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Abstract—The capacity of lithium-ion batteries gradually
degrades over time, presenting unforeseen risks and losses.
Models based on data-driven approaches and neural network
predictions can offer early warnings for battery failure. How-
ever, common models often face challenges with error accumu-
lation in predicting future capacity changes, and insufficient
data complicates model training. To address this, a novel
method for predicting remaining battery life is proposed. This
method incorporates IC analysis, DTV analysis, and Local
Linear Embedding algorithms for efficient feature extraction
and uses TimeGAN to augment training data, creating an
integrated prediction framework. It combines the long-sequence
prediction capabilities of the Pyraformer network with the
dynamic multi-variable relationship capturing of the BiLSTM
network, enhancing the model’s understanding of capacity
degradation trends. Comparative experiments demonstrate that
this approach achieves higher prediction accuracy than tradi-
tional simple neural networks. Additionally, ablation studies
further confirm the effectiveness of the introduced techniques
in prediction tasks.

Index Terms—Lithium-ion battery, capacity degradation
model, data augmentation, Pyraformer network, time series
prediction.

I. INTRODUCTION

G IVEN the escalating concerns over environmental
degradation, electric vehicles (EVs) are increasingly

becoming the preferred mode of transport. The power battery,
serving as the heart of EVs, is pivotal to their performance.
Among the diverse battery technologies, lithium-ion batteries
stand out as the predominant choice due to their superior
benefits [1]. Nonetheless, these batteries undergo progressive
aging during their lifecycle, characterized by rising internal
resistance and diminishing capacity, adversely impacting
battery performance [2]–[4]. Notably, the likelihood of ther-
mal runaway and related safety hazards escalates markedly
when battery capacity falls below 80% of its original value,
indicating the nearing end of its service life [5]–[7]. Con-
sequently, precise estimation of a battery’s remaining useful
life (RUL) is crucial for optimizing battery utilization and
ensuring safety [3]. This endeavor is notably complex and
vital, as the RUL is influenced by various factors, including
internal chemical reactions, the operational environment, and
usage patterns [5]. Present strategies for RUL estimation of
batteries primarily encompass model-based and data-driven
methodologies [8]–[11].
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Model-based forecasting typically involves the develop-
ment of mathematical or physical models to elucidate the
degradation mechanisms of lithium-ion batteries, focusing on
the internal physicochemical processes, such as formulating
Equivalent Circuit Models (ECMs) and electrochemical mod-
els for RUL estimation. Research [12] delves into the internal
dynamics of lithium-ion batteries through electrochemical
modeling to predict RUL. Nonetheless, crafting precise mod-
els poses challenges due to the dynamic and nonlinear nature
of electrochemical reactions. The complexity in developing
an ECM lies in accurately replicating the battery’s electro-
chemical behavior and choosing the right circuit elements
and parameters that mirror actual battery performance [13].
Furthermore, research [14] integrates particle filtering (PF)
with empirical mode decomposition (EMD) for end-of-life
estimation, streamlining the PF parameter adjustment process
and employing EMD for state estimation to prevent overfit-
ting. Research [15] introduces a semi-empirical approach that
leverages battery charge/discharge cycles for swift and pre-
cise RUL predictions. Research [16] enhances ECM accuracy
by incorporating sensor bias and employs an adaptive vari-
able structure filter with a variable boundary layer approach
for battery state of health (SOH) estimation through internal
resistance measurement. Research [17] links battery aging
to phenomena like cathode agglomerate fragmentation and
changes in anode solid electrolyte interface (SEI) film thick-
ness, proposing a comprehensive cell impedance model for
RUL estimation by examining SOH-related parameters. Con-
versely, research [18] adopts an advanced dual-polarization
technique for ECM development. While model-based meth-
ods, particularly ECM and electrochemical modeling, offer
precise predictions, they encounter applicability challenges
due to varying performances across different battery types
and operational conditions. The intricate mechanisms and
multifactorial interactions complicating battery usage also
make high-accuracy model construction difficult. Moreover,
the precision of RUL predictions heavily relies on model
parameter configurations, highlighting the challenges and
limitations in establishing accurate degradation prediction
models.

In contrast to the model-based methodology, data-driven
strategies bypass the need for an in-depth understanding of
lithium batteries’ internal mechanisms. Instead, they focus
on uncovering the underlying patterns of battery degradation
through the analysis of historical operational data to forecast
the remaining useful life (RUL). Data-driven approaches,
particularly through deep learning techniques, excel in fea-
ture extraction, nonlinear mapping, and adaptability. These
include the use of deep belief networks (DBN) [19], residual
networks (ResNet) [20], and various forms of recurrent
neural networks (RNN) [21], with gated recurrent units
(GRU) [22] and long short-term memory networks (LSTM)
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[23] being notably prevalent. Nonetheless, traditional RNNs
are prone to issues like the vanishing and exploding gra-
dient problems, making it challenging to maintain long-
term dependencies [24]. Furthermore, GRUs and LSTMs
can struggle with the retention of sequence and historical
information, particularly when processing very long time
series, potentially leading to information loss and dilution.

