. In the
UA-DETRAC dataset, MTRNet achieved the best results
in IDSW, FP, and FN, improving by 13.76%, 1.93%, and
11.94%, respectively. It achieved the second-best results in
mAP, MOTA, IDF1, FPS, and FLOPs, trailing the best results
by 3.65%, 3.43%, 3.39%, 9.83%, and 16.84%, respectively.
For a more intuitive presentation of the results, the optimal
baseline model ResNet-101 is set as the benchmark (100),
and performing MTRNet in various evaluation metrics across
different datasets is depicted proportionally, as shown in Fig.
4.

From the results in Table I and Fig. 4, it can be observed
that MTRNet significantly improved the accuracy of Deep-
SORT in multiobject tracking when used as a ReID module.
MTRNet achieved the best mAP scores in three out of four
datasets. In ReID tasks, mAP refers explicitly to the average
precision of the model in re-identifying targets, reflecting the
performance of the ReID model in matching query images
with images in the database. A higher mAP indicates that
MTRNet can stably extract features and accurately reflect
the distinctiveness of targets, effectively distinguishing dif-
ferent targets even in cases of similar appearances. MTRNet
showed consistent performance across different queries and
environmental conditions, reliably re-identifying targets.

Additionally, MTRNet achieved the best IDF1 scores in
three out of four datasets. A high IDF1 score indicates that
the MTRNet module can consistently maintain the identity

TABLE I
MTRNET AND OTHER REID BASELINE MODELS COMPARISON

Datasets ReID Networks
Metrics

mAP MOTA IDF1 IDSW FP FN FPS FLOPs

MOT-16

ResNet-101 36.86 74.50 75.62 202 8054 21644 23.20 9.60
Efficient-B4 35.68 73.80 74.87 202 7939 22680 18.70 19.50

VGGNet 29.56 65.50 62.43 240 8865 25648 32.50 15.30

MTRNet 37.86 78.50 79.76 169 7654 18569 28.40 11.40

ETH

ResNet-101 36.39 73.56 74.61 205 8143 21925 21.10 13.50
Efficient-B4 36.23 74.87 73.95 205 8026 23066 20.60 27.30

VGGNet 29.18 64.67 61.61 243 8963 25981 31.10 21.40

MTRNet 37.38 77.51 78.62 171 7738 18773 26.60 15.70

KITTI Tracking

ResNet-101 42.02 87.17 89.21 180 7563 20367 21.10 16.30
Efficient-B4 43.33 87.66 83.89 172 7020 20208 20.00 34.40

VGGNet 31.33 68.78 63.65 229 8502 24545 28.60 26.00

MTRNet 45.43 93.42 96.44 158 7111 17269 24.40 17.80

UA-DETRAC

ResNet-101 51.24 103.56 105.08 190 7587 20389 26.70 26.90
Efficient-B4 54.23 112.18 113.85 189 7547 21274 28.40 54.60

VGGNet 41.98 93.01 88.61 224 8262 23904 32.40 42.80

MTRNet 52.25 108.33 109.99 163 7401 17956 29.50 31.70
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Fig. 4. Proportional Evaluation of Hyper DeepSORT Based on the Optimal Baseline Model

of targets throughout the tracking process. This is crucial
for multiobject tracking tasks, as frequent identity switches
severely affect tracking continuity and accuracy. A high IDF1
score means the model reduces FP and FN and correctly
maintains target identities. This corresponds to a low IDSW,
indicating that MTRNet rarely makes identity switch errors
during tracking. Even when targets temporarily disappear or
are occluded, the module can accurately re-identify the target
without mistaking it for another. That MTRNet achieved the
best scores in FP, FN, and IDSW metrics in multiple datasets
in Table 1 corroborates this analysis. This improvement is
mainly attributed to the bidirectional attention computation
within the MTRNet SE layer and the utilisation of larger
convolution kernels.

Lower FP, FN, and IDSW naturally lead to higher MOTA
scores, indicating that MTRNet can accurately distinguish
and identify different targets, maintaining performance even
with changes in target appearance, partial occlusion, or
environmental variations. It can continuously track the same
target, avoiding frequent trajectory switches and erroneous
re-identifications, significantly improving the overall per-
formance and stability of the tracking system. Notably,
although the bidirectional attention computation in the SE
layer increases computational overhead, leading to a slight
decrease in FPS, it also brings higher tracking accuracy
and sustained target identity. This trade-off is acceptable
in practical applications, as continuous and accurate track-

ing is crucial for the effectiveness of multiobject tracking
systems. While surpassing the optimal baseline model in
accuracy, MTRNet’s FLOPs metric in different datasets were,
on average, only 14.78% higher, indicating that MTRNet
achieved performance improvements with a slight increase in
computational complexity, indirectly enhancing the model’s
generalisation capability.

