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On the Second Zagreb Matrix of k-half Graphs

K ARATHI BHAT*

Abstract—A bipartite graph in which the neighborhood of
the vertices in each partite set forms a chain with respect to
set inclusion is known as a chain graph. Recently, extending
the concept of nesting from a bipartite graph to a k partite
graph, a k-nested graph is defined. A chain graph without any
pairs of duplicate vertices is a half graph. Similarly, a ’k-half
graph’ is a class of k-nested graph with no [))airs of duplicate
vertices. The second Zagreb matrix or 7 ) _matrix denoted
by Z®(G) = (2ij)nxn of a graph G, whose vertex v; has
degree d; is defined by z;; = d;d; if the vertices v; and v; are
adjacent and z;; = 0 otherwise. Suppose Cf2), 52), RN Q(f are
the eigenvalues of Z> (G), then the sum of the absolute values of
the eigenvalues of Z (2)(G) is called the second Zagreb energy
of G. We obtain the determinant, eigenvalues and inverse of a
k-half graph with respect to Z(®(G). Bounds for the second
Zagreb energy and the spectral radius are discussed in this
article, along with the main and non-main eigenvalues of a
k-half graph with respect to Z(Q).

Index Terms—Chain graphs, k-partite graphs, half graphs,
main eigenvalues, second Zagreb matrix

I. INTRODUCTION

E considered simple, finite, undirected and connected
W graphs with vertex set V' = V() and edge set E =
E(G). A k-partite graph is a graph whose vertex set can
be partitioned into k independent sets and all the edges of
the graph are between the partite sets. We denote a k-partite
graph with the k-partition of V' = V; UV, U ... UV} by
G (Ui;l Vi, E). If G contains every edge joining the vertices
of V; and Vj,i # j, then it is a complete k-partite graph.
A complete k-partite graph with |V;| = p;,1 < @ < k is
denoted by K, p,....p,- The open neighborhood of a vertex
w in G is denoted by N(u) and is given by N(u) = {v €
V(G)| uv € E(G)} and the closed neighborhood of « in G
is denoted by Nu] and is defined as N[u] = N(u) U {u}.
Two vertices v and v in a graph G are duplicate vertices if
N(u) = N(v). A vertex v € V; (1 < i < k) in a k-partite
graph G(|J;_, Vi, E) is said to be a dominating vertex if
N(v) = Ule Vj, j # i. In other words, v is of full degree
with respect to other partite set.

Readers are referred to [5], [19] for all the elementary
notations and definitions not described but used in this paper.
A collection S = {S1,Ss,--+,S,} of sets is said to form a
chain with respect to set inclusion, if for every S;,S; € S
either S; C S or §; C 5.

Definition 1.1: A bipartite chain graph (or simply a chain
graph) is a bipartite graph in which the neighborhood of the
vertices in each partite set forms a chain with respect to set
inclusion.
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Definition 1.2: A graph is a threshold graph if it can be
constructed from an empty graph by repeatedly adding either
an isolated vertex or a dominating vertex.

Motivated by the nesting property of the extremal graphs
(chain and threshold graphs), recently a partial chain graph
[13] and a partial threshold graph [14] is defined. Spectral
properties of partial chain graphs and partial threshold graphs
are discussed in the article [[I4]. Extending the concept of
nesting from a bipartite graph to a k partite graph, the authors
of the article [[15]] defined a k-nested graph as follows.

Definition 1.3: [[15] A k-nested graph (KNG) is a k-
partite graph in which the neighborhood of the vertices in
each partite set forms a chain with respect to set inclusion
and each partite set has at least one dominating vertex, i.e.,
a vertex adjacent to all the vertices of the other partite sets.

In other words, for every two vertices u and v in the same

partite set and for their neighborhoods, N(u) and N(v),
either N(u) C N(v) or N(v) C N(u). Due to the existence
of at least one dominating vertex in each partite set, a k-
nested graph is always connected.
A chain graph is a 2-nested graph which is also known as
a double nested graph (DNG in short). Given a chain graph
G(V1 U Vs, E), each of V; (i = 1,2) can be partitioned into
h non-empty cells Vi1, Vig, ..., Vip and Voy, Voo, ..., Vop
such that N(u) = Va3 U ..U Vo 41, for any u € Vi,
1 <4< h If my = |Vi;| and n; = |Va], then we write
G = DNG(my, ma, ..., mp;ny,Na, ...y Np).

