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Abstract—A bipartite graph in which the neighborhood of
the vertices in each partite set forms a chain with respect to
set inclusion is known as a chain graph. Recently, extending
the concept of nesting from a bipartite graph to a k partite
graph, a k-nested graph is defined. A chain graph without any
pairs of duplicate vertices is a half graph. Similarly, a ’k-half
graph’ is a class of k-nested graph with no pairs of duplicate
vertices. The second Zagreb matrix or Z(2)-matrix denoted
by Z(2)(G) = (zij)n×n of a graph G, whose vertex vi has
degree di is defined by zij = didj if the vertices vi and vj are
adjacent and zij = 0 otherwise. Suppose ζ

(2)
1 , ζ

(2)
2 , . . . , ζ

(2)
n are

the eigenvalues of Z2(G), then the sum of the absolute values of
the eigenvalues of Z(2)(G) is called the second Zagreb energy
of G. We obtain the determinant, eigenvalues and inverse of a
k-half graph with respect to Z(2)(G). Bounds for the second
Zagreb energy and the spectral radius are discussed in this
article, along with the main and non-main eigenvalues of a
k-half graph with respect to Z(2)(G).

Index Terms—Chain graphs, k-partite graphs, half graphs,
main eigenvalues, second Zagreb matrix

I. INTRODUCTION

WE considered simple, finite, undirected and connected
graphs with vertex set V = V (G) and edge set E =

E(G). A k-partite graph is a graph whose vertex set can
be partitioned into k independent sets and all the edges of
the graph are between the partite sets. We denote a k-partite
graph with the k-partition of V = V1 ∪ V2 ∪ . . . ∪ Vk by
G(

⋃k
i=1 Vi, E). If G contains every edge joining the vertices

of Vi and Vj , i ̸= j, then it is a complete k-partite graph.
A complete k-partite graph with |Vi| = pi, 1 ⩽ i ⩽ k is
denoted by Kp1,p2,...,pk

. The open neighborhood of a vertex
u in G is denoted by N(u) and is given by N(u) = {v ∈
V (G)| uv ∈ E(G)} and the closed neighborhood of u in G
is denoted by N [u] and is defined as N [u] = N(u) ∪ {u}.
Two vertices u and v in a graph G are duplicate vertices if
N(u) = N(v). A vertex v ∈ Vi (1 ⩽ i ⩽ k) in a k-partite
graph G(

⋃k
i=1 Vi, E) is said to be a dominating vertex if

N(v) =
⋃k

j=1 Vj , j ̸= i. In other words, v is of full degree
with respect to other partite set.

Readers are referred to [5], [19] for all the elementary
notations and definitions not described but used in this paper.
A collection S = {S1, S2, · · · , Sn} of sets is said to form a
chain with respect to set inclusion, if for every Si, Sj ∈ S
either Si ⊆ Sj or Sj ⊆ Si.

Definition 1.1: A bipartite chain graph (or simply a chain
graph) is a bipartite graph in which the neighborhood of the
vertices in each partite set forms a chain with respect to set
inclusion.
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Definition 1.2: A graph is a threshold graph if it can be
constructed from an empty graph by repeatedly adding either
an isolated vertex or a dominating vertex.

Motivated by the nesting property of the extremal graphs
(chain and threshold graphs), recently a partial chain graph
[13] and a partial threshold graph [14] is defined. Spectral
properties of partial chain graphs and partial threshold graphs
are discussed in the article [14]. Extending the concept of
nesting from a bipartite graph to a k partite graph, the authors
of the article [15] defined a k-nested graph as follows.

Definition 1.3: [15] A k-nested graph (KNG) is a k-
partite graph in which the neighborhood of the vertices in
each partite set forms a chain with respect to set inclusion
and each partite set has at least one dominating vertex, i.e.,
a vertex adjacent to all the vertices of the other partite sets.