Addressing the challenge of capturing long-term depen-
dencies, the team at Google introduced the Transformer
model [25], leveraging an attention mechanism designed
to efficiently process sequential temporal information and
excel in identifying long-range relationships. Building upon
this foundation, research [26] introduced the Pyraformer, a
novel model characterized by its pyramidal attention mecha-
nism tailored for time series analysis and forecasting. The
Pyraformer distinguishes itself from the Transformer by
employing a multi-resolution strategy to analyze temporal
dependencies across various scales, enabling it to grasp
extended temporal correlations with comparable computa-
tional efficiency. Unlike recursive models like RNNs, which
cannot be executed in parallel, and convolutional models
such as CNNs, which, despite being parallelizable, suffer
from high parameter counts and computational demands,
Transformers and their derivatives like the Pyraformer excel
in parallel processing. The Pyraformer not only retains the
parallel processing capabilities of the Transformer but also
enhances the model’s proficiency in managing long-range
temporal relationships through its innovative architecture,
offering distinct advantages in temporal data analysis and
prediction tasks.

In the realm of data-driven approaches for predicting
the remaining useful life (RUL) of batteries, identifying
Health Indicators (HI) plays a crucial role. However, while
battery capacity and resistance are frequently used as direct
indicators for RUL estimation, their measurement is not
feasible in real-time and requires specialized equipment
in a controlled laboratory setting [27], [28]. Data-driven
techniques primarily rely on regression analysis of pertinent
performance metrics, making the selection of a health indi-
cator that precisely mirrors battery wear and tear especially
significant.

In the analysis of battery degradation, relying on a singular
feature often fails to capture the complete aging patterns.
Utilizing a combination of features can address this limi-
tation, thereby improving the predictive model’s accuracy.
Research [29] introduced an enhanced technique for deriving
Incremental Capacity (IC) curves by gathering IC curves
through reference voltages and identifying incremental ca-
pacity values over various voltage ranges as features. Re-
search [30] employed segments of charging curves for IC
analysis, selecting pertinent curves for feature extraction.
Research [31] identified critical points and deviations as
features of thermo-electric coupling through analyses like
IC, Differential Thermal Voltage (DTV), and Differential
Thermal Capacity (DTC), integrating these with internal
resistance to enrich the model’s input features. Although
diverse approaches exist for feature extraction, the relevance
and applicability of these features can vary significantly
across different battery systems and operational scenarios.
The combined use of multiple features helps overcome
the limitations of single-feature data representation, but the

significance of each feature can differ across time series.
This variation poses a challenge for deep learning models,
which may struggle to prioritize the most relevant features,
potentially leading to underutilization of critical feature in-
formation. Furthermore, the process of selecting multiple fea-
tures is complex, necessitating a balance between relevance
to battery aging, computational efficiency, and the avoidance
of unnecessary complexity and redundant data.

Data-driven methodologies encounter several obstacles,
including the challenges of limited training datasets, uneven
data distribution, and noisy data. Research [32] introduced
a strategy utilizing Auxiliary Classifier Generative Adver-
sarial Networks (ACGAN) to effectively address the issue
of imbalanced fault data, thereby enhancing the diagnostic
accuracy and generalizability. Nonetheless, when it comes
to processing battery-related data, traditional Generative Ad-
versarial Networks (GANs), Conditional GANs (CGANs),
and ACGANs face significant hurdles [33], [34]. These in-
clude struggles with capturing the variability in battery data,
inadequacies in managing uneven data distributions, and
difficulties in replicating complex noise patterns and evolving
data distributions. Consequently, this study adopts TimeGAN
(Time-Conditional Generative Adversarial Networks) [35],
specifically designed for addressing multivariate time series
challenges, as a strategy for data augmentation.

This study introduces a novel approach for predicting the
remaining useful life (RUL) of lithium-ion batteries, utiliz-
ing a combination of TimeGAN, Pyraformer, and BiLSTM
technologies. The method begins with dimensionality reduc-
tion through local linear embedding, applying insights from
Incremental Capacity (IC) and Differential Thermal Voltage
(DTV) analyses to delineate the thermal and electrochemical
shifts indicative of battery aging. TimeGAN is then employed
to augment the dataset with synthetic data, mirroring the
original dataset’s features to increase its diversity. The core
of the prediction methodology is a network that integrates
Pyraformer with BiLSTM for both training and evaluation of
its predictive accuracy. The Pyraformer’s strength lies in its
adeptness at detecting variations across multiple time scales,
essential for grasping both the immediate and extended trends
within time series data. It excels in pinpointing critical
sequential moments, thereby enhancing feature significance
and facilitating effective feature integration. The inclusion
of a Bi-directional Long Short-Term Memory (BiLSTM)
network amplifies this capability by examining data se-
quences from both directions, ensuring a thorough contextual
understanding of the time series. This dual analysis aids
in grasping intricate temporal relationships and forecasting
forthcoming patterns. By merging the Pyraformer’s robust
feature detection with the BiLSTM’s trend analysis refine-
ment, this framework offers a sophisticated solution for
analyzing and forecasting complex temporal data sequences.