B. Performance Validation and Analysis of Hyper Deep-
SORT in MOT Tasks

After validating the excellent performance of MTRNet as
a ReID network, comparative experiments were conducted
between the proposed HyperSORT and other baseline models
on the four previously mentioned datasets. Detailed infor-
mation can be found in Table II. The data in the table
shows that HyperSORT almost achieved the most optimal
and second-best scores across all evaluation metrics in all
datasets, positioning it as the optimal model. CenterTrack
performed the best and is considered the optimal baseline
model among the baseline models.

Specifically, in the MOT-16 dataset, HyperSORT achieved
the best results in six metrics: mAP, MOTA, IDF1, IDSW,
FP, and FN, improving by 12.75%, 21.62%, 7.20%, 29.03%,
8.37%, and 12.25%, respectively, compared to the optimal
baseline model. It was 9.29% lower in FPS and 6.93%
higher in FLOPs. In the ETH dataset, HyperSORT also
achieved the best results in the same six metrics, improving
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TABLE II
HYPER DEEPSORT AND OTHER MOT BASELINE MODELS COMPARISON

Datasets BackBone ReID
Metrics

mAP MOTA IDF1 IDSW FP FN FPS FLOPs

MOT-16

DeepSORT ResNet-101 26.58 69.89 50.14 205 8214 22688 24.00 24.80

DeepSORT MRTNet 30.59 74.52 52.45 171 8054 21644 22.30 26.40

OC-SORT \ 28.98 70.58 55.79 266 8655 24688 24.80 23.70
BoT-SORT \ 27.89 69.54 60.51 279 8898 25498 25.70 24.10

CenterTrack \ 33.58 64.56 74.54 217 8359 21264 26.90 32.40

Hyper DeepSORT MRTNet 37.86 78.52 79.91 154 7659 18659 24.40 30.30

ETH

DeepSORT ResNet-101 25.86 68.00 48.74 207 8288 23006 23.30 35.80

DeepSORT MRTNet 29.86 72.36 50.98 174 8175 21969 21.70 37.00

OC-SORT \ 28.26 68.82 54.40 270 8785 25058 24.20 30.40
BoT-SORT \ 27.19 67.80 59.00 283 9031 25880 25.10 30.60

CenterTrack \ 34.01 63.46 78.03 221 8509 21604 26.20 47.90

Hyper DeepSORT MRTNet 37.06 76.79 79.07 156 7766 18902 24.90 42.20

KITTI Tracking

DeepSORT ResNet-101 29.53 77.66 55.66 202 8097 22477 22.70 59.40

DeepSORT MRTNet 33.95 83.36 58.12 168 7938 21354 21.00 71.90

OC-SORT \ 32.24 78.79 61.90 264 8574 24432 23.67 60.70
BoT-SORT \ 31.05 77.43 67.37 277 8824 25285 24.20 63.70

CenterTrack \ 38.74 72.28 89.34 216 8356 21237 25.60 82.70

Hyper DeepSORT MRTNet 42.51 88.00 90.62 152 7549 18505 24.30 74.00

UA-DETRAC

DeepSORT ResNet-101 27.40 72.13 51.44 199 7984 22121 24.60 69.90

DeepSORT MRTNet 31.45 76.61 53.92 186 7837 21060 22.90 81.80

OC-SORT \ 29.65 72.63 57.52 259 8387 23972 25.50 67.30
BoT-SORT \ 28.67 71.49 62.20 271 8658 24810 27.60 68.50

CenterTrack \ 36.81 81.98 81.05 211 8150 20754 26.20 78.40

Hyper DeepSORT MRTNet 37.27 80.56 82.39 172 7422 18137 25.10 72.90

by 8.98%, 21.00%, 1.34%, 29.17%, 8.73%, and 12.51%,
respectively, compared to the optimal baseline model. It
was 4.96% lower in FPS and 13.50% higher in FLOPs.
In the KITTI Tracking dataset, HyperSORT achieved the
best results in the same six metrics, improving by 9.74%,
21.75%, 1.43%, 29.46%, 9.66%, and 12.87%, respectively,
compared to the optimal baseline model. It achieved the
second-best result in FPS, 5.34% lower than the optimal
baseline model, and was 11.76% higher in FLOPs. In the
UA-DETRAC dataset, HyperSORT achieved the best results
in mAP, IDF1, IDSW, FP, and FN, improving by 12.50%,
1.64%, 18.62%, 8.93%, and 12.61%, respectively, compared
to the optimal baseline model. It achieved the second-best
result in MOTA, 1.73% lower than the optimal score, was
4.20% lower in FPS, and 7.02% higher in FLOPs. Like the
ReID comparison, the optimal baseline model CenterTrack
was set as the benchmark (100). HyperSORT’s performance
in various evaluation metrics across different datasets was
depicted proportionally, as shown in Fig. 5.

