
 

  

Abstract—The field of computer vision has experienced 

rapid progress owing to deep learning. The importance of road 

damage detection in ensuring traffic safety and reducing road 

maintenance costs is becoming increasingly evident. For 

detecting road damage, the YOLOv5 algorithm provides a 

reliable and effective method. However, YOLOv5 still requires 

a significant amount of computation. This paper proposes a 

lightweight network for detecting road damage that improves 

upon the YOLOv5 model in four ways. The algorithm 

accurately identifies and classifies different types of road 

damage, while simultaneously reducing the number of 

parameters and required computations. First, lightweight 

processing of the model is achieved. The Ghost module and 

Ghost Bottleneck are employed to construct the novel GBS 

module and C3Ghost, which replace the existing CBS and C3 

modules. Second, the CIoU loss function is transformed into 

SIoU to improve the precision of target box regression. 

Furthermore, the original upsampling module is replaced by 

CARAFE to improve the model's semantic adaptability and 

receptive field. Finally, the CBAM attention mechanism is 

employed to concentrate on crucial feature information. The 

experiment's findings present that, in comparison to the 

baseline model, the upgraded model has 41.8% fewer 

parameters. Additionally, there has been a 43.8% reduction in 

floating-point computation and an improvement of 0.2% in 

detection accuracy. 

 
Index Terms—Road Damage Detection, Lightweight 

Network, YOLOv5, CARAFE, CBAM 

 

I. INTRODUCTION 

Y the end of 2022, the national highway mileage had 

reached 5,354,800 km. Approximately 99.9% of the 

total highway distance, or 5,350,300 km, was under 

maintenance. This illustrates the seriousness of the road 

maintenance problem. The main cause of road damage is the 
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destruction of the pavement structures. The pavement is the 

initial component of the highway infrastructure to be 

subjected to the impact of external forces. Pavements endure 

vehicle loads and are susceptible to temperature fluctuations, 

corrosion, and human-induced harm [1]. When cracks or 

potholes appear on the road, rain exacerbates the expansion 

of these defects. This situation is dangerous for moving 

vehicles and can contribute to traffic accidents. Road 

damage poses a significant threat to travel safety. Therefore, 

timely detection and mastery of road damage are important 

tasks to ensure road safety and carry out road maintenance. 

It is vital to ensure the safety of individuals and the security 

of their property. Road damage detection techniques 

represent a vital method for quality control throughout the 

life cycle construction phase of highway projects [2]. It 

offers indispensable resources for the inspection, 

supervision, and control of quality in construction projects 

related to highways. The application of technology for the 

detection of damage to roads is of significant importance in 

the control of progress and the cost of road projects 

throughout their whole life cycle. Therefore, road damage 

detection technology has very important practical 

significance. 

Deep learning-based image processing outperforms 

traditional methods in accuracy, speed, and embeddability, 

making it a prevalent choice for road defect detection [3]. 

However, for real-time damage assessment, the current 

deep-learning models are inadequate. Therefore, a model 

that improves detection accuracy and reduces complexity is 

urgently needed. YOLOv5 is a high-accuracy, real-time 

single-stage object detection model. However, despite its 

high accuracy, the YOLOv5 model still requires a large 

amount of computation. Enhancing YOLOv5 addresses this, 

boosting accuracy while diminishing parameters and 

computations. Thus, real-time detection can be realized, and 

the adaptability and portability of the algorithm in edge-

computing terminals can be improved. 

To address these challenges, this paper introduces 

modifications to YOLOv5. First, use Ghost modules in 

place of conventional convolutions in the Backbone and 

Neck. We add a new GBS module to improve the original 

CBS. And we use GhostBottleneck to adopt a more effective 

C3Ghost module in order to minimize parameters without 

sacrificing accuracy. Second, CIoU has been replaced by 

SIoU to improve its anti-noise capabilities. Additionally, the 

CARAFE upsampling module is integrated for bigger 

receptive fields. Finally, a lightweight CBAM attention 

mechanism has been employed to further enhance overall 

performance. 
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II. RELATED WORK 

A. Current Status of Research on Traditional Image 

Processing-Based Road Damage Detection 

Conventional image processing approaches, prevalent in 

road damage detection research, frequently employ 

threshold segmentation and feature extraction. One popular 

method for separating the target from the background is 

threshold segmentation. For instance, Akagic et al. [4] 

presented an integrated method that utilizes a grayscale 

histogram and Otsu threshold. This technique divides the 

input image into smaller images and explores road cracks 

within each one. Liu et al. [5] achieved better results by 

processing binary images obtained from a connected domain 

algorithm (Direction Segmentation Expansion Algorithm) to 

detect road cracks. However, threshold segmentation 

techniques are vulnerable to noise and only take into 

account the image's grayscale information, neglecting 

spatial information. As a result, to increase segmentation 

accuracy, this algorithm is frequently used in combination 

with other techniques [6]. 