This study performs simulation tests using battery aging
data from the collaborative dataset provided by the Mas-
sachusetts Institute of Technology (MIT), Stanford Univer-
sity, and the Toyota Research Institute [36], as well as the
lithium-ion battery degradation dataset from the University
of Oxford [37]. Experimental validations are carried out on
capacity degradation curves across various material systems
and operating conditions to showcase the proposed method’s
efficacy and adaptability in predicting the remaining useful
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life (RUL) of batteries. Through comparative analyses, this
research confirms that the RUL prediction approach intro-
duced herein significantly enhances prediction precision over
conventional recurrent neural network (RNN) methods.

II. DATASET

A. Description Of Dataset

In this research, the battery aging dataset from the col-
laboration between the Massachusetts Institute of Technol-
ogy (MIT), Stanford University, and the Toyota Research
Institute, hereafter referred to as the Massachusetts dataset,
employs a lithium iron phosphate battery system. Conversely,
the lithium-ion battery degradation dataset from the Univer-
sity of Oxford, henceforth called the Oxford dataset, utilizes
a ternary battery system. The Oxford dataset comprises eight
batteries, labeled #1 through #8, among which batteries
#2, #5, and #6 exhibit issues like abrupt voltage drops
and are thus excluded from the experiments in this study.
Consequently, batteries #1, #3, #4, #7, and #8 are chosen for
the experimental analysis. From the MIT dataset, batteries
numbered 20, 22, 36, and 44 are selected for investigation.
The technical specifications of these batteries are detailed in
Table I. Figure 1 illustrates the capacity degradation curves
for the batteries examined from both datasets.

TABLE I: DETAILED BATTERY TECHNOLOGY INFOR-
MATION.

MIT Dataset Oxford Dataset
Battery Model APR18650M1A Kokam CO LTD
Nominal Capacity 1.1Ah 740mAh
End-of-Life Capacity 0.88Ah –
Ambient Temperature 30°C 40°C
Nominal Voltage 3.3V 3.7V

B. Feature Extraction Method

1) Feature dimensionality reduction method: Local Lin-
ear Embedding (LLE) serves as a method for reducing
the dimensionality of high-dimensional data in a nonlinear
fashion. It operates by identifying and preserving the data’s
inherent geometric structure through linear approximations
within local neighborhoods, subsequently projecting the data
into a space of lower dimensionality. In the process of
feature extraction using LLE, data is typically organized
into a matrix that denotes the neighborhood connections
among data points, with each matrix element indicating the
proximity between samples.

In conventional approaches, feature extraction typically
focuses on identifying the peaks and valleys within DTV
and IC signals. This method relies on direct signal attributes.
Conversely, when employing Local Linear Embedding (LLE)
for feature extraction, it doesn’t directly target these peaks
and valleys as features. Instead, LLE discerns the data’s
underlying manifold structure by establishing linear con-
nections in local neighborhoods, thereby transitioning the
data into a newly lower-dimensional representation. Through
this process, LLE autonomously uncovers significant features
within the data, extending beyond just the peaks and valleys.

(a) MIT dataset.

(b) Oxford dataset.

Fig. 1: Capacity degradation trajectory.

The procedural steps of the LLE algorithm are outlined as
follows.

Considering a collection of samples within a high-
dimensional space: X = [x1,x2,x3, . . . ,xN ], where xi ∈
RD, and xi (i = 1, 2, . . . , N ) is the ith sample, N is the
total number of samples, and D is the dimensionality of
the features in the high-dimensional space. Compute the
Euclidean distance between each sample point and other
points, as shown in Equation 1:

Dij =

√√√√ N∑
j=1

(xi − xj)2 (1)

The obtained Euclidean distances Dij are arranged in
ascending order, and the k (k < N ) nearest neighbors to
the sample point are selected, forming the neighborhood set
of xi: Q(i) = [xi1, xi2, . . . , xik].

Calculate the weight matrix W, finding a linear relationship
for the regression problem. For the sample X, use the mean
squared error to calculate the loss function.

ζw =

N∑
i=1

∑
j∈Qi

wij(xi − xj)
2 (2)

Where Q(i) is the collection of k nearest neighbor samples
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of i, to ensure that the sample points maintain invariance
in the local neighborhood of the manifold after rotation,
scaling, and translation, while also imposing a normalization
constraint on the weight coefficients wij , that is, to satisfy∑

j∈Q(i)

wij = 1 (3)

For samples xj that are not in the neighborhood of xi, set
the corresponding weight value wij = 0. Matrixize Equation
(2) as follows:

ζW =
N∑
i=1

∥∥∥∥∥∥xi −
∑

j∈Q(i)

wijxj

∥∥∥∥∥∥
2

2

=
N∑
i=1

∑
j∈Q(i)

wij

∥∥∥∥∥∥xi −
∑

j∈Q(i)

wijxj

∥∥∥∥∥∥
2

2

=
N∑
i=1

WT
i (xi − xj)(xi − xj)

TWi

(4)

Where Wi = (wi1, wi2, . . . , wik)
T .