In other words, for every two vertices u and v in the same
partite set and for their neighborhoods, N(u) and N(v),
either N(u) ⊆ N(v) or N(v) ⊆ N(u). Due to the existence
of at least one dominating vertex in each partite set, a k-
nested graph is always connected.
A chain graph is a 2-nested graph which is also known as
a double nested graph (DNG in short). Given a chain graph
G(V1 ∪ V2, E), each of Vi (i = 1, 2) can be partitioned into
h non-empty cells V11, V12, . . . , V1h and V21, V22, . . . , V2h

such that N(u) = V21 ∪ ... ∪ V2 h−i+1, for any u ∈ V1i,
1 ≤ i ≤ h. If mi = |V1i| and ni = |V2i|, then we write
G = DNG(m1,m2, ...,mh;n1, n2, ..., nh).

In a KNG, each partite set Vi, 1 ⩽ i ⩽ k can be
further partitioned into hi non-empty sets Vi1, Vi2, . . . , Vihi

such that for any two vertices say u, v in Vij , 1 ⩽ j ⩽ hi,
N(u) = N(v). Suppose |Vij | = mij , then we write G =
KNG(m11,m12, . . . ,m1h1 ;m21,m22, . . . ,m2h2 ; . . . ;mk1,
mk2, . . . ,mkhk

). The authors [15] noted that the graph G =
KNG(m11,m12, ...,m1h1

;m21,m22, ...,m2h2
; . . . ;mk1,

. . . ,mkhk
) does not represent a single graph, but

a family of graphs Gf with the nesting property.
Note that KNG(1; 1; . . . ; 1) on n vertices is Kn and
KNG(p1; p2; . . . ; pk) is Kp1,p2,...,pk

.
A half graph is a chain graph without any duplicate

vertices. Analogous to the half graph, the authors of the
article [15] defined and redefined [4] a k-half graph as
follows.

Definition 1.4: A k-half graph on kn vertices with k ≥

2 is a k-nested graph G(
k⋃

i=1

Vi, E) with |Vi| = n and the

vertices in each partite set Vi are further partitioned into n
non-empty cells, i.e., Vi = Vi1 ∪ Vi2 ∪ · · · ∪ Vin in such a
way that, for any vertex u ∈ Vir, N(u) = Vj1 ∪ Vj2 ∪ · · · ∪
Vj n−r+1, 1 ≤ j ̸= i ≤ k and ∀ i and r.

In a half graph (2-half graph) on 2n vertices, the degrees
of n vertices in any partite set are n, n− 1, . . . , 1. Similarly,
in a k- half graph on kn vertices the degrees of n vertices
in any partite set are (k − 1)n, (k − 1)(n− 1), . . . , (k − 1).
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A k-half graph on kn vertices has
(
k
2

)(n(n+ 1)

2

)
edges.

Figure 1 represents a 3-half graph with 12 vertices and 30
edges.

Fig. 1. 3-Half Graph

Here |Vi| = 4, 1 ≤ i ≤ 3 and vi1, 1 ≤ i ≤ 3 is the
dominating vertex of the set Vi. Observe that
N(v11) = {v21, v22, v23, v24, v31, v32, v33, v34}, N(v12) =
{v21, v22, v23, v31, v32, v33}, N(v13) = {v21, v22, v31, v32}
and N(v14) = {v21, v31}.
Hence, N(v14) ⊆ N(v13) ⊆ N(v12) ⊆ N(v11).

The topological indices are numerical graph invariants
that characterizes the molecular topology of chemical com-
pounds. Some of the most comprehensively studied degree-
based topological indices are the Zagreb indices.

The first and second Zagreb index denoted by M1(G) =
M1 and M2(G) = M2 of a graph G are defined as

M1 =
∑

vi∈V (G)

d2i =
∑

vivj∈E(G)

di + dj ,

M2 =
∑

vivj∈E(G)

didj .

The degree based topological indices have been consid-
ered for graphs with self-loops [16] and for hypergraphs
[17]. Since the last few years, researchers have focused on
exploring the spectral properties of topological indices by
appropriate modification of the adjacency matrix A(G). With
TI we denote a topological index that can be represented as
TI = TI(G) =

∑
vi∼vj

F (di, dj), where F is an appropri-
ately chosen function with the property F (x, y) = F (y, x).
A general extended adjacency matrix A = (aij) of G is
defined as aij = F (di, dj) if the vertices vi and vj are
adjacent, and aij = 0 otherwise. The first extended adjacency
matrix corresponding to a degree based topological index
defined was the randi´c matrix [3], and the energy of the
corresponding matrix was defined in a similar way and
termed as the randi´c energy. The concept of an adjacency
matrix of simple graphs has been generalized to degree based
extended adjacency matrix in [7] and for graphs with self-
loops in [18].
If F (di, dj) = di + dj , i.e., TI = M1(G) (the first

Zagreb index), we get the first Zagreb matrix [10] and if
F (di, dj) = didj , i.e., TI = M2(G) (the second Zagreb
index), we get the second Zagreb matrix [10].