Additionally, some methods extract edge information 

regarding road degradation using edge detectors. For 

example, Maode et al. [7] employed morphological filters 

and a modified median filter to identify cracks. However, 

these methods have limitations in detecting noise and 

intricate forms of road damage. Furthermore, a few studies 

have classified and detected road damage using machine 

learning techniques like support vector machines (SVMs), 

for road damage classification and detection. In contrast to 

single pothole detection, Hoang [8] proposed a supervised 

learning method based on SVMs to automatically classify 

potholes in roadways. Gao et al. [9] offered a quick 

detection method by combining a machine learning model 

with a library of support vector machines (LIBSVMs). This 

method is capable of differentiating between various forms 

of road damage. 

However, many techniques for detecting road damage 

that rely on conventional image processing techniques have 

certain common flaws and restrictions. First, these methods 

often depend on manually created feature extraction and 

threshold selection, which may limit generalizability to 

diverse road damages. Second, conventional approaches are 

vulnerable to noise and complicated surroundings, as well as 

variations in background interference and lighting. This may 

result in a reduction in the accuracy of detection. Moreover, 

the performance of traditional methods is limited by the 

efficiency and computational complexity of image 

processing algorithms. Therefore, traditional methods are 

unsuitable for real-time applications and large-scale data 

processing. 

B. Research Status of Road Damage Detection Based on 

Deep Learning 

Deep learning-based methods for detecting road damage 

have been shown to be useful in real-time applications and 

various visual tasks. To further the field, researchers have 

used traditional network topologies such as SSD, Faster-

RCNN, YOLO series, and EfficientDet. 

Road damage identification and classification using the 

ResNet-152 feature extraction network and the Faster-

RCNN detection framework were presented by Wang et al. 

[10]. The method described utilizes a feature extraction 

network and target detection framework, which are powerful 

but computationally demanding. Gupta et al. [11] presented 

a method based on SSD and RetinaNet detection framework. 

They addressed the problem of unfavorable weather 

conditions in pothole detection by using ResNet-34 and 

ResNet-50 as feature extraction networks. This method can 

be used to detect road damage under harsh environmental 

conditions. A fully convolutional network (FCN) was used 

by Yang et al. [12] to identify road cracks at the pixel level. 

These methods can detect cracks with high precision but 

require greater computational resources and training data. 

Nguyen et al. [13] used the VGG16 network to automate the 

detection of pits and cracks. Techniques for data 

augmentation processing improved the robustness of the 

model. While the model's network structure is large, posing 

a challenge to the adaptability requirements of embedded 

device applications. Grayscale photos of road pits were 

processed by Baek et al. [14] and fed into the YOLO 

detection model, resulting in improved detection speed and 

good performance. However, the model's generalization 

ability and robustness may be declined because the amount 

of information is reduced by processing the image. 

In order to analyze the effectiveness of YOLO, SSD, 

HOG, SVM, and Faster R-CNN network models for 

pavement damage detection, Ping et al. [15] carried out 

experiments. According to the experimental result, the 

YOLOv3 model of the YOLO network algorithm family 

performs the best in pavement defect detection. This 

algorithm produces reliable detection results quickly. And 

many articles are based on this algorithm for road damage 

detection research. The YOLOv3 algorithm was employed 

by Du et al. [16] to build a pavement identification defect 

model and accomplish automatically extracted features. 

While this method increases the speed of detection, it lacks 

the flexibility required by embedded systems. A YOLOv3-

based data enhancement technique for crack detection was 

employed by Tsuchiya et al. [17], which can effectively 

improve accuracy. It is characterized by the data enrichment 

techniques to increase the robustness and generalization of 

the model. However, it requires more computational 

resources and training time. A crack detection approach 

based on YOLOv3-Lite was put forward by Li et al.[18], 

which employs depth-separable convolutions and feature 

pyramids to design the network architecture. The method to 

detect cracks combines low-resolution and high-resolution 

features. This approach improves detection by utilizing 

features of different resolutions. However, it suffers from a 

high network design and parameter tuning. 

A lightweight end-to-end network for detecting pavement 

damages was put forward by Liang et al. [19]. The network 

aims to quickly, automatically, and precisely detect and 

categorize different kinds of road damage. The method 

builds a multi-scale feature fusion network by combining a 

backbone network with several lightweight feature detection 

modules. This approach is more effective for recognizing 

and classifying targets at different distances and angles 

compared with other research. Additionally, they developed 

an embedded lightweight attention module. By giving multi-

scale convolutional kernels weights, this module improves 
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feature information and reduces the number of parameters 

needed for detection. Wan et al. [20] proposed the YOLO-

LRDD algorithm using a new backbone. They increased the 

data volume in the RDD2020 dataset by using data collected 

in China. The method they proposed improved the speed of 

detection by 22%. Additionally, the road damage dataset 

was found to have issues with inconsistent resolution and 

low data quality. To address this, Chen et al. [21] introduced 

the LAG-YOLO method, a powerful deep learning network 

to detect damage on roads. By upgrading YOLO's network 

structure, LAG-YOLO preserves high precision while 

improving its suitability for real-time processing and 

lightweight deployment. Additionally, a new model module, 

Attention Ghost, is designed to utilize the attention 

mechanism of SimAM to decrease model parameters and 

enhance model performance. 

