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Abstract—Due to the rapid global environmental changes,
sustainability-related issues have garnered significant attention
from various stakeholders. Addressing how to reduce and
balance damages caused by various factors is an important
focus of sustainability-related research. To this end, this paper
first proposes several evaluating mechanisms for reducing and
balancing damages under multiple criteria fuzzy behavior,
and then adopts some axioms to analyze these mechanisms
concurrently in terms of mathematical correctness and practical
application by means of axiomatic processes. In order to modify
the discrimination and relative effects caused by participants
and its energy levels respectively, two weighted evaluating
mechanisms and corresponding characterizations are also in-
troduced. Besides, some more interpretations for these axioms
and relative axiomatic processes are discussed throughout this
paper.

Index Terms—Sustainability, damage, evaluating mechanism,
multiple criteria fuzzy behavior, axiomatic process.

I. INTRODUCTION

Recently, sustainability-related issues have received
heightened attention due to drastic climate change, deple-
tion of available resources, and other environmental factors,
leading to the emergence of related research on topics such
as resource allocation, pollution mitigation, and warming
suppression. The damage inflicted on the environment by
civilization development has become an undeniable fact,
with some damages even irreversible. Therefore, reducing
damages caused by various factors has become a crucial
aspect of sustainability-related research.

Reducing damages typically requires addressing multiple
facets simultaneously, which may sometimes conflict. For in-
stance, achieving highly efficient pollution reduction through
certain measures or equipment without consuming excessive
energy or resources, and without generating other types of
pollution or waste, necessitates considering these multiple
facets simultaneously in an optimal or balanced state. In the
field of mathematics, multiple criteria optimization or equi-
librium aims to achieve such benefits within any operational
system.
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Under conventional transferable-utility (TU) conditions,
each participant is typically categorized as either fully en-
gaged or entirely uninvolved with certain other participants.
However, in the majority of cases, the level of participant
engagement remains ambiguous and challenging to deter-
mine. Under fuzzy TU situations (Aubin [1], [2]), participants
are allowed to engage with infinite variations in energy
levels. Various evaluating mechanisms for fuzzy TU games
have been widely applicable across numerous domains, as
explored in works by Branzei et al. [5], Nishizaki and Sakawa
[28], Muto et al. [27], Hwang [12], Li and Zhang [19],
Meng and Zhang [25], Khorram et al. [17], Borkotokey and
Mesiar [4], Hwang and Liao [15], Masuya and Inuiguchi
[24], among others.

Consistency is a fundamental property of evaluating mech-
anisms within axiomatic techniques for traditional situations.
It ensures that a value remains independent when certain
participants are fixed with their assigned payoffs. This prop-
erty asserts that recommendations made for any problem
should align with those made in subproblems where the
payoffs of specific participants are determined. Consistency
has been defined in various ways depending on how the
payoffs of participants who ”exit the bargaining” are de-
fined. This property has been extensively examined across
diverse topics through the application of reduced situations,
including bargaining and cost allocation issues. Utilizing
marginal contributions, the equal allocation of non-separable
costs (EANSC, Ransmeier [30]) and the normalized index
are suggested for traditional TU situations, as per the re-
spective proposals. Moulin [26] demonstrated the concept
of complement-reduction to illustrate that the EANSC could
offer an equitable method for distributing utilities.

The findings presented above prompt a key inquiry:

• whether the marginal index and its associated outcomes
could be expanded to address sustainability under mul-
tiple criteria fuzzy behavior.

In this context, we aim to establish the necessary mathe-
matical foundations for evaluating multiple criteria optimally
to analyze sustainability-related problems with multiple ob-
jectives under fuzzy behavior simultaneously. Departing from
the frameworks of traditional and fuzzy TU situations, we
consider the framework of multiple criteria fuzzy TU situa-
tions. Two new evaluations are firstly presented in Section 2:
the infinitesimal equal evaluation of non-separable damages
(IEENSD) and the normalized marginal-index. The evalu-
ating concept IEENSD involves participants receiving in-
finitesimal marginal damages from operational coalitions and
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then evaluating the remaining damages equally. Conversely,
the normalized marginal-index evaluates damage propor-
tionally by applying the infinitesimal marginal damages of
all participants to operational coalitions. These evaluations
generalize the concept of marginal damages to account for
fuzzy behavior and multiple criteria situations.

To justify these evaluations, we introduce an extended
reduction and related properties of consistency, considered
in Sections 3 and 4:

• The IEENSD is the only evaluation satisfying the prop-
erties of multiple criteria standardness for situations
and multiple criteria bilateral consistency.