Let the matrix Zi = (xi − xj)(xi − xj)
T , and obtain the

weight coefficients using the Lagrange multiplier method:

Wi =
z−1
i 1k

1Tk z
−1
i 1k

(5)

where 1k is a k-dimensional all-1 column vector. Keep-
ing this weight matrix Wi unchanged, the set of low-
dimensional embeddings of the high-dimensional samples
Yi = (yi1, yi2, . . . , yiN )T is obtained by constructing the
reconstruction error function and minimizing the error. The
error function is defined as follows

ζ(y) =
N∑
i=1

∥∥∥∥∥∥yi −
N∑
j=1

wijyj

∥∥∥∥∥∥
2

2

(6)

The function needs to satisfy the restriction
∑N

i=1 yi =

0, 1
N

∑N
i=1 yiy

T
i = I . Equation 6 can be transformed into

ζ(y) = tr
(
Y (I −W )(I −W )TY T

)
(7)

Let M = (I − W )(I − W )T and compute the first d
smallest eigenvalues of the matrix M . Take the first 2 ∼ d+1
eigenvalues to obtain the low-dimensional embedding Yi =
(yi1, yi2, yi3, . . . , yiN )T , i = 2, 3, . . . , d+1, and then arrange
the low-dimensional coordinates into an output matrix: y =
(y2, y3, . . . , yd+1)

T .
2) Incremental capacity analysis(IC):
The incremental capacity analysis method effectively con-

nects the aging of batteries to the intercalation and de-
intercalation processes of lithium ions in the electrodes. This
technique visualizes the aging process by examining the
correlation between changes in voltage and capacity, where
the voltage plateau appears as peaks and troughs on the
curve. This allows for an efficient monitoring and character-
ization of battery degradation. The formula for conducting
incremental capacity analysis is presented as follows:

dQ

dV
= I × dt

dV
(8)

where Q denotes the discharge capacity, I denotes the
discharge current, V denotes the discharge voltage, and t
denotes the discharge time.The process of IC analysis, which
involves differentiation, naturally magnifies errors originating
from the data collection phase. Hence, preprocessing the data
is a critical initial step in IC analysis. This preprocessing
encompasses adjusting the sampling frequency and applying
filtering techniques. For the dataset from Oxford, the sam-
pling frequency was standardized to every 20 seconds. In the
case of the dataset from MIT, where the sampling intervals
were inconsistent, only the filtering step was implemented.
The Savitzky-Golay (SG) filter was employed for its efficacy
in preserving the integrity of peak and valley details within
the data. The computation for the SG filter is outlined as
follows:

yi =

j=p∑
j=−p

1

Nc
Cjxi+j (9)

where y denotes the smoothed signal, Cj denotes the co-
efficients, and x denotes the signal. Figure 2 demonstrates
the changes in the DTV and IC curves as the battery ages.
The peaks move with aging and the associated features are
closely related to the capacity.

3) differential voltammetric analysis (DTV):
The Differential Thermal Voltage (DTV) analysis method

leverages entropy variations throughout the battery’s aging
process as a descriptor. With aging, the battery undergoes
energy and phase transitions, manifesting as alterations in
entropy. Thus, the aging of batteries is assessable through the
examination of both voltage and temperature indicators. The
methodology for DTV analysis is summarized as follows:

DTV =
dT
dt
dV
dt

=
dT

dV
(10)

where dT denotes the difference in cell temperature and
dV denotes the difference in voltage. The DTV analysis
commenced with the data preprocessing procedures outlined
in Section (1). Illustrations in Figure 2(a) and Figure 2(c)
depict the evolution of the DTV curve with battery aging. For
both datasets, which vary in cell composition and operational
environments, the curves exhibit two prominent peaks and a
single trough.

4) Correlation analysis and its feature selection: In this
research, we concentrate on extracting features from the Dif-
ferential Thermal Voltage (DTV) and Incremental Capacity
(IC) curves of lithium-ion batteries. Our feature extraction
framework highlights how DTV and IC curve characteristics
evolve with battery degradation. Notably, the peaks and
troughs on these curves undergo significant changes as the
battery ages, with DTV curve peaks and troughs shifting
towards higher voltages, and similarly, IC curve peaks and
troughs also moving towards higher voltages. These shifts are
closely linked to the aging process of the battery. Typically,
the extracted features include the magnitude and position of
the DTV and IC curve peaks and troughs. More precisely,
we initially identify the first peak of the DTV curve and its
associated voltage, along with the first peak of the IC curve
and its corresponding voltage as key features. Additionally,
this study employs the LLE technique for feature extraction.
We then conduct a comparative analysis between the peak
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(a) DTV curves for MIT battery. (b) IC curves for MIT battery.

(c) DTV curves for Oxford battery. (d) IC curves for Oxford battery.