In a KNG, each partite set V;, 1 < ¢ < k can be
further partitioned into h; non-empty sets V;i, Via, ..., Vin,
such that for any two vertices say u,v in Vi;,1 < j < hy,
N(u) = N(v). Suppose |V;;| = m;;, then we write G =
KNG(m117m12, ey MR 3 M21,1M22, - oo s TR, - - -3 TET,
M2, .- -, Mk, )- The authors [[15] noted that the graph G =
KNG(mH, mMi2y ..oy M1k, 5121, 122, ooy TN2Rg ;5 - -
...,mgp,) does not represent a single graph, but
a family of graphs Gy with the nesting property.
Note that KNG(1;1;...;1) on n vertices is K, and
KNG(p1ip2;---ipk) 18 Kp, po..opy-

A half graph is a chain graph without any duplicate
vertices. Analogous to the half graph, the authors of the
article [15] defined and redefined [4] a k-half graph as
follows.

Definition 1.4: A k-half graph on kn vertices with & >
k
2 is a k-nested graph G(|J Vi, E) with |V;| = n and the

vertices in each partite seE_X}; are further partitioned into n
non-empty cells, i.e., V; = V;; UV, U--- UV, in such a
way that, for any vertex v € Vj,,, N(u) =V; UVjoU--- U
Vin-r+1,1<j#i<kandViandr.

In a half graph (2-half graph) on 2n vertices, the degrees
of n vertices in any partite set are n,n —1,...,1. Similarly,
in a k- half graph on kn vertices the degrees of n vertices
in any partite set are (k — 1)n, (k—1)(n—1),...,(k—1).

-3 ME1,

Volume 32, Issue 8, August 2024, Pages 1721-1727



Engineering Letters

e [n(n+1)
2) 2
Figure [I] represents a 3-half graph with 12 vertices and 30
edges.

A k-half graph on kn vertices has ( ) edges.

Fig. 1.

3-Half Graph

Here |V;| = 4,1 < i < 3 and v;,1 < i < 3 is the
dominating vertex of the set V;. Observe that
N(vi1) = {v21,v22,v23, V24,31, V32, V33, V34 }, N(v12) =
{va1, Va2, Va3, V31, V32, U33}, N(v13) = {v21,v22,031,V32}
and N(’U14) = {12217’031}.

Hence, N(’U14) - N(’Ulg) - N(Ulg) - N(Ull).

The topological indices are numerical graph invariants
that characterizes the molecular topology of chemical com-
pounds. Some of the most comprehensively studied degree-
based topological indices are the Zagreb indices.

The first and second Zagreb index denoted by M;(G) =
My and M3(G) = M, of a graph G are defined as

M- Y d- Y a4t
’UiGV(G) ’Ui’U]‘GE(G)
My= Y dd,

’Ui’UjEE(G)

The degree based topological indices have been consid-
ered for graphs with self-loops [16] and for hypergraphs
[17]. Since the last few years, researchers have focused on
exploring the spectral properties of topological indices by
appropriate modification of the adjacency matrix A(G). With
TI we denote a topological index that can be represented as
TI=TI(G) = vav; F(d;,d;), where F' is an appropri-
ately chosen function with the property F(x,y) = F(y, x).
A general extended adjacency matrix A = (a;;) of G is
defined as a;; = F(d;,d;) if the vertices v; and v; are
adjacent, and a;; = 0 otherwise. The first extended adjacency
matrix corresponding to a degree based topological index
defined was the randi’c matrix [3], and the energy of the
corresponding matrix was defined in a similar way and
termed as the randi’c energy. The concept of an adjacency
matrix of simple graphs has been generalized to degree based
extended adjacency matrix in [7] and for graphs with self-
loops in [[18].

If F(di,d;) = d; + dj, ie, TI = M(G) (the first

Zagreb index), we get the first Zagreb matrix [10] and if
F(d;,d;) = didj, ie., TI = My(G) (the second Zagreb
index), we get the second Zagreb matrix [10].