• The IEENSD is the only evaluation satisfying the prop-
erties of multiple criteria efficiency, multiple criteria
zero-independence, multiple criteria symmetry and mul-
tiple criteria bilateral consistency.

• While the normalized marginal-index violates multiple
criteria bilateral consistency, it adheres to the properties
of normalized-standardness of situations and specific
bilateral consistency.

Building upon the IEENSD concept, each participant
initially receives infinitesimal marginal damages from oper-
ational coalitions and subsequently evaluates the remaining
damages equally. This entails equal evaluation of any ad-
ditional fixed damage (e.g., the cost of a common facility)
among the relevant participants. However, the participants
and its energy levels may vary across different scenarios.
Under practical applications, the IEENSD may appear unre-
alistic due to varying participant sizes or bargaining abilities.
Additionally, asymmetry may emerge when modeling differ-
ent bargaining abilities among participants and energy levels.
To address these issues, we propose different evaluations
whereby any additional fixed damage is evaluated among par-
ticipants and its energy levels proportionally to its weights.
To mitigate discrimination and relative effects caused by
participants and its energy levels, assigning weights to both
the “participants” and its “energy levels” is a reasonable
approach. In Section 5, we introduce the weight function for
participants and the weight function for levels, facilitating
two weighted extensions of the IEENSD and associated
axiomatic processes. Throughout the study, additional in-
terpretations and discussions regarding these axioms and
axiomatic processes are provided to further elucidate its
implications.

II. PRELIMINARIES

Let P denote the set of participants. For each participant
i ∈ P and ei ∈ (0, 1], we define Ei = [0, ei] as the energy
level space of participant i, with E+

i = (0, ei] indicating
active participation, and 0 indicating non-participation. Let
P ⊆ P and EP =

∏
i∈P Ei denote the Cartesian product set

of energy level spaces for participants in P . For any K ⊆ P ,
a participant coalition K ⊆ P corresponds canonically to
the fuzzy coalition eK ∈ EP , where eKi = 1 if i ∈ K and
eKi = 0 if i ∈ P \ K. Let 0P represent the zero vector in
RP . For m ∈ N, 0m denotes the zero vector in Rm, and
Nm = {1, 2, · · · ,m}.

A fuzzy transferable-utility (TU) situation1 is character-

1A fuzzy TU situation, defined by Aubin [1], [2], is represented as a
pair (P, da), where P is a coalition and va is a mapping such that da :
[0, 1]P −→ R and da(0P ) = 0.

ized as a triple (P, e, d), where P denotes a non-empty and
finite set of participants, e = (ei)i∈P ∈ (0, 1]P represents
the vector indicating the highest levels of energy for each
participant, and d : EP → R is a function satisfying d(0P ) =
0, assigning the worth that participants can obtain when
operating at corresponding energy levels η = (ηi)i∈P ∈ EP .
A multiple criteria fuzzy TU situation is defined as a triple
(P, e,Dm), where m ∈ N, Dm = (dt)t∈Nm

, and (P, e, dt)
represents a fuzzy TU situation for all t ∈ Nm. The class
encompassing all multiple criteria fuzzy TU situations is
denoted as MF.

An evaluation is defined as a mapping τ that assigns to
each (P, e,Dm) ∈ MF an element

τ
(
P, e,Dm

)
=

(
τ t
(
P, e,Dm

))
t∈Nm

,

where τ t
(
P, e,Dm

)
=

(
τ ti
(
P, e,Dm

))
i∈P

∈ RP and
τ ti
(
P, e,Dm

)
represents the payoff of participant i when

i engages in
(
P, e, dt

)
. For (P, e,Dm) ∈ MF, H ⊆ P ,

and η ∈ RP , NE(η) = {i ∈ P |ηi ̸= 0} is defined to
denote the set of participants with non-zero energy levels,
and ηH ∈ RH represents the restriction of η to H . For a
given i ∈ P , the notation η−i is introduced to denote ηP\{i},
and µ = (η−i, t) ∈ RP is defined by µ−i = η−i and µi = t.

Next, we provide two generalized indexes under multiple
criteria fuzzy behavior.