The first Zagreb matrix of a graph G is a square matrix
Z(1)(G) of order n, defined as

(Z(1))ij =

{
di + dj , if vivj ∈ E(G)

0, otherwise,

and the second Zagreb matrix of a graph G is a square matrix
Z(2)(G) of order n, defined as

(Z(2))ij =

{
di.dj , if vivj ∈ E(G)

0, otherwise.

If the eigenvalues of Z(1)(G) are ζ
(1)
1 , ζ

(1)
2 , . . . , ζ

(1)
n , then

their collection is called the first Zagreb spectrum or Z(1)-
spectrum of G. The first Zagreb energy of a graph G is
denoted by ZE1(G) and is defined as

ZE1(G) =
n∑

i=1

|ζ(1)i |.

Similarly, if the eigenvalues of Z(2)(G) are
ζ
(2)
1 , ζ

(2)
2 , . . . , ζ

(2)
n , then their collection is called the

second Zagreb spectrum or Z(2)-spectrum of G. The second
Zagreb energy of a graph G is denoted by ZE2(G) and is
defined as

ZE2(G) =

n∑
i=1

|ζ(2)i |.

The largest eigenvalue ζ
(2)
1 is the spectral radius of the

second Zagreb matrix if its eigenvalues are possible to be
expressed as ζ

(2)
1 ≥ ζ

(2)
2 ≥ . . . ≥ ζ

(2)
n .

A few bounds on Zagreb energy and the spectral radius
of the first Zagreb matrix of the graph G is obtained in [6].
The spectral properties of a k-half graph with respect to the
first Zagreb matrix are studied in [4].

In this article, we denote the second Zagreb matrix as
Z(G) instead of Z(2)(G) for convenience.

Let Z(G) and A(G) be the second Zagreb and adjacency
matrix of graph G respectively and D be the diagonal matrix
of order n with diagonal entries di, the degree of vertex vi
of graph G. Then the authors of article [11] proved that
Z(G) = DA(G)D.

In this article, we obtain a few spectral properties of a
k-half graph with respect to Z(G).

II. DETERMINANT, EIGENVALUES AND INVERSE

The determinant, eigenvalues and the inverse of a k-half
graph with respect to the second Zagreb matrix are discussed
in this section using the concept of Kronecker product.

Definition 2.1: The Kronecker product of a matrix A =
(aij)p×q and Br×s is defined as

A⊗B =

a11B . . . a1qB
...

...
...

ap1B . . . apqB

 .

Some of the basic properties of the Kronecker product which
are important in obtaining the determinant, eigenvalues and
inverse of a k-half graph with respect to Z(G) are listed
below.
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Theorem 2.1: [9] Let A be a square matrix of order m
and let B be a square matrix of order n. Then

det(A⊗B) = det(B ⊗A) = det(A)ndet(B)m.

Theorem 2.2: [9] Let A be a square matrix of order m
with spectrum σ(A) = (µi), 1 ≤ i ≤ m and B be a square
matrix of order n with σ(B) = (λj), 1 ≤ j ≤ n. Then
σ(A⊗B) = (µiλj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Furthermore, if xi and yj are the eigenvectors corresponding
to the eigenvalue µi and λj in A and B respectively then
xi ⊗ yj is an eigenvector corresponding to the eigenvalue
µiλj in A⊗B.

Theorem 2.3: [9] If A ia a square matrix of order m and
B is a square matrix of order n and both are non singular
then,

(A⊗B)−1 = A−1 ⊗B−1.

By using Theorem 2.1 and Lemma 2.4, one can obtain the
determinant of a k-half graph with respect to the second
Zagreb matrix.