To sum up, the current deep learning-based methods for 

detecting road damage have unique qualities and drawbacks. 

Some methods have achieved satisfactory results in terms of 

accuracy, detection speed, or adaptability to complex 

environments. However, there are still issues to be 

addressed, including the high computational resource 

demand and insufficient generalization ability. But detecting 

tasks may be restricted by lightweight models' low precision. 

It can be challenging to achieve the correct balance between 

effectiveness and efficiency [22]. This research provides a 

lightweight network-based road damage detection system 

that aims to decrease computing costs while improving 

detection accuracy. It can satisfy the requirements for real-

time monitoring and maintenance of road damages while 

controlling the cost. 

III. ALGORITHM 

A. Network Architecture Design 

This paper presents four key improvements to the 

YOLOv5 model. Fig. 1 displays the enhanced lightweight 

YOLOv5 model. 

The model is first lightened by replacing the traditional 

convolutional operations in the Backbone and Neck with 

Ghost modules. The Ghost module serves to build a new 

GBS module that substitutes the original CBS module. In 

addition, a module called C3Ghost is constructed using the 

Ghost Bottleneck to replace the original C3 module. These 

lightweight operations can significantly reduce the amount 

of computation while maintaining performance.  

Next, we have targeted three crucial model positions for 

further enhancements to make up for the accuracy loss 

caused by lightweight operation. The model's detection 

performance was enhanced further by using the SIoU and 

lightweight CARAFE upsampling operators. Incorporating 

the CBAM attention mechanism before the three detection 

heads further improves the detection capability and 

robustness of the model. The YOLOv5 model's performance 

and efficacy in the target detection task are significantly 

enhanced with these improvements. 

B. Lightweight Processing 

In 2020, Han et al. [23] introduced a lightweight module 

called Ghost. This module generates more feature maps with 

fewer calculations and parameters [24]. In this study, we 

substitute the newly constructed GBS module for the 

original model's CBS module. GBS module enhances model 

 

GBS

CBS

C3Ghost

CARAFE

GBS

C3Ghost

GBS

C3Ghost

GBS

C3Ghost

SPPF

GBS

Concat

C3Ghost

GBS

CARAFE

Concat

C3Ghost

Concat

GBS

GBS

Concat

C3Ghost

C3Ghost Conv2d

Conv2d

Conv2d

Backbone

Neck Detector

input

80×80

40×40

20×20

CBAM

CBAM

CBAM

 
 

Fig. 1. Improved lightweight YOLOv5 model structure 
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efficiency by reducing computations and parameters, 

preserving feature representation and receptive field, and 

boosting generalization capability. The Ghost module 

decomposes the input feature map into two sub-maps and 

introduces a random transformation between them. This 

processing increases the model's adaptability to different 

samples and features. This enhances the model's 

generalization capabilities and lowers the possibility of 

overfitting. In road damage detection tasks, road conditions 

may vary due to weather, light, and other factors. The 

utilization of the Ghost module enhances the model's 

robustness to changes and improves its generalization 

performance in various scenarios. The structure of the Ghost 

module is shown in Fig. 2. 

The conventional convolution layer is displayed in Fig. 

2(a), while the Ghost module is displayed in Fig. 2(b). The 

picture illustrates that the Ghost module differs from 

traditional convolution in that it is divided into two parts. 

The first part is similar to traditional convolution: an input 

produces an output feature map after a common convolution 

operation. However, strict controls exist on the channels in 

this output feature map. To generate additional feature maps, 

the second part builds upon the output feature map of the 

first part by applying a sequence of low-cost linear 

operations. The output of the complete Ghost module is then 

generated by splicing the feature maps with the output 

feature maps of the first part. The results were compared 

with ordinary convolutional neural networks keeping the 

output feature map's dimensions constant. It was discovered 

that the Ghost module required less computation and had 

fewer arguments overall. The procedure is shown in Fig. 

2(b), where   is a linear operation. 

The formula for the FLOPs of floating-point calculations 

for ordinary convolution is shown in equation (1): 

 ' 'convF n h w c k k=       (1) 

Equation (2) displays the formula for the number of 

floating-point calculations (FLOPs) for the Ghost module: 

' ' ( 1) ' 'ghost

n n
F h w c k k s h w d d

s s
=      + −      (2) 

Where n is the number of output channels; 'h  is the height 

of the output features; 'w  is the width of the output features; 

c is the number of input channels; k is the size of the 

convolutional kernel; s is the number of feature maps 

generated in the Ghost module; and d is the convolutional 

kernel for the linear operation. 