Definition 1:
1) The infinitesimal equal evaluation of non-separable

damages (IEENSD), ∆, is defined by

∆t
i(P, e,D

m)
= ∆t

i(P, e,D
m) + 1

|P | ·
[
dt(e)−

∑
k∈P

∆t
k(P, e,D

m)
]

for all (P, e,Dm) ∈ MF, for all t ∈ Nm and
for all i ∈ P . The quantity ∆t

i(P, e,D
m) =

infj∈E+
i
{dt(e−i, j) − dt(e−i, 0)} represents the in-

finitesimal marginal damage incurred by participant
i in (P, e, dt). From this point onward, our focus will
be limited to bounded fuzzy TU situations, defined
as those situations (P, e, dt) for which there exists
Mv ∈ R such that dt(η) ≤ Mv for all η ∈ EP . This
restriction ensures that ∆i(P, e, d

t) is well-defined.
Within the framework of ∆, each participant initially
receives their infinitesimal marginal damages, follow-
ing which the remaining damages are allocated equally
among them.

2) The normalized marginal-index, Γ, is defined by

Γt
i(P, e,D

m) =
dt(e)∑

k∈P

∆t
k(P, e,D

m)
·∆t

i(P, e,D
m)

for all (P, e,Dm) ∈ MF∗, for all t ∈ Nm and
for all i ∈ P , where MF∗ = {(P, e,Dm) ∈
MF |

∑
i∈P

∆t
i(P, e,D

m) ̸= 0 for all t ∈ Nm}. Under

the concept of Γ, all participants distribute the dam-
age of the overall fuzzy coalition proportionally by
utilizing the infinitesimal marginal damages of all
participants.

Here we present a concise application of multiple crite-
ria fuzzy TU situations in the context of ”management”.
Such problems can be formulated as follows. Consider a
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set P = {1, 2, · · · , n} representing all participants in a
comprehensive management system (P, e,Dm). The func-
tion dt serves as a damage function, assigning a value
to each level vector η = (ηi)i∈P ∈ EP , indicating the
benefits participants can achieve when each participant i
engages in an operational strategy ηi ∈ Ei within the
sub-management system (P, e, dt). Conceptualized in this
manner, the grand management system (P, e,Dm) can be
viewed as a multiple criteria fuzzy TU situation, where
dt represents each characteristic function and Ei denotes
the set of all operational strategies available to participant
i. In subsequent sections, we aim to demonstrate that the
IEENSD and the normalized fuzzy marginal evaluation can
offer ”optimal evaluation mechanisms” for all participants,
ensuring that the organization can derive benefits from each
combination of operational strategies across multiple criteria
fuzzy behaviors.

III. AXIOMATIC RESULTS FOR THE IEENSD

In order to to analyze the rationality for the IEENSD, an
extended reduction and some axioms are applied to present
some axiomatic processes. An evaluation τ satisfies multiple
criteria efficiency (MCEFF) if for all (P, e,Dm) ∈ MF
and for all t ∈ Nm,

∑
i∈P τ

t
i (P, e,D

m) = dt(e). An
evaluation τ satisfies multiple criteria standardness for
situations (MCSS) if τ(P, e,Dm) = ∆(P, e,Dm) for all
(P, e,Dm) ∈ MF with |P | ≤ 2. An evaluation τ satisfies
multiple criteria symmetry (MCSYM) if τi(P, e,Dm) =
τk(P, e,D

m) for all (P, e,Dm) ∈ MF with ∆t
i(P, e,D

m) =
∆t

k(P, e,D
m) for some i, k ∈ P and for all t ∈ Nm. An

evaluation τ satisfies multiple criteria zero-independence
(MCZI) if τ(P, e,Dm) = τ(P, e,Qm) + (ht)t∈Nm

for
all (P, e,Dm), (P, e,Qm) ∈ MF with dt(η) = qt(η) +∑

i∈NE(η) h
t
i for some ht ∈ RP , for all t ∈ Nm and for

all η ∈ EP .
Property MCEFF stipulates that all participants allocate

the entire damage comprehensively. Property MCSS extends
the two-person standardness axiom introduced by Hart and
Mas-Colell [11]. Property MCSYM states that if the infinites-
imal marginal damages are equal, then the payoffs should
also be equal. Property MCZI can be viewed as an extremely
weak form of additivity. As per Definition 1, it is evident that
the IEENSD satisfies MCEFF, MCSS, MCSYM, and MCZI.

Moulin [26] introduced the concept of reduced situations,
where each coalition in the subgroup can achieve payoffs
for its members only if they align with the initial payoffs of
”all” members outside the subgroup. A natural extension of
Moulin’s reduction to multiple criteria fuzzy TU situations
can be defined as follows.

Let (P, e,Dm) ∈ MF, H ⊆ P and τ be an evaluation.
The reduced situation (S, eH , D

m
H,τ ) is defined by Dm

H,τ =

(dtH,τ )t∈Nm
and for all η ∈ EH ,

dtH,τ (η)

=

{
0 if η = 0H ,
dt
(
η, eP\H

)
−

∑
i∈P\H

τ ti (P, e,D
m) otherwise.