From the results in Table II and Fig. 5, HyperSORT
achieved the best or second-best scores in multiple evaluation
metrics across the four datasets, demonstrating its effective-
ness in addressing challenges in MOT tasks. HyperSORT
achieved the best mAP scores in all four datasets. mAP is
a crucial metric for evaluating object detection performance.
A higher mAP indicates that the model performs excellently
in object detection, accurately detecting multiple targets in
images or videos and providing relatively precise bounding
boxes. mAP considers the confidence scores of each de-

tection box, meaning HyperSORT can confidently identify
targets after detection, reducing FP and FN, as reflected in
Table II, where HyperSORT had the lowest FP and FN scores
in all four datasets.

Accurate object detection is foundational for subsequent
tracking effectiveness in multi-object tracking tasks. Hyper-
SORT achieved the best IDF1 scores in all four datasets,
indicating it maintains target identity consistency throughout
the tracking process, reducing IDSW. This is due to the
proposed corrected IoU confidence calculation strategy and
the improved Hyper Kalman Filter. The former allows Hy-
perSORT to adjust according to target dynamics, significantly
reducing erroneous switches, while the latter reduces noise
during the tracking process, enhancing tracking performance.
In contrast, DeepSORT uses original confidence measure-
ments and a Kalman filter, resulting in higher FP scores
than HyperSORT, indicating many misidentified targets in
its tracking results. The comparison of IDSW scores also
reflects this phenomenon, with HyperSORT achieving the
best IDSW scores in all four datasets.

IDF1 primarily evaluates the comprehensive ability of
target detection and identity matching. A higher IDF1 value
means that HyperSORT can detect and accurately associate
targets across different frames, ensuring the completeness
of the tracking chain. This is crucial for practical MOT
tasks, especially in complex and dynamic environments. A
model that maintains a high IDF1 value is more reliable and
practical. The combined effects of lower FP, FN, and IDSW
naturally enhance the MOTA metric. HyperSORT achieved
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Fig. 5. Proportional Evaluation of Hyper DeepSORT Based on the Optimal Baseline Model

three best and one second-best MOTA scores across the four
datasets, indicating its outstanding performance in tracking
tasks.

Although HyperSORT lags CenterTrack in FPS, this is be-
cause CenterTrack significantly reduces computational com-
plexity by using centre positioning, achieving the best FPS
scores. However, this method increases IDSW values, leading
to reduced tracking performance. The slight decrease in
FPS with HyperSORT increases computational overhead and
enhances its ability to track continuous and accurate targets.
This balance is crucial in practical applications as it ensures
the overall performance and stability of the multi-object
tracking system. HyperSORT’s FLOPs scores were better
than CenterTrack’s in all datasets because CenterTrack’s
CenterNet framework generates centre points and bounding
box regressions requiring extensive convolutional computa-
tions. HyperSORT introduces an attention mechanism and
optimizes the Kalman Filter, achieving lower FLOPs scores
while surpassing CenterTrack in accuracy. This makes it
more resource- and energy-efficient, essential for deploy-
ment on resource-constrained devices such as mobile and
embedded systems. HyperSORT can reduce computational
resource usage and costs in large-scale deployment scenarios,
improving system scalability and service quality.

C. Ablation Experiments

To validate the various modules and their functionalities
proposed in this paper, a series of ablation experiments were
conducted on the MOT-16 dataset to assess the performance
of Hyper DeepSORT and its variants. Specifically, three
variants based on Hyper DeepSORT were designed:

1) HS-HKF: This variant replaces the Hyper Kalman Filter
in Hyper DeepSORT with the original Kalman Filter, aiming
to evaluate the performance of the Hyper Kalman Filter.

2) HS-HNMS: This variant replaces the Hyper Non-
Maximum Suppression in Hyper DeepSORT with traditional
Non-Maximum Suppression, aiming to assess the perfor-
mance of Hyper Non-Maximum Suppression.

3) HS-MTRNet: This variant replaces the MultiTrack
ReID Net in Hyper DeepSORT with the currently main-
stream ReID module, ResNet-101, to validate the perfor-
mance of MultiTrack ReID Net.