The compression of the model was calculated 

quantitatively, and the compression ratio was used as an 

index for the calculation. The calculation formula is shown 

in equation (3): 
' '

1
' ' ( 1) ' '

conv
s

ghost

F n h w c k k s c
r s

n nF s c
h w c k k s h w d d

s s

     
= =  =

+ −
     + −     

(3) 

Where d d  has similar quantities to k k , and 𝑠≪𝑐. It is 

evident from the calculations that the computation of the 

Ghost module is approximately s times that of standard 

convolution. 

Using the Ghost module in combination with the original 

CBS module in YOLOv5, a new module is constructed as 

GBS. It takes the place of the CBS module's conventional 

convolution. Performance and efficiency can be increased in 

YOLOv5 by substituting the GBS module for the CBS 

module's function. In addition, introducing auxiliary paths 
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can provide more learning signals, which can help the model 

training and representation capability. In Fig. 3, the GBS 

structure is displayed.  

Fig. 4 depicts the Ghost module structure. There are two 

stacked Ghost modules when the step size is set to 1. 

Increasing the number of channels is accomplished by using 

the first Ghost module as an expansion layer. The second 

Ghost module employs a channel reduction to match the 

shortest pathways. This preserves the number of input and 

output channels while compressing the network model. 

Finally, connect the two Ghost modules' inputs and outputs. 

The downsampling layer realizes the shortcut path when the 

Ghost Bottleneck's step size is set to 2. A two-step depth 

convolution is introduced between the two Ghost modules. 

The feature layer's height and width are compressed using 

the depth convolution, which also serves to connect the 

input and output. 

 In this paper, C3 and Ghost Bottleneck are combined to 

build the C3ghost module, whose structure is illustrated in 

Fig. 5. The C3Ghost module reduces the model parameters 

and computational load by combining three Conv modules 

with a Ghost Bottleneck structure. This reduces hardware 

performance requirements and makes the model easier to 

deploy on the edge. 

C. Loss Function Improvement 

 In neural networks, loss functions are used to measure 

the difference between model predictions and real data. 

Choosing an appropriate loss function is important for the 

model to enhance detection performance and accelerate the 

convergence of the model. GIoU [25], DIoU [26], and CIoU 

[26] have been proposed to address the candidate frame 

regression problem. For the YOLOv5 model, CIoU is 

adopted for the regression loss function. CIoU is dependent 

on the summation of bounding box regression metrics, 

which comprise the aspect ratio, overlap area, and distance 

between the real and predicted frames. However, the 

direction of the mismatch between the predicted and true 

boxes is not considered. This may result in less effective and 

slower convergence and produce inferior models. Instead of 

using CIoU as the regression loss function, SIoU [27] is 

employed in this research. SIoU takes into account the angle 

between the predicted and real frames compared to CIoU. 

By introducing a vector angle, SIoU is able to measure the 
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similarity between the predicted and real frames more 

comprehensively. The process of angle loss calculation is 

shown in Fig. 6, and its related calculations are shown in 

equations (4)-(8). 

There are four components of SIoU, which are   (Angle 

cost),   (Distance cost),   (Shape cost), and IoU (IoU 

cost). Angle cost is shown in equation (4). 

 
21 2 sin (arcsin( ) )

4
x


 = −  −  (4) 

In equation (4), hc
x


= ,  is the distance between the 

center point of the prediction frame and the real frame; hc  

is the vertical distance between the center point of the 

prediction frame and the real frame. 

Equation (5) illustrates the distance cost while taking into 

account the angular cost previously described: 

 
,

(1 )t

t x y
e −

=
 = −  (5) 

In equation (5), 

2
gt

cx cx
x

w

b b

c


 −
=  

 

, 

2
gt

cy cy

y

h

b b

c


 −
=   

 

, 

2 = −  , 
gt

cxb  and 
gt

cyb  are the horizontal and vertical 

coordinates of the center point of the real frame; 
cxb  and 

cyb  

are the horizontal and vertical coordinates of the center point 

of the predicted frame; wc  is the horizontal distance 

between the center point of the predicted frame and the real 

frame. The shape cost is shown in equation (6). 

 
,

(1 )tw

t w h

e −

=

 = −  (6) 

In equation (6), 
max( , )

gt

w gt

w w

w w


−
= , 

max( , )

gt

h gt

h h

h h


−
= ; 

gtw  and 
gth  are the width and height of the real box;   

and h  are the width and height of the predicted box. A 

genetic algorithm is used to calculate the value of θ, which 

determines the extent to which shape loss should be 

considered. In different datasets, the value of θ can vary in 

the range of 2 to 4. The IoU cost is shown in equation (7). 

 

GT

GT

B B
IoU

B B
=  (7) 

In equation (7), BGT is the area of the real frame; B is the 

area of the predicted frame. The final total definition 

formula for SIoU is presented in equation (8). 