An evaluation τ adheres to the principle of multiple crite-
ria bilateral consistency (MCBCIY) if τ ti (H, eH , D

m
H,τ ) =

τ ti (P, e,D
m) for all (P, e,Dm) ∈ MF, for all t ∈ Nm, for

all H ⊆ P with |H| = 2, and for all i ∈ H .

Lemma 1: The IEENSD ∆ satisfies MCBCIY.

Proof: Let (P, e,Dm) ∈ MF, H ⊆ P and t ∈ Nm.
Assume that |P | ≥ 2 and |H| = 2. Therefore,

∆t
i(H, eH , D

m
H,∆

)

= ∆t
i(H, eH , D

m
H,∆

)

+ 1
|H| ·

[
dt
H,∆

(eH)−
∑
k∈H

∆t
k(H, eH , D

m
H,∆

)
] (1)

for all i ∈ H and for all t ∈ Nm. Furthermore,

∆t
i(H, eH , D

m
H,∆

)

= inf
j∈E+

i

{dt
H,∆

(eH\{i}, j)− dt
H,∆

(eH\{i}, 0)}

= inf
j∈E+

i

{dt(e−i, j)− dt(e−i, 0)}

= ∆t
i(P, e,D

m).

(2)

By equations (1), (2) and definitions of dt
H,∆

and ∆,

∆t
i(H, eH , D

m
H,∆

)

= ∆t
i(P, e,D

m) + 1
|H| ·

[
dt
H,∆

(eH)−
∑
k∈H

∆t
k(P, e,D

m)
]

= ∆t
i(P, e,D

m) + 1
|H| ·

[
dt(e)−

∑
k∈P\H

∆t
k(P, e,D

m)

−
∑
k∈H

∆t
k(P, e,D

m)
]

= ∆t
i(P, e,D

m) + 1
|H| ·

[ ∑
k∈H

∆t
k(P, e,D

m)

−
∑
k∈H

∆t
k(P, e,D

m)
]

(
by MCEFF of ∆

)
= ∆t

i(P, e,D
m) + 1

|H| ·
[
|H|
|P | ·

[
dt(e)

−
∑
k∈P

∆t
k(P, e,D

m)
]]

= ∆t
i(P, e,D

m) + 1
|P | ·

[
dt(e)−

∑
k∈P

∆t
k(P, e,D

m)
]

= ∆t
i(P, e,D

m)

for all i ∈ H and for all t ∈ Nm. So, the IEENSD satisfies
MCBCIY.

Next, we characterize the IEENSD by means of multiple
criteria bilateral consistency.

Theorem 1: The IEENSD is the only evaluation satisfying
MCSS and MCBCIY.

Proof: By Lemma 1, ∆ satisfies MCBCIY. Clearly, ∆
satisfies MCSS.

To prove uniqueness, suppose τ satisfies MCSS and MCB-
CIY. By MCSS and MCBCIY of τ , it is easy to derive that
τ also satisfies MCEFF, hence we omit it. Let (P, e,Dm) ∈
MF. By MCSS of τ , τ(P, e,Dm) = ∆(P, e,Dm) if |P | ≤ 2.
The case |P | > 2: Let i ∈ P , t ∈ Nm and H = {i, k} for
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some k ∈ P \ {i}.

τ ti (P, e,D
m)− τ tk(P, e,D

m)
= τ ti (H, eH , D

m
H,τ )− τ tk(H, eH , D

m
H,τ )(

by MCBCIY of τ
)

= ∆t
i(H, eH , D

m
H,τ )−∆t

k(H, eH , D
m
H,τ )(

by MCSS of τ
)

= ∆t
i(H, eH , D

m
H,τ )−∆t

k(H, eH , D
m
H,τ )

= inf
j∈E+

i

{dtH,τ (eH\{i}, j)− dtH,τ (eH\{i}, 0)}

− inf
j∈E+

k

{dtH,τ (eH\{k}, j)− dtH,τ (eH\{k}, 0)}

= inf
j∈E+

i

{dt(e−i, j)− dt(e−i, 0)}

− inf
j∈E+

k

{dt(e−k, j)− dt(e−k, 0)}

= ∆t
i(P, e,D

m)−∆t
k(P, e,D

m)

= ∆t
i(P, e,D

m)−∆t
k(P, e,D

m).

Thus,
τ ti (P, e,D

m)− τ tk(P, e,D
m)

= ∆t
i(P, e,D

m)−∆t
k(P, e,D

m).