Fig. 2: Schematic of feature extraction.

and trough features and the dimensionality-reduced DTV and
IC features obtained through LLE. The Pearson correlation
coefficient is utilized to assess the relationship between these
features and battery capacity, calculated as follows:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(11)

The outcomes of the correlation analysis are presented in
Table III and Table IV, and the description of each variable
is shown in Table II. Traditionally, extracting features from
peaks and troughs involves extensive data preprocessing,
including filtering, noise reduction, and eliminating distur-
bances to secure high-quality data for reliable feature ex-
traction. These steps aim to precisely determine the location
and intensity of peaks and troughs, thereby capturing critical
data variations. In contrast, the LLE approach streamlines the
feature extraction process, bypassing the need for complex
preprocessing while still identifying features that have a
strong correlation with the data. The correlation coefficients
obtained through LLE surpass those achieved by conven-
tional methods of peak and trough extraction. Moreover,
LLE offers greater computational efficiency, enabling quicker
completion of the feature extraction phase. Overall, the
LLE technique demonstrates clear superiority in extracting
features.

TABLE II: DESCRIPTION OF FEATURES

Feature Description

A The first peak of the DTV curve
B Voltage when the DTV curve at first peak
C The first peak of the IC curve
D Voltage when the IC curve at first peak
E The dimensionality-reduced DTV
E The dimensionality-reduced IC

III. METHODOLOGY

The methodology proposed in this study is illustrated
in Figure 3. In this methodology, the TimeGAN algorithm

TABLE III: CORRELATION ANALYSIS BETWEEN BAT-
TERY CAPACITY AND VARIOUS FEATURES OF MIT
BATTERIES

Feature #20 #22 #36 #44

A 0.968 0.976 0.973 0.977
B 0.971 0.982 0.985 0.989
C 0.968 0.976 0.974 0.979
D 0.975 0.985 0.988 0.985
E 0.998 0.996 0.990 0.993
F 0.997 0.995 0.995 0.992

TABLE IV: CORRELATION ANALYSIS BETWEEN BATTERY
CAPACITY AND VARIOUS FEATURES OF OXFORD BATTER-
IES

Feature #1 #3 #4 #7 #8

A 0.980 0.964 0.967 0.942 0.974
B 0.956 0.961 0.956 0.961 0.926
C 0.955 0.957 0.970 0.963 0.979
D 0.979 0.978 0.983 0.986 0.972
E 0.990 0.993 0.992 0.994 0.987
F 0.988 0.990 0.991 0.990 0.982

plays a pivotal role during the training phase by generating
additional data to reflect patterns present in the battery
capacity degradation data. Subsequently, this augmented
dataset is utilized to enhance the model’s ability to recognize
patterns in unseen data, culminating in the utilization of
a fusion prediction structure to train the predictive model.
Prior to training, the data is partitioned in a 3:7 ratio, with
30% of the data used for testing residual life prediction,
while the remaining 70% undergoes data augmentation using
TimeGAN before training commences. The MIT dataset,
which employs a lithium iron phosphate battery system, is
a part of this study and contrasts with the ternary system
used in the Oxford dataset. This disparity allows for the
evaluation of the proposed methodology’s accuracy and
generalization capabilities across different types of battery
materials. Through the application of these datasets, this
study aims to comprehensively evaluate the performance of
the proposed methodology across various material systems.

A. Pyraformer Network Model

1) Model Architecture: The Pyraformer employs a pyra-
midal attention mechanism within its neural network frame-
work, as depicted in Figure 4. Initially, it adopts a data
preprocessing technique akin to that used in the Informer
model, where observations, covariates, and spatial data are
embedded independently before being aggregated, mirroring
the approach of the Transformer. Subsequently, it constructs
a multi-resolution C-ary tree through the Coarse Scale Con-
struction Module (CSCM), where each coarse-scale node
encapsulates the data from its finer-scale C counterparts. To
adeptly handle varying temporal dependencies, the model
integrates the Pyramid Attention Module (PAM). This mod-
ule leverages a pyramid-shaped attention graph to facilitate
information flow. The model then tailors its network archi-
tecture to suit specific downstream tasks, culminating in the
generation of predictive outcomes.

2) Position coding: Positional encoding assigns distinct
codes to each position vector in a sequence through varying
frequencies of sine and cosine functions. This technique
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Fig. 3: Overall Design of TimeGAN-Pyraformer-BiLSTM Model

Fig. 4: Pyraformer Network Structure

enables the model to understand the order of elements within
the sequence, essential for handling tasks that depend on
temporal data.

PE(t, 2k) = sin

(
t

100002k/s

)
(12)

PE(t, 2k + 1) = cos

(
t

100002k/s

)
(13)

In this context, PE signifies the matrix used for position
encoding, with s representing the dimensionality of each
position vector within the model. The variable t indicates the
specific position of an item within the sequence, while k is
an integer ranging from 0 to (s/2-1), serving as the dimension
index for the encoded vector.

3) Multi-Scale Pyramidal Attention Structure: The
Pyraformer incorporates the Pyramidal Attention Module
(PAM) to understand temporal relationships over diverse
spans, illustrated in Figure 5(a). Utilizing a hierarchical tree
architecture, this module conducts self-attention processes,
facilitating the extraction of multi-resolution features via
connections between different scales. Additionally, connec-
tions within the same scale are used to depict the interde-
pendencies among various resolutions. Within the pyramidal

Fig. 5: PAM and CSCM

graph framework, nodes at the lowest level correspond to
individual observations over time, whereas nodes at higher
levels are tasked with aggregating and extracting features
from their subordinate nodes. This structure enables the
identification of node relationships at each tier. Upper-level
nodes, which assimilate information from nodes below and
engage in feature extraction across extended time frames,
necessitate only the examination of connections between
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neighboring nodes on the same level, thereby simplifying the
computational demands. The pyramidal graph design of the
Pyraformer thus efficiently captures temporal dependencies
within the sequence through a multi-resolution approach.