 _ 1
2

SIoU LOSS IoU
 + 

= − +  (8) 

D. CARAFE Upsampling Operator 

A convolutional neural network's intermediary layer is 

frequently the upsampling module. The module extends the 

feature map size to improve tensor cascading and 

information transfer. Upsampling allows for richer details 

and more accurate feature representations. Upsampling can 

be done using a variety of methods, including inverse 

convolution, bilinear interpolation, bicubic interpolation, 

and nearest neighbor interpolation. The upsampling module 

is frequently applied to tasks like super-resolution, style 

conversion, and picture segmentation. An interpolation 

algorithm is used in almost all upsampling techniques. 

Interpolative upsampling is a process of adding new 

elements between pixel points to increase the resolution or 

change the size of an image. This results in a higher-quality 

image representation. Different interpolation algorithms can 

provide varying effects and performance during the 

upsampling process. It focuses only on local features and 

ignores global information. Furthermore, interpolation 

upsampling has a limited receptive field and fails to 

accurately capture the global features of the image. Inverse 

convolutional upsampling uses the same convolutional 

kernel to upsample the feature map. This operation cannot 

be tuned for features, thus ignoring some of the semantic 

features of the image. Consequently, this approach 

introduces more parameters and computational complexity, 

rendering it inappropriate for lightweight network models. 

Therefore, the nearest neighbor interpolation upsampling in 

YOLOv5 is replaced in this article by the CARAF [28] 

upsampling operator. This replacement can solve the above 

shortcomings and deficiencies. 

CARAFE is a lightweight upsampling operator that 

guides the upsampling process with semantic information 

from the input feature map. It generates an adaptive 

upsampling kernel by use of a small convolutional network. 
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This kernel performs a dot product operation with 

neighboring pixels in the input feature map to generate the 

upsampled feature map. CARAFE has a broader receptive 

field than conventional upsampling operators (such as the 

nearest neighbor operator or bilinear interpolation operator). 

It also has a better semantic adaptation and introduces fewer 

parameters. 

 Two components make up CARAFE, as seen in Fig. 7. 

The upsampling kernel prediction module is one component 

that produces weights for the kernels utilized in the 

computation of reassembly. The content-aware reassembly 

module is the other component. It reassembles the features 

using the calculated weights. The content encoder, feature 

map channel compression, and upsampling kernel 

normalization are the three submodules that make up the 

upsampling kernel prediction module. Using a 1×1 

convolution, the feature map channel compression decreases 

the number of channels in the input feature map to Cm. By 

using this method, CARAFE operates more efficiently and 

requires fewer parameters overall. Reassembly kernels are 

generated by the content encoder according to the input 

feature's content. It can generate feature maps with 2 2

upk  

channels. Here,   is the upsampling rate (typically 2) and 

upk  denotes the upsampling kernel's size. In processing, a 

convolutional layer with a kernel size is added to expand the 

encoder's receptive field. This allows it possible for the area 

to make better use of contextual information. Lastly, a 

softmax operation is applied to ensure that each channel in 

the upsampling kernel is normalized. Every position from 

the output feature map is returned to the input feature map 

via the feature reconstruction module. Assuming region 

up upk k  and a predicted upsampling kernel for that region, 

the final result after upsampling is obtained by performing a 

dot product operation. 

E. Convolutional Attention Module 

Any feedforward convolutional neural network can 

benefit from the simple and effective Convolutional Block 

Attention Module (CBAM) [29]. Integrating CBAM 

modules before three detection heads can synthesize global 

and local information, improving the model's robustness and 

generalizability. The CBAM module can weigh and 

integrate features at different scales and layers by adaptively 

adjusting the channel and spatial attention. The CBAM 

module improves the model's capacity to recognize various 

sizes and shapes of road damage by improving the 

representation and attention mechanisms of features. This 

results in better adaptation to different road damage 

variations and complexities. 
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The CBAM module employs the Channel Attention 

Module (CAM) and Spatial Attention Module (SAM) to 

facilitate the adaptive fusion of local and global road 

damage features. The capacity of the model to identify road 

damage is improved by this fusion. The channel 

characteristics can be represented more accurately by 

utilizing the Channel Attention Module (CAM). The model 

can adaptively learn channel attention to better capture 

important features of road damage, improving target 

discrimination and detection performance. The Spatial 

Attention Module (SAM) enhances the representation of 

spatial data by adaptively learning spatial attention. This 

makes it possible for the model to concentrate better on the 

spatial structure and location information of road damage, 

improving target localization precision and accuracy. 

Fig. 8 shows that the two primary components of the 

CBAM's functioning process are channel attention and 

spatial attention. After processing the input information, the 

CAM creates the channel attention Mc and adaptively 

adjusts the weight of each channel. Then the channel 

attention Mc and the original features F are subjected to 

Hadamard product operation. After the operation, the CAM 

adjusts the high-dimensional feature F’. Next, F’ is 

processed by the SAM to produce a spatial attention vector 

Ms. Ms is product-multiplied with F’ to obtain the final 

optimized feature F’’. The process of CBAM attention 

generation can be described by equation (9)(10). 