By MCEFF of τ and ∆,

|P | · τ ti (P, e,Dm)− dt(e)
=

∑
k∈P

[τ ti (P, e,D
m)− τ tk(P, e,D

m)]

=
∑
k∈P

[∆t
i(P, e,D

m)−∆t
k(P, e,D

m)]

= |P | ·∆t
i(P, e,D

m)− dt(e).

Hence, τ ti (P, e,D
m) = ∆t

i(P, e,D
m) for all i ∈ P and for

all t ∈ Nm.
Next, we characterize the IEENSD by means of related

properties of MCEFF, MCSYM, MCZI and MCBCIY.
Lemma 2: If an evaluation τ satisfies MCEFF, MCSYM

and MCZI, then τ satisfies MCSS.
Proof: Assume that an evaluation τ satisfies MC-

EFF, MCSYM and MCZI. Let (P, e,Dm) ∈ MF. The
proof is completed by MCEFF of τ if |P | = 1. Let
(P, e,Dm) ∈ MF with P = {i, k} for some i ̸= k. We
define a situation (P, e,Qm) to be that qt(η) = dt(η) −∑

i∈NE(η) ∆
t
i(P, e,D

m) for all η ∈ EP and for all t ∈ Nm.
By definition of Qm,

∆t
i(P, e,Q

m)
= inf

j∈E+
i

{qt(j, ek)− qt(0, ek)}

= inf
j∈E+

i

{dt(j, ek)− dt(0, ek)−∆t
i(P, e,D

m)}

= inf
j∈E+

i

{dt(j, ek)− dt(0, ek)} −∆t
i(P, e,D

m)

= ∆t
i(P, e,D

m)−∆t
i(P, e,D

m)
= 0.

Similarly, ∆t
k(P, e,Q

m) = 0. Therefore, ∆t
i(P, e,Q

m) =
∆t

k(P, e,Q
m). By MCSYM of τ , τ ti (P, e,Q

m) =
τ tk(P, e,Q

m). By MCEFF of τ ,

qt(e) = τ ti (P, e,Q
m) + τ tk(P, e,Q

m) = 2 · τ ti (P, e,Qm).

Therefore,

τ ti (P, e,Q
m)

= qt(e)
2

= 1
2 ·

[
dt(e)−∆i(P, e,D

m)−∆k(P, e,D
m)

]
.

By MCZI of τ ,

τ ti (P, e,D
m)

= ∆t
i(P, e,D

m) + 1
2 ·

[
dt(e)−∆t

i(P, e,D
m)

−∆t
k(P, e,D

m)
]

= ∆t
i(P, e,D

m).

Similarly, τ tk(P, e,D
m) = ∆t

k(P, e,D
m). Hence, τ satisfies

MCSS.
Theorem 2: On MF, the IEENSD is the only evaluation

satisfying MCEFF, MCSYM, MCZI and MCBCIY.
Proof: By Definition 1, ∆ satisfies MCEFF, MCSYM

and MCZI. The remaining proofs follow from Theorem 1
and Lemmas 1, 2.

The subsequent examples illustrate the logical indepen-
dence of each axiom utilized in Theorems 1 and 2 from the
remaining axioms.

Example 1: Define an evaluation τ by for all (P, e,Dm) ∈
MF, for all t ∈ Nm and for all i ∈ P ,

τ ti (P, e,D
m) =

{
∆t

i(P, e,D
m) if |P | ≤ 2,

0 otherwise.

Clearly, τ satisfies MCSS, but it violates MCBCIY.
Example 2: Define an evaluation τ to be that

τ ti (P, e,D
m) = ∆t

i(P, e,D
m)

for all (P, e,Dm) ∈ MF, for all t ∈ Nm and for all i ∈ P .
Clearly, τ satisfies MCSYM, MCZI and MCBCIY, but it
violates MCEFF and MCSS.

Example 3: Define an evaluation τ to be that

τ ti (P, e,D
m) =

dt(e)

|P |

for all (P, e,Dm) ∈ MF, for all t ∈ Nm and for all i ∈ P .
Clearly, τ satisfies MCEFF, MCSYM and MCBCIY, but it
violates MCZI.

Example 4: Define an evaluation τ by for all (P, e,Dm) ∈
MF, for all t ∈ Nm and for all i ∈ P ,

τ ti (P, e,D
m) =

[
dt(e)− dt(e−i, 0)

]
+ 1

|P | ·
[
dt(e)

−
∑
k∈P

[
dt(e)− dt(e−k, 0)

]]
.

Clearly, τ satisfies MCEFF, MCZI and MCBCIY, but it
violates MCSYM.