4) Coarse-Scale Construction Module (CSCM): The
Coarse-Scale Construction Module (CSCM) compiles the
embedded sequences across various scales, forming a multi-
resolution tree architecture that facilitates effective com-
munication among nodes via the PAM. By sequentially
adding coarse-scale nodes from the lower levels upwards,
the CSCM achieves this through convolution operations on
the respective child nodes,CS (C is a constant; S is the
number of convolutional layers the sequence passes through;
S = 0, 1, 2).

In the time dimension, multiple convolutional layers with
a kernel size of C and a stride of C are applied sequentially
to the embedded sequence, thereby generating sequences
of length L/CS + 1 (where L is the length of the input
sequence). These sequences, ranging from fine to coarse, are
concatenated and fed into the PAM. To reduce the number
of parameters and computational load, each node is dimen-
sionally reduced through a fully connected layer before being
input into the cascading convolutional layers, and the original
dimensionality is restored after all convolutions. Such a
structure significantly reduces the number of parameters in
the module and can prevent overfitting. The module structure
is shown in Figure 5(b), where B is the batch size; D is the
feature dimension of each node; DK is the feature dimension
of the key vector.

B. BiLSTM Module

BiLSTM is composed of a pair of LSTM networks that
process temporal data in both forward and reverse directions.
In this architecture, the output vectors from each direction
are merged into a single vector, providing a comprehensive
representation of the sequence at hand. This allows BiLSTM
to effectively harness information from both past and future
contexts, offering a more nuanced understanding of temporal
dynamics within the data compared to a standard LSTM.

ft = sigmoid(Wfxxt +Wfsst−1 + bt) (14)

it = sigmoid(Wixxt +Wisst−1 + bi) (15)

c̃t = tan(Wcxxt +Wcsst−1 + bc) (16)

ot = sigmoid(Woxxt +Wosst−1 + bc) (17)

ct = tan(ct) (18)

Where ft is the output of the forget gate, which is the output
signal of the output gate, it is the preliminary information
to be input into the memory cell, ot is the output signal of
the output gate, and c̃t is the preliminary information to be
output to the hidden layer state s.

C. Time-series Generative Adversarial Networks

TimeGAN, a novel approach for synthesizing time series
data, combines the unsupervised learning capabilities of
Generative Adversarial Networks (GANs) with the predictive
precision of supervised autoregressive models to effectively
manage the dynamics of time-dependent data. It incorpo-
rates a supervised loss alongside a concurrently trained
embedding network to markedly improve the fidelity of the
generated time series. TimeGAN is structured around four
principal components: an embedding mechanism, a recovery
mechanism, a generator for sequences, and a discrimina-
tor for sequences. Its distinctive feature is the integrated
training of both the autoencoder components (embedding
and recovery mechanisms) and the adversarial components
(sequence generator and discriminator), enabling the model
to adeptly encode time series features, generate accurate
representations, and navigate through temporal sequences.

D. Fusion Prediction Structure

This study introduces a hybrid forecasting framework that
leverages the Pyraformer model’s proficiency in handling
extended sequences alongside the BiLSTM model’s adept-
ness at maintaining time series continuity. The proposed
framework encompasses both direct and recursive prediction
mechanisms. The direct prediction segment is tasked with
projecting future values for the entire time series, offering a
macroscopic view of the trend over the forecast period. Con-
versely, the recursive prediction component utilizes outcomes
from the preceding step (incorporating both Pyraformer and
prior BiLSTM predictions) to sequentially forecast subse-
quent points. This approach enables the detection of finer
time series nuances, particularly short-term variations that
may not be fully captured by Pyraformer alone. The under-
lying principle of model prediction is outlined as follows:

X̂
(t+1)
direct , . . . , X̂

(t+m)
direct = fPyraformer

(
X(t−n), . . . , X(t)

)
(19)

X̂
(t+1)
recursive = fBiLSTM

(
X(t−n+1), . . . , X̂

(t+1)
direct

)
,

X̂
(t+2)
recursive = fBiLSTM

(
X(t−n+2), . . . , X̂

(t+2)
direct

)
,

...

X̂
(t+m)
recursive = fBiLSTM

(
X̂

(t+1)
direct , . . . , X̂

(t+m)
direct

)
(20)

Where X = [capacity, feature1, feature2] represents the
capacity value and multiple feature variables at a time point,
X̂direct is the capacity value and multiple feature variables at a
time point predicted by the Pyraformer model, and X̂recursive
is the final prediction result iteratively predicted by the Bi-
LSTM model based on the predictions of the Pyraformer
model.