The first Zagreb matrix of a graph G is a square matrix
ZM(@) of order n, defined as

(Z(l))” _ d; + dj, if ’Uin. S E(G)
0, otherwise,

and the second Zagreb matrix of a graph G is a square matrix
Z2)(@) of order n, defined as

(Z(Q))Z _ di.dj7 if Viv; € E(G)
’ 0, otherwise.

If the eigenvalues of Z(M)(G) are Cfl), 2(1),..., ™ then
their collection is called the first Zagreb spectrum or Z(1)-
spectrum of G. The first Zagreb energy of a graph G is
denoted by ZFE1(G) and is defined as

ZE1(G) =Y I¢V.
=1

Similarly, if the eigenvalues of Z®)(G) are
Cl(z), C2(2), e 7(12), then their collection is called the
second Zagreb spectrum or Z(?)-spectrum of G. The second
Zagreb energy of a graph G is denoted by ZFE>(G) and is
defined as

ZE5(G) =Y 1¢?)].
=1

The largest eigenvalue sz) is the spectral radius of the
second Zagreb matrix if its eigenvalues are possible to be
expressed as §1(2) > (52) > ... 2> Q(Lz).

A few bounds on Zagreb energy and the spectral radius
of the first Zagreb matrix of the graph G is obtained in [6].
The spectral properties of a k-half graph with respect to the
first Zagreb matrix are studied in [4].

In this article, we denote the second Zagreb matrix as
Z(G) instead of Z()(G) for convenience.

Let Z(G) and A(G) be the second Zagreb and adjacency
matrix of graph G respectively and D be the diagonal matrix
of order n with diagonal entries d;, the degree of vertex v;
of graph G. Then the authors of article [[I1] proved that
Z(G) = DA(G)D.

In this article, we obtain a few spectral properties of a
k-half graph with respect to Z(G).

II. DETERMINANT, EIGENVALUES AND INVERSE

The determinant, eigenvalues and the inverse of a k-half
graph with respect to the second Zagreb matrix are discussed
in this section using the concept of Kronecker product.

Definition 2.1: The Kronecker product of a matrix A =
(@ij)pxq and By is defined as

auB aqu

A ® B = . .
ap1 B apqB

Some of the basic properties of the Kronecker product which

are important in obtaining the determinant, eigenvalues and

inverse of a k-half graph with respect to Z(G) are listed

below.
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Theorem 2.1: [9] Let A be a square matrix of order m
and let B be a square matrix of order n. Then

det(A® B) = det(B ® A) = det(A)"det(B)™.

Theorem 2.2: [9] Let A be a square matrix of order m

with spectrum o(A) = (u;), 1 <4 <m and B be a square
matrix of order n with o(B) = (};), 1 <j <n. Then
o(A®B) = (ui);),1<i<m, 1<j<n.
Furthermore, if x; and y; are the eigenvectors corresponding
to the eigenvalue y; and \; in A and B respectively then
x; ® y; 1s an eigenvector corresponding to the eigenvalue
,uq;)\j in A ® B.

Theorem 2.3: [9] If A ia a square matrix of order m and
B is a square matrix of order n and both are non singular
then,

(Ao B '=A"1® B L

By using Theorem and Lemma [2.4] one can obtain the
determinant of a k-half graph with respect to the second
Zagreb matrix.

Lemma 2.4: Let B be a matrix of order n given by

n?(k —1)? n(n —1)(k —1)? n(k —1)?
nn—1)(k-172 (n—1)%k—1) 0
: g 0
2n(k —1)2 2(n—1)(k—-1)2 0 0
n(k —1)2 0 0
Then,

if n is of the form 4r
or 4r + 1, where r > 0

(n)2(k — 1),
det(B) =

—(n")2(k —1)?", otherwise.

Proof: Proof follows by noting that

11 1
11 0
B=(k-1)"@m)*|: 0
1 1 0 0
10 0

Theorem 2.5: Let G be k-half graph on kn vertices.
Then, det(Z(Q))

if k¥ and n both are even
or if k is odd then
n=4rordr+1,r >0

otherwise.