Example 5: Define an evaluation τ by for all (P, e,Dm) ∈
MF, for all t ∈ Nm and for all i ∈ P ,

τ ti (P, e,D
m)

= ∆t
i(P, e,D

m) + ft(i)∑
k∈P

ft(k) ·
[
dt(e)−

∑
k∈P

∆t
k(P, e,D

m)
]
,

where for all (P, e,Dm) ∈ MF, f t : P → R+ is defined by
f t(i) = f t(k) if ∆t

i(P, e,D
m) = ∆t

k(P, e,D
m). Define an

evaluation ψ by for all (P, e,Dm) ∈ MF, for all t ∈ Nm

and for all i ∈ P ,

ψt
i(P, e,D

m) =

{
∆t

i(P, e,D
m) if |P | ≤ 2,

τ ti (P, e,D
m) otherwise.

Clearly, ψ satisfies MCEFF, MCSYM and MCZI, but it
violates MCBCIY.
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IV. THE AXIOMATIC RESULTS FOR THE NORMALIZED
MARGINAL-INDEX

Similar to Theorem 1, we aim to characterize the nor-
malized marginal-index through the lens of multiple criteria
bilateral consistency. However, it becomes apparent that
(H, eH , D

m
H,τ ) does not exist when

∑
i∈H ∆t

i(P, e,D
m) =

0. Consequently, we introduce the concept of specific
bilateral consistency (SBCIY) as follows. An evaluation
τ adheres to specific bilateral consistency (SBCIY) if
(H, eH , D

m
H,τ ) ∈ MF∗ for some (P, e,Dm) ∈ MF and for

some H ⊆ P with |H| = 2, such that τ ti (H, eH , D
m
H,τ ) =

τ ti (P, e,D
m) for all t ∈ Nm and for all i ∈ H .

Lemma 3: The normalized marginal-index satisfies SB-
CIY on MF∗.

Proof: Let (P, e,Dm) ∈ MF∗. If |P | ≤ 2, then the
proof is completed. Assume that |P | ≥ 3 and H ⊆ P with
|H| = 2. Similar to equation (2),

∆t
i(H, eH , D

m
H,Γ

) = ∆t
i(P, e,D

m). (3)

for all i ∈ H and for all t ∈ Nm. Define that σt =
dt(e)∑

p∈P

∆t
p(P,e,Dm) . For all i ∈ H and for all t ∈ Nm,

Γt
i(H, eH , D

m
H,Γ

)

=
dt
H,Γ

(eH)∑
k∈H

∆t
k(H,eH ,Dm

H,Γ
)
·∆t

i(H, eH , D
m
H,Γ

)

=
dt(e)−

∑
h∈P\H

Γt
h(P,e,Dm)∑

k∈H

∆t
k(P,e,Dm)

·∆t
i(P, e,D

m)(
by equation (3) and definition of Dm

H,Γ

)
=

∑
h∈H

Γt
h(P,e,Dm)∑

k∈H

∆t
k(P,e,Dm)

·∆t
i(P, e,D

m)(
by MCEFF of Γ

)
= σt ·∆t

i(P, e,D
m)(

by Definition 1
)

= Γt
i(P, e,D

m).(
by Definition 1

)

(4)

By equations (3), (4), the evaluation Γ satisfies SBCIY.
An evaluation τ satisfies normalized-standardness for

situations (NSS) if τ(P, e, d) = Γ(P, e, d) for all (P, e, d) ∈
MF, |P | ≤ 2.

Theorem 3: On MF∗, the evaluation Γ is the only evalu-
ation satisfying NSS and SBCIY.

Proof: By Lemma 3, Γ satisfies SBCIY. Clearly, Γ
satisfies NSS.

To prove uniqueness, suppose τ satisfies SBCIY and NSS
on MF∗. By NSS and SBCIY of τ , it is easy to derive that
τ also satisfies MCEFF, hence we omit it. Let (P, e,Dm) ∈
MF∗. We will complete the proof by induction on |P |. If
|P | ≤ 2, it is trivial that τ(P, e,Dm) = ∆(P, e,Dm) by
NSS. Assume that it holds if |P | ≤ p − 1, p ≤ 3. The case
|P | = p: Let i, j ∈ P with i ̸= j and t ∈ Nm. By Definition
1, ∆t

k(P, e,D
m) = dt(e)∑

h∈P

∆t
h(P,e,Dm)

· ∆t
k(P, e,D

m) for all

k ∈ P . Assume that ηtk =
∆t

k(P,e,Dm)∑
h∈P

∆t
h(P,e,Dm)

for all k ∈ P .