Lemma 2.4: Let B be a matrix of order n given by
n2(k − 1)2 n(n− 1)(k − 1)2 . . . n(k − 1)2

n(n− 1)(k − 1)2 (n− 1)2(k − 1)2 . . . 0
... . . .

. . . 0
2n(k − 1)2 2(n− 1)(k − 1)2 0 0
n(k − 1)2 0 . . . 0

 .

Then,

det(B) =


(n!)2(k − 1)2n, if n is of the form 4r

or 4r + 1,where r ≥ 0

−(n!)2(k − 1)2n, otherwise.

Proof: Proof follows by noting that

B = (k − 1)2n(n!)2


1 1 . . . 1
1 1 . . . 0
... . . . . .

.
0

1 1 0 0
1 0 . . . 0

 .

Theorem 2.5: Let G be k-half graph on kn vertices.
Then, det(Z(G))

=


[(k − 1)n(2k+1)(n!)2k], if k and n both are even

or if k is odd then
n = 4r or 4r + 1, r ≥ 0

−[(k − 1)n(2k+1)(n!)2k], otherwise.

Proof: The second Zagreb matrix of G can be written
as block matrix as follows;

Z(G) =


0n Bn . . . Bn Bn

Bn 0n . . . Bn Bn

... . . .
. . . 0n

Bn Bn . . . 0n Bn

Bn Bn . . . Bn 0n

 ,

where Bn =
n2(k − 1)2 n(n− 1)(k − 1)2 . . . n(k − 1)2

n(n− 1)(k − 1)2 (n− 1)2(k − 1)2 . . . 0
... . . . . .

.
0

2n(k − 1)2 2(n− 1)(k − 1)2 0 0
n(k − 1)2 0 . . . 0


and 0n is a zero matrix of order n.
Note that Z(G) is Kronecker product of the adjacency matrix
of the complete graph of order k and the matrix Bn. The
proof directly follows from Theorem 2.2.

Corollary 2.6: Let G be half graph on 2n vertices. Then,

det(Z(G)) =

{
(n!)4, if n is even
−(n!)4, otherwise.

Theorem 2.7: Let B be a matrix of order n given by
n2(k − 1)2 n(n− 1)(k − 1)2 . . . n(k − 1)2

n(n− 1)(k − 1)2 (n− 1)2(k − 1)2 . . . 0
... . . .

. . . 0
2n(k − 1)2 2(n− 1)(k − 1)2 0 0
n(k − 1)2 0 . . . 0

 .

Let λi, 1 ≤ i ≤ n be the eigenvalues of B with the
corresponding eigenvectors Yi, 1 ≤ i ≤ n. Suppose G is a
k-half graph on kn vertices, then the Z-spectrum of G is
given by
Spec(Z(G)) =(
−λ1 −λ2 . . . −λn (k − 1)λ1 . . . (k − 1)λn

k − 1 k − 1 . . . k − 1 1 . . . 1

)
,

with the eigenvector Xi =


Yi

Yi

Yi

...
Yi

 corresponding to the Z-

eigenvalue (k − 1)λi, 1 ≤ i ≤ n, and

Xi =



Yi

−Yi

0
0
...
0


,



Yi

0
−Yi

0
...
0


, . . . ,



Yi

0
0
0
...

−Yi


corresponding to the Z-eigenvalue −λi whose multiplicity
is k − 1.

Proof: The proof follows from Theorem 2.2, by observ-
ing the eigenvalues and eigenvectors of the adjacency matrix
of the complete graph of order k.

Corollary 2.8: If G is a half graph on 2n vertices, then
±λi, 1 ≤ i ≤ n are the Z-eigenvalues of G, where λi, 1 ≤
i ≤ n are the eigenvalues of B as defined in Lemma 2.4.

Theorem 2.9: Let G be a k-half graph on kn vertices.
Then,

Z−1 = C ⊗D =

c11D . . . c1kD
...

...
...

ck1D . . . ckkD

 ,
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where C =


2−k
k−1

1
k−1 . . . 1

k−1
1

k−1
2−k
k−1 . . . 1

k−1
...

...
...

...
1

k−1 . . . . . . 2−k
k−1


k×k

and

D =



0 . . . 0 1
n(k−1)2

0 . . . 1
2(n−1)(k−1)2

−1
(n−1)(k−1)2

0 . . . −1
2(n−2)(k−1)2

0

... . . .
. . .