[(k? _ 1)n(2k+1) (n!)%}7

1)n(2k+1) (n|)2/’~c]7

_[(k_

Proof: The second Zagreb matrix of G can be written
as block matrix as follows;

0, B, ... B, B,
B, 0, B, B,
Z2(G) = 0, |
B, B, ... 0, B,
B, B, ... B, 0,

where B,, =
n?(k —1)? nn—1)k-12 ... n(k—1)2
nn—1k-12% (n-1)>%k-12 ... 0
: o . 0
ok —1)?°  2—-1Dk—-1)7% 0 0
n(k — 1) 0 0

and 0,, i1s a zero matrix of order n.

Note that Z(G) is Kronecker product of the adjacency matrix
of the complete graph of order k& and the matrix B,,. The
proof directly follows from Theorem [2.2] [ |

Corollary 2.6: Let G be half graph on 2n vertices. Then,

(n!)*,
_(n!)47

if n is even

otherwise.

det(Z(Q)) = {

Theorem 2.7: Let B be a matrix of order n given by

n?(k —1)? n(n —1)(k —1)? n(k —1)?
nn—1)k-12 (n-1)%k-1)2 ... 0
: . . 0
ok —1)2  2n-1)(k-1)2 0 0
n(k — 1)2 0 .. 0

Let \;;1 < ¢ < n be the eigenvalues of B with the
corresponding eigenvectors Y;, 1 < i < n. Suppose G is a
k-half graph on kn vertices, then the Z-spectrum of G is
given by

Spec(Z(G)) =
—A1 =g A (k=1 (k—1)A,
k—1 k-1 kE—1 1 1 ’
Y;
Y;
with the eigenvector X; = Yi corresponding to the Z-
Y;
eigenvalue (k — 1)\;,1 <i <mn, and
(Y] [Yi] (Y]
-Y; 0 0
0 -Y; 0
Xi=1olslol,->5]o0
L 0] [ 0] | —Y; ]

corresponding to the Z-eigenvalue —)\; whose multiplicity
is k—1.

Proof: The proof follows from Theorem 2.2] by observ-
ing the eigenvalues and eigenvectors of the adjacency matrix
of the complete graph of order k. ]

Corollary 2.8: If G is a half graph on 2n vertices, then
+X;,1 < i < n are the Z-eigenvalues of GG, where \;, 1 <
i < n are the eigenvalues of B as defined in Lemma [2.4]

Theorem 2.9: Let G be a k-half graph on kn vertices.
Then,
cenD cixD
Zl'=CeD=| : : o,

ck1D ckr D
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2—k 1 1
k—1 k—1 k—1
1 2—k 1
k—1 k-1 k—1
where C' = . .
1 2k
k—1 k=1- kxk
and
- 1 -
0 e 0 w(h—D)Z
0 1 -1
t 2(n—1)(1k—1)2 (n—1)(k—1)2
D— 0 2(n—2)(k—1)2
: : :
0 2(n71)8k71)2 0
L = 0
Ln(k—1)2 (n—1)(k—1)2 i

Proof: The Z-matrix of the k-half graph, is the Kro-
necker product of the adjacency matrix of the complete graph
of order k£ and the matrix B of order n. From Theorem
the inverse of Z(G) is the Kronecker product of inverse of
A(K},) which is given by the matrix C' and inverse of the
matrix B which is given by the matrix D. [ ]
The following corollary follows from Theorem [2.3]

Corollary 2.10: Let G be a half graph on 2n vertices.

Then,
. _[o, D,
Z= {Dn 0,
[0 0 0 17
0 0 ST moT
0 oy ey O
where D = )
- _1
(3 2(n711) 2(n—2) T 0
= 0 0 ] n
III. BOUNDS

A few bounds on the second Zagreb energy and the
spectral radius of a k-half graph are discussed in this section.
Leta = {aj,as,...,a,} be a set of positive real numbers.
We define P, to be the average of products of k-element
subsets of a, i.e.,
P1 = %(a1+a2+...+an)
P2 = ﬁ(alag + araz + ...+ aray, + agas + ...+
Up—10n

P, =ajas...a,.

Hence the arithmetic mean is P; whereas the geometric
mean is Pj. The following result is known as the Maclaurin
symmetric mean inequality:

Lemmla 3.1: ) [12]] For posigive real numbers a1, as, . . .
Pr>P7 >P >...>P7.