Therefore,

τ ti (P, e,D
m)

= τ ti
(
P \ {j}, eP\{j}, D

m
P\{j},τ

)(
by SBCIY of τ

)
= ∆t

i

(
P \ {j}, eP\{j}, D

m
P\{j},τ

)(
by NSS of τ

)
=

vt
P\{j},τ (eP\{j})∑

k∈P\{j}
∆t

k

(
P\{j},eP\{j},D

m
P\{j},τ

)
·∆t

i

(
P \ {j}, eP\{j}, D

m
P\{j},τ

)
=

dt(e)−τt
i (P,e,Dm)∑

k∈P\{j}
∆t

k(P,e,Dm)
·∆t

i(P, e,D
m)(

by equation (2)
)

=
dt(e)−τt

i (P,e,Dm)
−∆t

j(P,e,Dm)+
∑

k∈P

∆t
k(P,e,Dm)

·∆t
i(P, e,D

m).

(5)

By equation (5),

τ ti (P, e,D
m) · [1− ηtj ] = [dt(e)− τ tj (P, e,D

m)] · ηtj

=⇒
∑
i∈P

τ ti (P, e,D
m) · [1− ηtj ]

= [dt(e)− τ tj (P, e,D
m)] ·

∑
i∈P

ηtj

=⇒ dt(e) · [1− ηtj ] = [dt(e)− τ tj (P, e,D
m)] · 1(

by MCEFF of τ
)

=⇒ dt(e)− dt(e) · ηtj = dt(e)− τ tj (P, e,D
m)

=⇒ ∆t
j(P, e,D

m) = τ tj (P, e,D
m).

The proof is completed.
The subsequent examples illustrate the logical indepen-

dence of each axiom utilized in Theorem 3 from the remain-
ing axioms.

Example 6: Define an evaluation τ to be that for all
(P, e,Dm) ∈ MF∗, for all t ∈ Nm and for all i ∈ P ,

τ ti (P, e,D
m) = 0.

Clearly, τ satisfies SBCIY, but it violates NSS.
Example 7: Define an evaluation τ to be that for all

(P, e,Dm) ∈ MF∗, for all t ∈ Nm and for all i ∈ P ,

τ ti (P, e,D
m) =

{
Γt
i(P, e,D

m) , if |P | ≤ 2,
0 , otherwise.

Clearly, τ satisfies NSS, but it violates SBCIY.
Remark 1: It is easy to show that the normalized

marginal-index satisfies MCEFF, MCSYM and NSS, but it
violates MCZI.

V. TWO WEIGHTED EXTENSIONS

In various scenarios, participants and their energy levels
may be assigned distinct weights. These weights serve as
a-priori measures of importance, capturing considerations
beyond those represented by the characteristic function. For
instance, in evaluating costs among investment projects,
weights might correspond to the profitability of each project.
Similarly, when distributing travel costs among visited insti-
tutions, as discussed by Shapley [32], weights could represent
the duration of stay at each institution.

If f : U → R+ be a positive function, then f is called
a weight function for participants. If w : EU → R+

be a positive function, then w is called a weight function
for levels. By these two types of the weight function, two
weighted revisions of the IEENSD is defined as follows.
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Definition 2:
• The 1-infinitesimal weighted evaluation of non-

separable damages (1-IWENSD), Γf , is defined by
for all (P, e,Dm) ∈ MF, for all weight function for
participants f , for all t ∈ Nm and for all participant
i ∈ P ,

Γf,t
i (P, e,Dm) = ∆t

i(P, e,D
m) + f(i)∑

k∈P

f(k) ·
[
dt(e)

−
∑
k∈P

∆t
k(P, e,D

m)
]
.

(6)
• The 2-infinitesimal weighted evaluation of non-

separable damages (2-IWENSD), Γw, is defined by
for all (P, e,Dm) ∈ MF, for all weight function for
participants w, for all t ∈ Nm and for all participant
i ∈ P ,

Γw,t
i (P, e,Dm) = ∆w,t

i (P, e,Dm) + 1
|P | ·

[
dt(e)

−
∑
k∈P

∆w,t
k (P, e,Dm)

]
,

(7)
where ∆w,t

i (P, e,Dm) = inf
j∈E+

i

{w(j) · [dt(e−i, j) −

dt(e−i, 0)]}.
An evaluation τ satisfies 1-weighted standardness for

situations (1WSS) if τ(P, e,Dm) = Γf (P, e,Dm) for all
(P, e,Dm) ∈ MF with |P | ≤ 2 and for all weight function
for participants f . An evaluation τ satisfies 2-weighted
standardness for situations (2WSS) if τ(P, e,Dm) =
Γw(P, e,Dm) for all (P, e,Dm) ∈ MF with |P | ≤ 2 and
for all weight function for levels w. Similar to the proofs
of Lemma 1 and Theorem 1, we propose the analogies of
Lemma 1 and Theorem 1.