...
0 1

2(n−1)(k−1)2
. . . 0

1
n(k−1)2

−1
(n−1)(k−1)2

. . . 0


n×n

Proof: The Z-matrix of the k-half graph, is the Kro-
necker product of the adjacency matrix of the complete graph
of order k and the matrix B of order n. From Theorem 2.3,
the inverse of Z(G) is the Kronecker product of inverse of
A(Kk) which is given by the matrix C and inverse of the
matrix B which is given by the matrix D.
The following corollary follows from Theorem 2.3.

Corollary 2.10: Let G be a half graph on 2n vertices.
Then,

Z−1 =

[
0n Dn

Dn 0n

]
,

where D =



0 0 . . . 0 1
n

0 . . . 0 1
2(n−1)

−1
n−1

0 . . . 1
3(n−2)

−1
2(n−2) 0

... . . .
. . . . . .

...
0 1

2(n−1)
−1

2(n−2) . . . 0
1
n

−1
n−1 0 . . . 0


n×n

.

III. BOUNDS

A few bounds on the second Zagreb energy and the
spectral radius of a k-half graph are discussed in this section.

Let a = {a1, a2, . . . , an} be a set of positive real numbers.
We define Pk to be the average of products of k-element
subsets of a, i.e.,
P1 = 1

n (a1 + a2 + . . .+ an)
P2 = 1

1
2n(n−1)

(a1a2 + a1a3 + . . . + a1an + a2a3 + . . . +

an−1an)
...
Pn = a1a2 . . . an.

Hence the arithmetic mean is P1 whereas the geometric
mean is P

1
n
n . The following result is known as the Maclaurin

symmetric mean inequality:
Lemma 3.1: [2] For positive real numbers a1, a2, . . . , an,

P1 ≥ P
1
2
2 ≥ P

1
3
3 ≥ . . . ≥ P

1
n
n .

Equalities hold if and only if a1 = a2 = . . . = an.

We give a lower bound for ZE2(G) of a half graph G using
the below lemma.

Lemma 3.2: Let G be a k-half graph on kn vertices. Then,
Tr(Z(G)2) =
k(k − 1)5n(38n5 + 114n4 + 125n3 + 60n2 + 17n+ 6)

360
.

Proof: Z(G) can be viewed as,

Z(G) = (k − 1)2


0n En . . . En En

En 0n . . . En En

... . . .
. . . 0n

En En . . . 0n En

En En . . . En 0n

 ,

where

En =


n2 n(n− 1) . . . 2n n

n(n− 1) (n− 1)2 . . . 2(n− 1) 0
... . . . . . .

. . . 0
2n 2(n− 1) . . . 0 0
n 0 . . . 0 0


and 0n is a zero matrix of order n.

Tr(Z(G)2) =

k(k − 1)5(n2
n∑

j=1

j2 + (n− 1)2
n∑

j=2

j2 + . . .+ n2)

= k(k − 1)5
n−1∑
i=0

n∑
j=i+1

(n− i)2j2

=
k(k − 1)5n(38n5 + 114n4 + 125n3 + 60n2 + 17n+ 6)

360
.

Theorem 3.3: Let G be a half graph on 2n vertices. Then
ZE2(G) ≥
2
√

n(38n5+114n4+125n3+60n2+17n+6)
360 + n(n− 1)(n!)

4
n

with equality if and only if G ∼= K1,1.

Proof: Note that Z(G) =

[
0n En

En 0n

]
where

En =


n2 n(n− 1) . . . 2n n

n(n− 1) (n− 1)2 . . . 2(n− 1) 0
... . . . . . .

. . . 0
2n 2(n− 1) . . . 0 0
n 0 . . . 0 0


and 0n is the zero matrix of order n.
Let ζ1, ζ2, . . . , ζ2n be the second Zagreb eigenvalues of
Z(G). Since G is bipartite, ZE2(G) = 2

∑n
i=1 ζi, where

ζi are the positive eigenvalues of Z(G).
From Lemma 3.2 we have,∑2n

i=1 ζ
2
i = Tr(Z(G))2 =

n(38n5 + 114n4 + 125n3 + 60n2 + 17n+ 6)

180
.