Equalities hold if and only if a; = a2 = ... = ay.

y An,y

We give a lower bound for Z F5(G) of a half graph G using
the below lemma.
Lemma 3.2: Let G be a k-half graph on kn vertices. Then,
Tr(Z(G)?) =
k(k —1)°n(38n° + 114n* + 12503 + 60n% + 17n + 6)
360

nxn

Proof: Z(G) can be viewed as,

0., E, ... E, E,
E, 0, E, E,
E, E, ... 0, FE,
E, E, ... E, 0,
where
n? nn—1) ... 2n n
nn—1) (n—1)>2 2(n—1) 0
By = : 0
2n 2(n—1) ... 0 0
n 0 0 0
and 0,, is a zero matrix of order n.
Tr(Z(G)?) =

k(k—1°(n*Y 2+ (n—1)2> j2+...+n?)
j=1

j=2
n—1 n
=k(k—1°> > (n—i)?
1=0 j=i+1
_ k(k —1)°n(38n® + 114n* + 125n° + 60n + 17n + 6)
B 360 '

Theorem 3.3: Let G be a half graph on 2n vertices. Then
ZE3(G) >
2 n(38n5+114n*4+125n34+60n2+17n+6) + TL(TL . 1)(71')%

360
with equality if and only if G = K ;.

Proof: Note that Z(G) = {%" g"} where
n? nn—1) ... 2n n
nn—1) (n—1)>2 2(n—1) 0
En = : T
2n 2(n—1) ... 0 0
n 0 0 0

and 0,, is the zero matrix of order n.

Let (1,(2,...,(2, be the second Zagreb eigenvalues of
Z(G). Since G is bipartite, ZE>(G) = 237", (;, where
¢; are the positive eigenvalues of Z(G).

From Lemma [3.2] we have,

S G =Tr(Z(G)? =

n(38n5 + 114n* + 12513 + 60n2 + 17n + 6)
180

Thus,

Z”: oo n(38n° + 114n* + 12513 + 60n2 + 17n + 6)
e 360

We know that
2n
[1¢ =det(z(@)) = (=1)"(n)*.
i=1

Hence,
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By Lemma 3.1} we obtain \/n(38n + 114n* + 1223 +60n% +17n +6) n(n — 1)(nD3
2 ]
Z GG = (H G, Theorem 3.5: Let G be a k-half graph on 2k vertices.
2 I<i<isn =1 Then, ZE»(G) = 8v2(k — 1)3.
ie. 23 icic, GG = n(n — 1)(n!)w Proof: From Theorem [2.7] we have,
w1th equality holding if and only if (; = (2 = ... = (. “A A (B=DA (k—1)Xo
We have, Spec(G) = k-1 k-1 1 1 ’
(Z G)? Z@ +9 Z GG where A1 = (K —1)2(2 + v2), A2 = (k — 1)2(2 — V/2) are
i1 1<i<j<n the Z-eigenvalues of
Hence, g (40— )2 2(k—1)2
= 9 )
2(k—-1) 0
ZE5(G) =2 ZC2 +2 Z GG Hence, ZE>(G) = 8v2(k — 1)3. ]
1<i<j<n
n(38n° + 114n* + 125n° + 60n° + 17n + 6) 5 a
2 2\/ 360 +(n2 —n)(n)n Theorem 3.6: Let G be a k-half graph on 3k vertices.
Equality holds if n = 1, i.e., G = K7 1. Then, the Z-eigenvalues of G are (k—1)3)\; with multiplicity

m 1 and —(k — 1)2)\; with multiplicity k — 1, where \;,1 <
Theorem 3.4: Let G be a k-half graph on kn vertices. i < 3 are the roots of the equation z3 — 1322 — 9z + 36 = 0.