 
' ( )F Mc F F=   (9) 

 

 
'' ' '( )sF M F F=   (10) 

Where  represents the Hadamard product operation. In 

applying channel attention and spatial attention to high-

dimensional features, the attention coefficients need to be 

broadcast along different dimensions. Broadcasting ensures 

that they are aligned when performing the Hadamard 

product operation. 

1) Channel Attention Module 

Fig. 9 depicts the channel attention module. 

The module begins by performing global average pooling 

and global maximum pooling operations on the input high-

dimensional features F. A two-layer neural network (MLP) 

receives the pooled aggregated features Favg and Fmax as a 

result. The first layer has a neuronal count of C/r (where r 

represents the reduction rate), and employs the ReLU 

activation function. In the second layer, there are C neurons. 

It is shared with the first layer of the neural network. The 

output of the MLP features undergoes an element-wise sum 

process. The final channel attention characteristic Mc, which 

adaptively adjusts the weights of each channel, is the result 

of the sigmoid activation procedure. In the end, Mc is 

multiplied element-wise by the input high-dimensional 

feature F. Equation (11) below illustrates how the output 

features are fed into the spatial attention module: 

1 0 1 0 max

( ) ( ( ( )) ( ( )))

( ( ( )) ( ( )))

c

c c

avg

M F MLP AvgPool F MLP MaxPool F

W W F W W F





= +

= + (11) 

In the equation, F is the input feature; 1 1CMc R    is the 

one-dimensional channel attention; σ denotes the sigmoid 

function, while MLP stands for multilayer perceptron; 
/

0
C r CW R   and /

1
C r CW R   are the parameters of the two 

hidden layers of the MLP; c

avgF  and 
max

cF  are the feature 

representations obtained by the two pooling processes that 

combine the spatial information on each channel. 
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Fig. 8. CBAM 

 
Fig. 9. Channel Attention Module 
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2) Spatial Attention Module 

Fig. 10 depicts the spatial attention module. The high-

dimensional features F’ output serve as the input features for 

the spatial attention module. To get two H*W*1 features, 
s

avgF  and 
max

sF , first perform a channel-based global average 

pooling and global maximum pooling operation. Then, 

divide these two feature maps by channel. The 

dimensionality diminishes to one channel, i.e., H*W*1 after 

a 7×7 convolution procedure. The weight of each spatial 

location can be adaptively changed when a sigmoid function 

generates the spatial attention feature Ms. To achieve the 

final generated feature, the module multiplies this feature by 

the input feature at the end. The specific equation (12) is as 

follows.  

 

7 7

7 7

max

( ) ( ([ ( ); ( )])

( [ ; )))

s

s s

avg

M F f AvgPool F MaxPool F

f F F









= +

=
 (12) 

Where F is the input feature; 
1 1C

sM R    is the two-

dimensional spatial attention; 3 3

dilatf   is the null convolution 

operation with a convolution kernel size of 3; s

avgF   and 
max

sF   

are the feature representations obtained by aggregating the 

given information at each spatial location for both poolings. 

IV. EXPERIMENTS 

The hardware configuration consists of Intel(R) Xeon(R) 

Silver 4210R CPU@2.40GHz, GPU RTX 3090, and 24 GB 

video memory. The software configuration includes 

Windows 10 and Cuda 11.3. The deep learning framework 

platform is Pytorch 1.10.0, Python 3.8. For all images to 

comply with the model's input requirements, they were 

resized to 640 × 640 pixels. The computer hardware's 

corresponding batch size was fixed at 32. An SGD optimizer 

was used for perfecting the network. To minimize training 

time, we utilize the migration learning method and begin 

model training with pre-training weights provided by 

official sources. 

A. Experimental Dataset 

The paper evaluates the road damage detection network 

by analyzing the global Road Damage Detection Challenge 

(RDD2020) dataset. A rich sample of road damage is 

provided by the dataset, which consists of 21,041 annotated 

photos from the Czech Republic, Japan, and India. The 

information on road damage is composed of labels and 

bounding box coordinates. The kind of damage connected to 

the bounding box is described by these coordinates. In this 

work, the training and validation sets were split into 16,833 

and 4,208 photos, respectively, at random in an 8:2 ratio. 

This dataset covers a variety of common roadway damages 

such as cracks, potholes, etc. The dataset is shown in Table 

1. 
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Fig. 10. Spatial Attention Module 

 

TABLE I 

EXPERIMENTAL DATA 

Class Name Category Details 
Number of Training 

Samples 

Number of Validating 

Samples 

D00 Longitudinal Crack 5230 1362 

D01 Longitudinal Spike Crack 133 46 

D10 Transverse Crack 3562 884 

D11 Transverse Spike Crack 32 13 

D20 Alligator Crack 6714 1667 

D40 Rutting,Bump,Pothole,Separation 4506 1121 

D43 Blurred Crosswalk 642 151 

D44 Blurred Lane Line 4071 986 

D50 Manhole Cover 2842 739 
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B. Evaluation Indicators 

1) Precision (P) and Recall (R) 

To objectively evaluate the outcomes of the experiments, 

the model's performance is assessed with two commonly 

used metrics: precision (P) and recall (R). The chance of 

accurately predicting a positive sample from all anticipated 

positive samples is known as precision (P). The likelihood 

of correctly anticipating a positive sample from actual 

positive samples is known as recall (R). Equations (13) and 

(14) display the formulas for precision (P) and recall (R). 