Thus,
n∑

i=1

ζ2i =
n(38n5 + 114n4 + 125n3 + 60n2 + 17n+ 6)

360
.

We know that
2n∏
i=1

ζi = det(Z(G)) = (−1)n(n!)4.

Hence,
n∏

i=1

ζi = (n!)2.
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By Lemma 3.1, we obtain

1
n(n−1)

2

∑
1≤i<j≤n

ζiζj ≥ (
n∏

i=1

ζi)
2
n ,

i.e., 2
∑

1≤i≤j≤n ζiζj ≥ n(n− 1)(n!)
4
n

with equality holding if and only if ζ1 = ζ2 = . . . = ζn.
We have,

(
n∑

i=1

ζi)
2 =

n∑
i=1

ζ2i + 2
∑

1≤i≤j≤n

ζiζj .

Hence,

ZE2(G) = 2

√√√√ n∑
i=1

ζ2i + 2
∑

1≤i<j≤n

ζiζj

≥ 2

√
n(38n5 + 114n4 + 125n3 + 60n2 + 17n+ 6)

360
+ (n2 − n)(n!)

4
n

Equality holds if n = 1, i.e., G ∼= K1,1.

Theorem 3.4: Let G be a k-half graph on kn vertices.
Then ZE2(G) ≥ 2(k − 1)3√

38n6 + 114n5 + 125n4 + 60n3 + 17n2 + 6n

360
+ (n2 − n)(n!)

4
n

with equality if and only if G ∼= K1,1.
Proof: From Theorem 2.7,

ZE2(G) = (k − 1)
n∑

i=1

|λi|+
n∑

i=1

(k − 1)|λi|,

where λi are the eigenvalues of the matrix B. Hence,

ZE2(G) = 2(k − 1)
n∑

i=1

|λi|.

Note that
n∏

i=1

|λi| = (k − 1)2n(n!)2.

n∑
i=1

|λi|2 = n(k−1)4
(
38n5 + 114n4 + 125n3 + 60n2 + 17n+ 6

360

)
.

(III.1)
From the arithmetic–geometric mean inequality, we have

2
∑

1≤i<j≤n

|λi||λj | ≥ n(n− 1)(

n∏
i=1

|λi|)
2
n

Hence,

2
∑

1≤i<j≤n

|λi||λj | ≥ n(n− 1)(k − 1)4(n!)
4
n . (III.2)

Now,

ZE2(G) = 2(k − 1)

n∑
i=1

|λi|

= 2(k − 1)

√√√√( n∑
i=1

|λi|

)2

= 2(k − 1)

√√√√ n∑
i=1

|λi|2 + 2
∑

1≤i<j≤n

|λi||λj |

Substituting Equation III.1, III.2 in the above expression and
simplifying we get
ZE2(G) ≥ 2(k − 1)3

√
n(38n5 + 114n4 + 125n3 + 60n2 + 17n+ 6)

360
+ n(n− 1)(n!)

4
n .

Theorem 3.5: Let G be a k-half graph on 2k vertices.
Then, ZE2(G) = 8

√
2(k − 1)3.

Proof: From Theorem 2.7, we have,

Spec(G) =

(
−λ1 −λ2 (k − 1)λ1 (k − 1)λ2

k − 1 k − 1 1 1

)
,

where λ1 = (k − 1)2(2 +
√
2), λ2 = (k − 1)2(2 −

√
2) are

the Z-eigenvalues of

B =

(
4(k − 1)2 2(k − 1)2

2(k − 1)2 0

)
.

Hence, ZE2(G) = 8
√
2(k − 1)3.

Theorem 3.6: Let G be a k-half graph on 3k vertices.
Then, the Z-eigenvalues of G are (k−1)3λi with multiplicity
1 and −(k − 1)2λi with multiplicity k − 1, where λi, 1 ≤
i ≤ 3 are the roots of the equation x3−13x2−9x+36 = 0.

Proof: From Theorem 2.7, we have, Spec(G) =

(
−λ1 −λ2 −λ3 (k − 1)λ1 (k − 1)λ2 (k − 1)λ3

k − 1 k − 1 k − 1 1 1 1

)
,

where λ′
is are the eigenvalues of

B =

9(k − 1)2 6(k − 1)2 3(k − 1)2

6(k − 1)2 4(k − 1)2 0
3(k − 1)2 0 0

 .