Then ZEy(G) > 2(k —1)3 Proof: From Theorem we have, Spec(G) =
3818 4+ 114n® + 125n* + 60n3 + 17n2 + 6n 4
360 + (n? —n)(n!)n
with equality if and only if G Ky 1. ( “Ar A Az (B (B-1DXe (k- 1))\3> 7
Proof: From Theorem [2.7] k=1 k=1 k-1 1 1 1

where \)s are the eigenvalues of

2E>(G) = *12‘“*2 ~ DA, Ok —1)2 6(k—1)% 3(k—1)
B=|6(k—1)% 4(k—1)? 0
where \; are the eigenvalues of the matrix B. Hence, 3(k — 1)2 0 0
ZEs(G) ~1) Z Iil. Solving we get
9 6 3
Note that . B=(k-1)%[6 4 0
3 00

H|>\1-| = (k—1)>(n))2.

" 5+ 114n* + 12503 241
Z|/\i\2:n(1€—1)4 (3871 + n* + 125n° 4+ 60n° + 7n—|—6>

Hence, the result follows. [ |

Using Theorems [3.8 and [3.9] from article [12], we
obtain few bounds on the spectral radius of a k-half graph.

360
(IIL.1) . .
From the arithmetic—geometric mean inequality, we have Theorem 3.7: [12] For a graph G with maximum and
n minimum degrees A and J, respectively, and the spectral
2 S Nz - DI radius ¢\*, we have
1<i<j<n i=1
3 < 2 . A3
Hence, 0" < Cl =4
2 3 I = nn - D)k - 1) () (I12) where both equalities occur if and only if G is regular.

1<i<j<n

Theorem 3.8: [12] Let G be a graph with n vertices, m
Now, edges, the maximum degree A and the minimum degree 0.
n Then the spectral radius (1(2) satisfies,
ZE>(G) =2(k—1) ) |\
=1

2md?
Zmo < <1<2> < A*V2m —n+1,

=2(k—-1) <Z )\i|> where left hand equality occurs if and only if G is regular,
= and right hand equality appears if and only G = S, or G =

_ _ )2 1\ n
=2(k—1) Zp\“ +2 Z XillAs] Theorem 3.9: [12] For a graph G of n vertices with
i=1 1<i<j<n . .
maximum degree A and second Zagreb index Mo,
Substituting Equation in the above expression and
simplifying we get (2) 2(n — 1)A% M,
ZE>(G) > 2(k —1)® G < —_—
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Theorem 3.10: Let G be a k-half graph on kn vertices.
Then,
(k—1)* < ¢ <n(k—1)°%

Theorem 3.11: Let G be a k-half graph on kn vertices.

Then,
(k- 1)3(n +1)

3
kn(k —1 1
n2(k1)2\/ n 2)(n+ ) —kn+1.
Next, we give expressions for first and second Zagreb index
of a k-half graph.

Theorem 3.12: Let G be a k-half graph on kn vertices.
Then, the first Zagreb index M; is given by,

M, — k(k — 1)2n(n6—|— 1(2n + 1).

Proof: Proof follows by noting that the first Zagreb
index is given by

M= )

’UiEV(G

d? =k(k—1)2{17 422 + ... +n?}.
)

|
Theorem 3.13: Let G be a k-half graph on kn vertices.
Then, the second Zagreb index M5 is given by,
k(k—1)3
48
Proof: We know M, = ZWW&E(G) d;d;.

My = n(n +1)(5n% + 5n + 2).

My = (S)(k—1)2(n§;j—|—(n—l)i2j+...+n)
= (5) 0 1>>_ _Zm ~ i)
= (];) (k 1)2)iyﬂb(n+1)(5n2 +5n +2).
|

Using Theorems [3.9) and [3.13] we can get the better upper
bound on the spectral radius of a k-half graph.

Theorem 3.14: Let G be a k-half graph on kn vertices.
Then,

¢ <

2 6

IV. MAIN / NON-MAIN EIGENVALUES

An eigenvalue p € Spec(A(G)) is main if the cor-
responding eigenspace E(u;G) is not orthogonal to all-1
vector .J; otherwise, it is non-main. The graph with only one
main eigenvalue is necessarily regular. In threshold graph all
eigenvalues except 0 and —1 are main. But there exist some
chain graphs with all eigenvalues are main and also with
all eigenvalues are non-main except 0. In [1], the authors
characterize the chain graphs with 2 main eigenvalues. One
can refer to [8] for few interesting results on main and non
main eigenvalues.