 
TP

P
TP FP

=
+

 (13) 

 

 
TP

R
TP FN

=
+

 (14) 

When a model accurately predicts positive examples, it is 

referred to as a True Positive (TP). False Positives (FP) are 

instances where the model predicts positively while the data 

is actually negative. When positive cases are mistakenly 

forecasted by the model as negative ones, this is known as a 

False Negative (FN). When negative examples are 

accurately predicted by the model, they are referred to as 

True Negatives (TN). 

2) mAP and F1-Score 

The Average Precision (AP) in this study serves as a 

metric for detecting accuracy. To assess the model more 

thoroughly, the F1-Score comprehensive evaluation index is 

employed. The trade-offs between precision and recall are 

balanced by the F1-Score, a reconciled average of the two 

that shows greater scores indicate better model performance. 

High AP and F1-Score values correlate due to greater 

network accuracy, whereas mean Average Precision (mAP) 

represents the average precision across all classes. The 

equations for AP, F1-Score, and mAP are shown in 

equations (15), (16) and (17). 

 
1

0
( )AP P R dR=   (15) 

 

 

1

1 m
i

i

mAP AP
n =

=   (16) 

 

 1 2
P R

F Score
P R


− = 

+
 (17) 

3)  Parameters and FLOPs 

Additionally, the model's lightweight effect is evaluated 

based on the number of parameters (Parameters) and 

floating-point computations (FLOPs). Parameters refer to 

the model's parameter count, which impacts the network 

model's size. FLOPs determine the model's speed and are 

commonly used to measure its complexity. 

C. Experimental Results 

1) Ablation Experiments 

We carried out an ablation experiment to show the value 

and requirement of each improvement module in the model. 

The benchmark model for this study was YOLOv5. The 

improvement modules are added gradually for ablation 

experiments. Every experiment assesses the models for 

comparison using the mAP, F1-score, Parameters, and 

FLOPs. Table 2 displays the experimental results. 

We first lightweighted the model to minimize the model's 

Parameters and FLOPs. In our experimental setup, the 

original feature fusion's CBS module and C3 module were 

substituted with the GBS module and the C3Ghost module, 

respectively. Parameters and FLOPs decreased to 3.7 and 

8.3 respectively. The significant decline is because the 

Ghost module uses simple linear operations to replace some 

more complex convolutional operations. Conversely, the 

mAP exhibited a 2.8% decline, while the F1-Score 

demonstrated a 1.6% reduction. 

To address the diminished accuracy resulting from 

lightweight operation, we initially altered the CIoU of the 

original YOLOv5 model to SIoU. In contrast to CIoU, SIoU 

incorporates the angle between the predicted and actual 

bounding boxes into its calculations. After the lightweight 

operation, the model improves accuracy by 2.2% while 

keeping the same amount of model parameters and floating-

point calculation. Secondly, the CARAFE module was 

replaced with the original nearest neighbor interpolation in 

YOLOv5. This replacement exhibits a greater sensory field 

and superior semantic adaptability. The model obtained an 

F1-score of 57.6% and a mAP of 55.9%. Lastly, the model 

incorporates a convolutional block attention module 

 

TABLE Ⅱ 

RESULTS OF ABLATION EXPERIMENT 

① ② ③ ④ ⑤ mAP，% F1-Score，% Parameters，M GFLOPs 

√ × × × × 56 58.2 7 16.0 

√ √ × × × 53.2 56.6 3.7 8.3 

√ √ √ × × 55.4 57.3 3.7 8.3 

√ √ √ √ × 55.9 57.6 3.9 8.5 

√ √ √ √ √ 56.2 57.8 4.1 9.0 
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(CBAM) in front of the three detection heads. This enables 

the model to more effectively integrate global and local 

information. Building upon the preceding enhancements, the 

model exhibited a 0.3% improvement in mAP. In the end, 

the enhanced and comprehensive model yielded an F1-score 

of 57.8% and a mAP of 56.2%. The modified YOLOv5 

model exhibits enhanced performance relative to its 

predecessor. The mAP increased by 0.2%, while Parameters 

decreased by 41.8% and GFLOPs decreased by 43.8%. 

In Table 2, ① shows the YOLOv5 baseline model; ②

shows the lightweight processing operation; ③ shows the 

loss function's enhancement using SIoU; ④  shows the 

application of the lightweight CARAFE upsampling 

operator; ⑤ shows the introduction of the CBAM attention 

mechanism. 