Solving we get

B = (k − 1)2

9 6 3
6 4 0
3 0 0


Hence, the result follows.

Using Theorems 3.7, 3.8 and 3.9 from article [12], we
obtain few bounds on the spectral radius of a k-half graph.

Theorem 3.7: [12] For a graph G with maximum and
minimum degrees ∆ and δ, respectively, and the spectral
radius ζ

(2)
1 , we have

δ3 ≤ ζ
(2)
1 ≤ ∆3

where both equalities occur if and only if G is regular.

Theorem 3.8: [12] Let G be a graph with n vertices, m
edges, the maximum degree ∆ and the minimum degree δ.
Then the spectral radius ζ

(2)
1 satisfies,

2mδ2

n
≤ ζ

(2)
1 ≤ ∆2

√
2m− n+ 1,

where left hand equality occurs if and only if G is regular,
and right hand equality appears if and only G ∼= Sn or G ∼=
Kn.

Theorem 3.9: [12] For a graph G of n vertices with
maximum degree ∆ and second Zagreb index M2,

ζ
(2)
1 ≤

√
2(n− 1)∆2M2

n
.

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1721-1727

 
______________________________________________________________________________________ 



Theorem 3.10: Let G be a k-half graph on kn vertices.
Then,

(k − 1)3 ≤ ζ
(2)
1 ≤ n3(k − 1)3.

Theorem 3.11: Let G be a k-half graph on kn vertices.
Then,
(k − 1)3(n+ 1)

3
≤ ζ

(2)
1 ≤

n2(k − 1)2
√

kn(k − 1)(n+ 1)

2
− kn+ 1.

Next, we give expressions for first and second Zagreb index
of a k-half graph.

Theorem 3.12: Let G be a k-half graph on kn vertices.
Then, the first Zagreb index M1 is given by,

M1 =
k(k − 1)2n(n+ 1)(2n+ 1)

6
.

Proof: Proof follows by noting that the first Zagreb
index is given by

M1 =
∑

vi∈V (G)

d2i = k(k − 1)2{12 + 22 + . . .+ n2}.

Theorem 3.13: Let G be a k-half graph on kn vertices.
Then, the second Zagreb index M2 is given by,

M2 =
k(k − 1)3

48
n(n+ 1)(5n2 + 5n+ 2).

Proof: We know M2 =
∑

vivj∈E(G) didj .

M2 =

(
k

2

)
(k − 1)2(n

n∑
j=1

j + (n− 1)
n∑

j=2

j + . . .+ n)

=

(
k

2

)
(k − 1)2)

n−1∑
i=0

n∑
j=i+1

(n− i)j

=

(
k

2

)
(k − 1)2)

1

24
n(n+ 1)(5n2 + 5n+ 2).

Using Theorems 3.9 and 3.13, we can get the better upper
bound on the spectral radius of a k-half graph.

Theorem 3.14: Let G be a k-half graph on kn vertices.
Then,

ζ
(2)
1 ≤ (k − 1)2n

2

√
(kn− 1)(k − 1)(n+ 1)(5n2 + 5n+ 2)

6
.

IV. MAIN / NON-MAIN EIGENVALUES

An eigenvalue µ ∈ Spec(A(G)) is main if the cor-
responding eigenspace E(µ;G) is not orthogonal to all-1
vector J ; otherwise, it is non-main. The graph with only one
main eigenvalue is necessarily regular. In threshold graph all
eigenvalues except 0 and −1 are main. But there exist some
chain graphs with all eigenvalues are main and also with
all eigenvalues are non-main except 0. In [1], the authors
characterize the chain graphs with 2 main eigenvalues. One
can refer to [8] for few interesting results on main and non
main eigenvalues.

Similarly, an eigenvalue µ ∈ Spec(Z(G)) is main if the
corresponding eigenspace E(µ;G) is not orthogonal to all-
1 vector J ; otherwise, it is non-main. In this section we
obtain main and non-main eigenvalues of a k-half graph with

respect to Z(G). First, we show that in a k-half graph on kn
vertices, there are at least kn− n non-main Z-eigenvalues.