IV. VALIDATION AND RESULTS ANALYSIS

Following the outlined testing methodology, experiments
were conducted on the proposed model as follows: Initially,
historical battery capacity data designated for prediction was
input into the model. The model then forecasted the capacity
for the next time step, with the prediction error calculated
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by comparing it to the actual capacity. This predicted value
was integrated into the test dataset for the next prediction
cycle, a process that continued until the forecasted capacity
dropped below the specified capacity threshold. The count of
these prediction cycles was noted as the estimated Remaining
Useful Life (RUL), which was then evaluated against the
true RUL. Evaluation of the model’s performance utilized
the cumulative error from single-step forecasts and the total
error in RUL estimation as key metrics. For fairness in
comparison, identical training configurations were applied
across all models. The model’s loss was determined using
MAE, with optimization carried out via the Adam optimizer.
A learning rate of 0.001 and a training duration of 100 epochs
were set. The length of the capacity vector inputted into the
model ranged from 5% to 10% of the entire dataset’s length,
equivalent to 64 for the MIT dataset and 5 for the Oxford
dataset. The experimental results were generated using a
system equipped with a 12th Gen Intel® Core™ i5-12490F
CPU at 2.50GHz, 16GB RAM, an NVIDIA GeForce RTX
3070 GPU with 8GB cache, Python 3.7, and PyTorch 1.8.0.
Detailed experimental findings are provided below.

A. Evaluation Metrics

RUL of a battery is defined as the count of charge-
discharge cycles it can undergo before its capacity falls below
a predetermined failure threshold under existing conditions.
In this study, the open-source dataset utilized records vari-
ous parameters at uniform intervals throughout the charge-
discharge cycles. This leads to a broad spectrum and ex-
tended intervals in the recorded numbers of the final charge-
discharge cycles. Consequently, this research interprets the
data sampling points’ sequence numbers within the total
sampling sequence as an indicator of battery life. The period
until the capacity diminishes to below the failure threshold at
a specific point in time is regarded as the battery’s remaining
life.

RUL = IndexEOL − Indexnow (21)

This paper sets the battery failure threshold at 80% of its
rated capacity. It assesses the effectiveness of a full iterative
prediction on remaining life by comparing predicted charge-
discharge cycles with actual ones. The error in final cycle
prediction is quantified using Cycle Absolute Error (CAE).

CAE = RULpredict −RULtrue (22)

Where RULpredict represents the predicted value of remaining
charge-discharge cycles, and RULtrue represents the actual
value of remaining charge-discharge cycles.

This paper employs Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) to analyze capacity prediction
errors in single-step predictions.

MAE =
1

n

n∑
i=1

|yi − ŷi| (23)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (24)

In the aforementioned formulas, N represents the total
number of samples in the dataset involved in the evaluation;
yi represents the actual value of the battery capacity in the

dataset; ŷi represents the predicted battery capacity value;
ȳi represents the average actual capacity value. MAE and
RMSE represent the error between the predicted values and
the actual values, so the smaller the value, the better the
model performance.

B. Analysis of Experimental Results
Building upon the prediction method and evaluation met-

rics introduced earlier, this paper conducted a series of
experiments comparing several traditional recurrent neural
networks and documented the results. For the test battery
samples, we utilized 30% and 40% of the complete battery
dataset as prediction starting points. Autoregressive predic-
tion was employed to evaluate the accuracy of the model in
life prediction and confirm its effectiveness.

Figure 6 to Figure 9 show the prediction comparison
results for the MIT and Oxford dataset. Each graph represents
a different training split ratio. Each line in the figure corre-
sponds to a different cell, with a thumbnail on the left and a
detailed view of the prediction near the capacity termination
line on the right. In the prediction results, each line represents
a network model, and the red vertical dashed line indicates
the starting point of the prediction. The gray horizontal
dashed line represents 80% of the original capacity, and
the intersection of this line with the dashed line on the Y-
coordinate indicates the failure cycle of the battery.

The figures demonstrate that the prediction method pro-
posed in this paper generates capacity degradation curves
closest to the actual capacity values compared to other
methods. The predicted battery cycle life varies notably
across different training ratios, highlighting the effectiveness
and adaptability of our approach across various stages of
battery degradation. In contrast, other methods display larger
errors relative to actual values.

This paper also presents a visualization comparing re-
cursively predicted remaining life with actual remaining
life to assess the model’s accuracy in predicting remaining
life. Figure 10 display this comparison. Comparisons reveal
that the proposed prediction method in this paper achieves
significantly higher accuracy than other basic recurrent neural
networks on the MIT battery data. Although on the Oxford
battery dataset, where battery capacity sampling is sparser
and the range of charge-discharge cycles is smaller, the
advantage of our method isn’t as apparent, our method still
outperforms others in most predictions, demonstrating good
stability.