2) Performance Comparison of Different Algorithms 

We compared the Parameters and FLOPs of various 

algorithms, as shown in Table 3. According to experiments, 

the lightweight road damage detecting network described in 

this article has Parameters and FLOPs of only 4.1 and 9.0, 

respectively. Compared with the baseline model YOLOv5, it 

is 41.8% and 43.8% less respectively. Compared with Faster 

R-CNN, the Parameters and FLOPs are 34.2 and 25.6 less. 

Compared with EfficientDet, the Parameters and the 

GFLOPs are reduced. Not only are the Parameters smaller 

than literature [19], literature [20], and literature [21], but 

the GFLOPs are also significantly less. 

To validate the algorithm's efficacy, it was compared to 

three other papers, YOLOv5, Faster R-CNN, EfficientDet, 

and other target detection methods. The RDD2020 dataset, 

which was processed using the technique outlined in this 

research, was employed to train and validate the 

aforementioned algorithms. To evaluate the algorithms, four 

metrics were chosen: precision (P), recall (R), mAP, and F1-

Score. The assessment of these metrics enables a 

comprehensive comparison and analysis of the algorithms, 

further validating the feasibility of the methodology in this 

paper. The RDD2020 dataset's experimental findings for 

several road damage detection algorithms are displayed in 

Table 4. 

The experiment's findings indicate that the lightweight 

road damage detection network this study proposes has a 

56.2% detection accuracy. The model presented in this 

research maintains a small gap or even slightly improves 

detection precision while decreasing the Parameters and 

FLOPs. Comparing the mAP to the baseline model 

YOLOv5 shows a 0.2% improvement. Compared with 

Faster R-CNN, mAP, and F1-Score rose by 4% and 6.4% 

respectively. Moreover, the proposed network has 

demonstrated better performance compared to the literature 

[21] both mAP and F1-Score.  

 

TABLE IV 

PERFORMANCE COMPARISON OF VARIOUS ALGORITHMS,% 

Model P R mAP F1-Score 

YOLOv5 58.5 58 56 58.2 

Faster R-CNN 57.6 48.6 51.2 51.4 

EfficientDet 57.8 55.5 56.9 57.2 

Literature[19] 60 58.5 57.4 59.2 

Literature [20] 59.2 58.2 57.6 58.7 

Literature[21] 54.8 53 52.4 54.3 

Ours 60 55.7 56.2 57.8 

 

 

TABLE III 

COMPARISON OF PARAMETERS AND GFLOPS OF VARIOUS ALGORITHMS 

Model Parameters，M GFLOPs 

YOLOv5 7 16.0 

Faster R-CNN 38.3 34.6 

EfficientDet 6.6 11.6 

Literature[19] 11 6.6 

Literature[20] 19.8 17.4 

Literature[21] 4.2 32.7 

Ours 4.1 9.0 
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3) The Loss Value 

The loss value curves of the enhanced YOLOv5 model 

for the training and validation sets are illustrated in Fig. 11. 

The efficiency of the model training is indicated by the trend 

of the loss value with the number of iterations. At the 

completion of training, the model performs better the closer 

the loss value is near 0. The training and validation sets' loss 

values gradually converge after 100 iterations. The change 

in the loss value is relatively smooth after 200 iterations. 

The training and validation sets' loss values show that the 

enhanced model training is more effective. The model 

exhibits a stronger generalization ability overall. 

V. CONCLUSION 

First, the Ghost module is used to complete the 

processing for network lightweight operation. Second, this 

paper adopts SIoU, CARAFE lightweight upsampling 

operator, and CBAM attention module. These modules are 

added to make up for the precision that is lost as a result of 

the model's lightweight treatment. In comparison to the 

baseline model, these enhancements led to a reduction of 

41.8% and 43.8% in Parameters and FLOPs, respectively. 

Meanwhile, the detection accuracy is increased by 0.2%. 

Road damage detection is crucial for road maintenance 

and traffic safety. This work explores a lightweight network-

based method for road damage detection to increase 

detection efficiency and decrease computational load. It is 

an efficient, accurate, and less computational overhead 

method. An effective improvement method is proposed 

based on the YOLOv5 model for the characteristics of road 

damage. The method utilizes the advantage of a lightweight 

network in feature learning to extract key features in road 

images, such as cracks and potholes. This study completely 

takes into account the trade-off between detection 

performance and computing efficiency while designing 

algorithms. The computational burden of the model is 

further reduced while maintaining a high detection accuracy. 

The technique maintains good accuracy while requiring a 

large reduction in processing resources as compared to 

traditional approaches. Therefore, the algorithm has 

potential value in practical applications for real-time 

monitoring and maintenance of road damage.  

In conclusion, the road damage detection technique based 

on a lightweight network is explored in this research. An 

efficient and accurate method with low computational 

overhead is proposed. The algorithm has potential 

applications in road damage detection tasks and helps to 

improve the efficiency of traffic safety and road 

maintenance. 
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Fig. 11. Loss curve during training and validation process 
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