Theorem 4.1: Let λ1, λ2, . . . , λn, be the eigenvalues of B.
The Z-eigenvalues −λi, 1 ≤ i ≤ n, repeats k − 1 times, of
a k-half graph are non-main Z-eigenvalues.

Proof: From Theorem 2.7, we know that the eigenvalue
−λi, 1 ≤ i ≤ n, with multiplicity k− 1 are the eigenvalues
of a k-half graph with the corresponding eigenvectors

Yi

−Yi

0
0
...
0


,



Yi

0
−Yi

0
...
0


, . . . ,



Yi

0
0
0
...

−Yi


.

All these vectors are orthogonal to J . Hence each −λi, 1 ≤
i ≤ n is a non-main Z-eigenvalue.

Theorem 4.2: Let G be a k-half graph and let
λ1, λ2, . . . , λn, be the eigenvalues of B. If any λi, 1 ≤ i ≤ n
is a non-main (main) Z-eigenvalue of B, then (k−1)λi, the
Z-eigenvalue of G is also non-main (main) Z-eigenvalue.

Proof: From Theorem 2.7, We know that (k− 1)λi is a
Z-eigenvalue of G with multiplicity 1 and the corresponding
eigenvector is given by

Xi =


Yi

Yi

Yi

...
Yi

 .

If λi is non-main (main), we have YiJ = 0, (YiJ ̸= 0). Thus,
XiJ = 0, (XiJ ̸= 0). Hence the eigenvalue (k−1)λi is also
non-main (main).
From Theorems 4.1 and 4.2, we know that for a k-half graph
on kn vertices, at least kn − n second Zagreb-eigenvalues
are non-main and at most n second Zagreb-eigenvalues are
main. So, when n = 2 i.e., a k-half graph on 2k vertices
contains at most 2 main Z-eigenvalues. In the next theorem
we show that when G is a k-half graph on 2k vertices it has
exactly 2 main Z-eigenvalues.

Theorem 4.3: Let G be a k-half graph with 2k vertices.
Then, (k − 1)3(2 ±

√
2) are the main Z-eigenvalues and

(k − 1)2(−2 ±
√
2) each with multiplicity k − 1 are the

non-main Z-eigenvalues of G.
Proof: From Theorem 2.7, we have

Spec(G) =

(
−λ1 −λ2 (k − 1)λ1 (k − 1)λ2

k − 1 k − 1 1 1

)
,

where λ1 = (k − 1)2(2 +
√
2), λ2 = (k − 1)2(2 −

√
2) are

the Z-eigenvalues of

B =

(
4(k − 1)2 2(k − 1)2

2(k − 1)2 0

)
.

From Theorem 4.1, −λ1 = (k − 1)2(−2−
√
2) and −λ2 =

(k−1)2(
√
2−2) with multiplicity k−1 are the non-main Z-

eigenvalues of G. It follows from Theorem 4.2, that (k−1)λ1

and (k− 1)λ2 are the main Z- eigenvalues of G if and only
if λ1 = (k− 1)2(2+ 2

√
2) and λ2 = (k− 1)2(2− 2

√
2) are

the main Z-eigenvalues of B.
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It is easy to show that the eigenvectors corresponding to the
Z-eigenvalues λ1, λ2 of B are given by

X1 =

(
l
2l√
2+2

)
, X2 =

(
l
3l

2−
√
2

)
where l ̸= 0. As XT

1 J ̸= 0 and XT
2 J ̸= 0, the eigenvalues

(k − 1)2(2 +
√
2), (k − 1)2(2 −

√
2) are the main Z2-

eigenvalues of the matrix B.
Hence, the main Z-eigenvalues of G are (k − 1)3(2±

√
2).

V. CONCLUSION

The determinant, eigenvalues and inverse of a k-half graph
G with respect to the second Zagreb matrix is obtained along
with a few bounds on the second Zagreb energy and the
spectral radius. The main and non-main eigenvalues of a k-
half graph with respect to Z(G) are also discussed. One
can try to obtain spectral properties of a k-half graph with
respect to its extended adjacency matrices corresponding to
other degree based topological indices.
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