Besides these three variants, the experiments also included
the original DeepSORT network and the proposed Hyper
DeepSORT as controls. The specific experimental settings
were consistent with the previous comparative experiments.
The best results are highlighted in bold, while the second-
best results are underlined. The detailed experimental results
are presented in Table III. As in the previous two exper-
imental sections, this paper sets Hyper DeepSORT as the
baseline (100) and plots the proportional evaluation metrics
of the three variants of Hyper DeepSORT and the original
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Fig. 6. Proportional Evaluation of Ablation Experiment Based on Hyper DeepSORT

DeepSORT across various datasets. The specific results are
shown in Fig. 6.

From the data in Table III, it can be observed that, except
for the FPS metric, Hyper DeepSORT achieved the best
results across all metrics. HS-MTRNet exhibited the worst
performance among the Hyper DeepSORT variants. The
performance of HS-HKF showed that the FP metric was
the highest among all Hyper DeepSORT variants, exceeding
Hyper DeepSORT by 15.17%. Noise often leads to incorrect
identity switches, resulting in a high IDSW metric, the
second-highest among the Hyper DeepSORT variants, 9.55%
higher than Hyper DeepSORT. This is because the traditional
Kalman filter algorithm uses a constant noise scale matrix
that does not adapt to changes in detection confidence.
In contrast, the proposed Hyper Kalman Filter measures
noise covariance to represent the noise scale in the current
frame, effectively filtering out background noise. During
the experiments, HS-HKF was more prone to losing targets
and misidentifications under varying lighting conditions or
complex backgrounds.

The performance of HS-HNMS showed that the FPS
metric was the lowest among the Hyper DeepSORT variants,
with an 8.11% difference compared to Hyper DeepSORT,

TABLE III
ABLATION EXPERIMENTS OF HYPER DEEPSORT

Method
Metrics

mAP MOTA IDF1 IDSW FP FN FPS

DeepSORT 30.59 74.52 75.25 204 8054 21644 22.40

HS-MTRNet 32.06 76.55 77.55 192 7739 21339 24.40

HS-HKF 34.01 77.57 78.23 172 7859 21420 21.90

HS-HNMS 36.86 78.52 78.91 168 7844 20492 21.40
Hyper

DeepSORT 37.90 78.54 79.50 157 7633 18599 24.70

and the FP and FN metrics were the second-highest among
the variants. The traditional Non-Maximum Suppression
algorithm iteratively selects the highest-scoring bounding
box. It calculates the intersection over union (IoU) with all
other bounding boxes, deleting those with an IoU above a
certain threshold, which requires substantial computational
resources, reflected in its lower FPS metric. In contrast,
Hyper NMS reduces the confidence scores of boxes below
the threshold, decreasing the number of bounding boxes that
need to be deleted entirely and recalculated. This approach
improves processing speed and mitigates the increase in FP
and FN caused by the aggressive deletion of all boxes below
a fixed threshold.

The performance of HS-MTRNet was the poorest, primar-
ily because ResNet-101, used as the ReID module, performed
worse than the proposed MTRNet, as showed in earlier
experiments. The attention calculation mechanism in both
x and y directions in MultiTrack ReID Net enhances the
model’s tracking ability, resulting in significantly higher
IDSW values for HS-MTRNet, the highest among all Hyper
DeepSORT variants, 22.29% higher than Hyper DeepSORT.
MTRNet achieves consistent target ReID across different
times, locations, and even cameras, significantly improving
the accuracy and robustness of Hyper DeepSORT.

Hyper DeepSORT and all its variants outperformed the
traditional DeepSORT network, validating not only Hyper
DeepSORT’s superior performance but also the effective-
ness of the three mechanisms. The Hyper Kalman Filter,
MultiTrack ReID Net, and Hyper NMS can each serve as
independent modules to enhance the performance of other
MOT models.

VI. CONCLUSION

This paper initiates an exploration into the common
challenges in MOT tasks and subsequently proposes a novel
MOT model named Hyper DeepSORT, building upon the
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foundation of DeepSORT. The model introduces the Hyper
Kalman Filter, replacing the original Kalman Filter and
effectively enhancing the model’s capability to eliminate
noise. Incorporating Hyper NMS reduces the model’s
false negative rate, decreases computational overhead,
and consequently boosts the processing speed reflected
in the FPS metric. MTRNet improves upon traditional
ReID models, notably reducing the false positive rate.
Experimental results show the model excels compared to
other MOT models on the MOT-16 dataset, positioning itself
as a cutting-edge model in the MOT domain. Furthermore,
the various submodules of the Hyper DeepSORT model
can seamlessly integrate into other models, providing new
avenues for breakthroughs in related research. This paper
enhances the robustness and performance of target tracking
systems and establishes a foundation for future research and
applications.
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