Based on experimental results, this paper utilizes MAE and
RMSE as evaluation metrics to calculate prediction errors
of various models on two battery datasets, as displayed in
Tables V to VIII. Taking MIT #20 battery as an example,
when predict start at 30% of data, our method achieves MAE
error of 1.56% and RMSE error of 2.03%, improving 52.87%
and 53.97% respectively compared to the sub-optimal al-
gorithm. At 40% training set ratio, MAE error reduces to
0.83% and RMSE error to 1.01%, improving 79.20% and
84.36% respectively. Similar improvements are observed for
Oxford batteries. These results demonstrate not only smaller
error values across different training set ratios and battery
types but also excellent generalization ability, crucial for
battery health management. The method maintains predic-
tion accuracy across diverse datasets and usage conditions,
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Fig. 6: The predict results of different batteries on MIT dataset when predict start at 30%. Thumbnails on the left and
details on the right.
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Fig. 7: The predict results of different batteries on MIT dataset when predict start at 40%. Thumbnails on the left and
details on the right.
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Fig. 8: The predict results of different batteries on Oxford dataset when predict start at 30%. Thumbnails on the left and
details on the right.

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1675-1689

 
______________________________________________________________________________________ 



Fig. 9: The predict results of different batteries on Oxford dataset when predict start at 40%. Thumbnails on the left and
details on the right.
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Fig. 10: Error analysis of the prediction results.(a) predict start at 30% on MIT batteries. (b) predict start at 40% on MIT
batteries. (c) predict start at 30% on Oxford batteries. (d) predict start at 40% on Oxford batteries.

TABLE V: ERROR ANALYSIS FOR MIT BATTERIES WHEN PREDICT START AT 30%.

#20 #22 #36 #44
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Bi-LSTM 7.09 12.49 6.99 11.32 4.52 6.64 6.52 11.82
LSTM 11.89 19.53 5.75 9.10 3.56 4.62 6.49 8.25
GRU 4.89 7.26 12.44 20.07 5.37 6.24 4.44 7.30
RNN 3.31 4.41 4.70 8.64 9.38 13.41 11.01 12.40
OUR 1.56 2.03 0.36 0.53 2.41 2.80 2.24 2.43

TABLE VI: ERROR ANALYSIS FOR MIT BATTERIES WHEN PREDICT START AT 40%.

#20 #22 #36 #44
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Bi-LSTM 5.84 9.01 4.02 6.80 15.32 24.10 5.93 8.84
LSTM 6.34 9.77 7.39 10.24 6.25 8.18 8.37 13.49
GRU 8.40 12.89 7.87 11.40 9.00 12.29 3.95 5.72
RNN 4.01 6.47 6.28 9.90 3.21 5.84 7.53 10.09
OUR 0.83 1.01 2.01 2.62 1.64 2.03 1.13 1.41

showcasing practicality and reliability in battery performance
prediction. Its strong generalization enables adaptation to
new battery types and scenarios, serving as a valuable tool
for battery management system development, contributing
to extending battery life, enhancing energy efficiency, and
cutting maintenance costs. These traits render our method
not only academically significant but also highly practical
for industrial applications.

V. CONCLUSION

This study introduces a novel method for predicting the
Remaining Useful Life (RUL) of lithium-ion batteries, lever-
aging a combination of TimeGAN for data augmentation,
Pyraformer for long sequence prediction, and BiLSTM for
recursive single-step prediction. The synergy among these
components provides our method with a notable edge in
RUL prediction for lithium-ion batteries. Our method, along
with traditional RNN and LSTM models, was subjected
to experimental validation using both the Oxford and MIT
open-source battery datasets. The findings demonstrate a
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TABLE VII: ERROR ANALYSIS FOR OXFORD BATTERIES WHEN PREDICT START AT 30%.

#1 #3 #4 #7 #8
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Bi-LSTM 4.78 5.47 2.79 3.24 2.49 3.17 5.73 6.41 4.54 5.41
LSTM 1.21 1.51 0.83 1.08 1.46 1.89 1.53 2.01 1.02 1.32
GRU 1.17 1.42 1.79 2.10 1.29 1.68 1.27 1.88 1.46 1.88
RNN 3.39 3.84 2.54 2.93 2.71 3.00 2.64 3.11 2.54 3.39
OUR 0.42 0.62 0.74 0.94 0.83 1.12 0.73 0.93 0.69 0.92

TABLE VIII: ERROR ANALYSIS FOR OXFORD BATTERIES WHEN PREDICT START AT 40%.

#1 #3 #4 #7 #8
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Bi-LSTM 2.31 2.71 2.74 3.50 1.84 2.20 1.88 2.50 2.13 2.53
LSTM 4.47 5.44 1.89 2.40 2.24 2.70 1.51 1.84 1.19 1.44
GRU 3.13 3.76 2.14 2.41 1.34 1.72 2.29 2.76 3.04 3.55
RNN 3.95 4.35 5.06 5.56 1.89 2.34 2.86 3.24 1.94 2.46
OUR 0.48 0.64 0.61 0.83 0.65 0.92 0.86 1.13 1.04 1.25

significant improvement in prediction performance compared
to other approaches. Our proposed network model presents
evident benefits in terms of precision and dependability. Its
extensive applicability aids in boosting battery management
efficiency and sustainability, thereby fostering the progress
of battery technology. Future studies might delve deeper into
refining and exploring this approach to tackle more intricate
battery systems and diverse application scenarios.
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