Similarly, an eigenvalue p € Spec(Z(G)) is main if the
corresponding eigenspace E(u; G) is not orthogonal to all-
1 vector J; otherwise, it is non-main. In this section we
obtain main and non-main eigenvalues of a k-half graph with

(k — 1)2n\/(lm ~D(k—D(n+1)(5n° +5n+2)

respect to Z(G). First, we show that in a k-half graph on kn
vertices, there are at least kn — n non-main Z-eigenvalues.
Theorem 4.1: Let A1, A\a, ..., Ay, be the eigenvalues of B.
The Z-eigenvalues —\;, 1 <13 < n, repeats k — 1 times, of
a k-half graph are non-main Z-eigenvalues.
Proof: From Theorem we know that the eigenvalue
—Xi, 1 <4 < n, with multiplicity £ — 1 are the eigenvalues
of a k-half graph with the corresponding eigenvectors

(Y] [Yi] [Y; ]
-Y; 0 0
0 -Y; 0
0 , 0 e 0
L 0] L0 ] | —Yi ]

All these vectors are orthogonal to J. Hence each —\;,1 <
1 < n is a non-main Z-eigenvalue. [ |
Theorem 4.2: Let G be a k-half graph and let
A1, A2, ..., Ay, be the eigenvalues of B. If any \;, 1 <7< n
is a non-main (main) Z-eigenvalue of B, then (k— 1)\, the
Z-eigenvalue of G is also non-main (main) Z-eigenvalue.
Proof: From Theorem 2.7, We know that (k —1)); is a
Z-eigenvalue of G with multiplicity 1 and the corresponding
eigenvector is given by

If \; is non-main (main), we have Y;J = 0, (Y;J # 0). Thus,
X;J =0,(X;J # 0). Hence the eigenvalue (k—1)J; is also
non-main (main). |
From Theorems [4.1]and [4.2] we know that for a k-half graph
on kn vertices, at least kn — n second Zagreb-eigenvalues
are non-main and at most n second Zagreb-eigenvalues are
main. So, when n = 2 i.e., a k-half graph on 2k vertices
contains at most 2 main Z-eigenvalues. In the next theorem
we show that when G is a k-half graph on 2k vertices it has
exactly 2 main Z-eigenvalues.

Theorem 4.3: Let G be a k-half graph with 2k vertices.
Then, (k — 1)3(2 + v/2) are the main Z-eigenvalues and
(k — 1)2(=2 + v/2) each with multiplicity k¥ — 1 are the
non-main Z-eigenvalues of G.

Proof: From Theorem we have

A e (k—DA (k1A
SpeC(G):(k—ll Eo1 ( 1)1 ( 1)2 )

where \; = (k — 1)%(2 +v2), A2 = (k — 1)3(2 — V/2) are

the Z-eigenvalues of

Ak — 1) 2(k - 1)2
B:<2(k—1)2 0 )

From Theorem A =(k—1)2(-=2—+v2) and —\; =
(k—1)%(+/2—2) with multiplicity & — 1 are the non-main Z-
eigenvalues of G. It follows from Theorem4.2] that (k—1) A\
and (k — 1)\ are the main Z- eigenvalues of G if and only
if Ay = (k—1)2(2+2v2) and Ay = (k—1)2(2 —2V/2) are
the main Z-eigenvalues of B.
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It is easy to show that the eigenvectors corresponding to the
Z-eigenvalues A1, Ao of B are given by

l l
X1(21>, X2<3z>
V242 2—V2

where | # 0. As X{'J # 0 and XJ.J # 0, the eigenvalues
(k — 1)2(2 + V2),(k — 1)%(2 — /2) are the main Z2-
eigenvalues of the matrix B.

Hence, the main Z-eigenvalues of G are (k — 1)3(2 + v/2).

V. CONCLUSION

The determinant, eigenvalues and inverse of a k-half graph
G with respect to the second Zagreb matrix is obtained along
with a few bounds on the second Zagreb energy and the
spectral radius. The main and non-main eigenvalues of a k-
half graph with respect to Z(G) are also discussed. One
can try to obtain spectral properties of a k-half graph with
respect to its extended adjacency matrices corresponding to
other degree based topological indices.
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