Lemma 4: The 1-IWENSD Γf and the 2-IWENSD Γw

satisfy MCEFF simultaneously.
Proof: Let (P, e,Dm) ∈ MF, f be a weight function for

participants, w be a weight function for levels and t ∈ Nm.∑
i∈P

Γf,t
i (P, e,Dm)

=
∑
i∈P

[
∆t

i(P, e,D
m)

+ f(i)∑
k∈P

f(k) ·
[
dt(e)−

∑
k∈P

∆t
k(P, e,D

m)
]]

=
∑
i∈P

∆t
i(P, e,D

m)

+

∑
i∈P

f(i)∑
k∈P

f(k) ·
[
dt(e)−

∑
k∈P

∆t
k(P, e,D

m)
]

=
∑
i∈P

∆t
i(P, e,D

m) + dt(e)−
∑
k∈P

∆t
k(P, e,D

m)

= dt(e).

So, the 1-IWENSD satisfies MCEFF. Further,∑
i∈P

Γw,t
i (P, e,Dm)

=
∑
i∈P

[
∆w,t

i (P, e,Dm)

+ 1
|P | ·

[
dt(e)−

∑
k∈P

∆w,t
k (P, e,Dm)

]]
=

∑
i∈P

∆w,t
i (P, e,Dm)

+ |P |
|P | ·

[
dt(e)−

∑
k∈P

∆w,t
k (P, e,Dm)

]
=

∑
i∈P

∆w,t
i (P, e,Dm) + dt(e)−

∑
k∈P

∆w,t
k (P, e,Dm)

= dt(e).

So, the 2-IWENSD satisfies MCEFF.
Lemma 5: The 1-IWENSD Γf and the 2-IWENSD Γw

satisfy MCBCIY simultaneously.
Proof: Let (P, e,Dm) ∈ MF, H ⊆ P , f be a weight

function for participants, w be a weight function for levels
and t ∈ Nm. Assume that |P | ≥ 2 and |H| = 2. Therefore,

Γf,t
i (H, eH , D

m
H,Γf )

= ∆t
i(H, eH , D

m
H,Γf )

+ f(i)∑
k∈H

f(k)

[
dtH,Γf (eH)−

∑
k∈H

∆t
k(H, eH , D

m
H,Γf )

]
(8)

for all i ∈ H and for all t ∈ Nm. Furthermore,

∆t
i(H, eH , D

m
H,Γf )

= inf
j∈E+

i

{dtH,Γf (eH\{i}, j)− dtH,Γf (eH\{i}, 0)}

= inf
j∈E+

i

{dt(e−i, j)− dt(e−i, 0)}

= ∆t
i(P, e,D

m).

(9)

By equations (8), (9) and definitions of dtH,Γf and Γf ,

Γf,t
i (H, eH , D

m
H,Γf )

= ∆t
i(P, e,D

m)

+ f(i)∑
k∈H

f(k)

[
dtH,Γf (eH)−

∑
k∈H

∆t
k(P, e,D

m)
]

= ∆t
i(P, e,D

m)

+ f(i)∑
k∈H

f(k)

[
dt(e)−

∑
k∈P\H

Γf,t
k (P, e,Dm)

−
∑
k∈H

∆t
k(P, e,D

m)
]

= ∆t
i(P, e,D

m) + f(i)∑
k∈H

f(k)

[ ∑
k∈H

Γf,t
k (P, e,Dm)

−
∑
k∈H

∆t
k(P, e,D

m)
]

(
by MCEFF of ∆

)
= ∆t

i(P, e,D
m) + f(i)∑

k∈H

f(k)

[ ∑
k∈H

f(k)∑
b∈P

f(b)

[
dt(e)

−
∑
b∈P

∆t
b(P, e,D

m)
]]

= ∆t
i(P, e,D

m) + f(i)∑
b∈P

f(b)

[
dt(e)−

∑
b∈P

∆t
b(P, e,D

m)
]

= Γf,t
i (P, e,Dm)

for all i ∈ H , for all weight function for participants f
and for all t ∈ Nm. So, the 1-IWENSD satisfies MCBCIY.
Further, assume that |P | ≥ 2 and |H| = 2. Therefore,

Γw,t
i (H, eH , D

m
H,Γw)

= ∆w,t
i (H, eH , D

m
H,Γw)

+ 1
|H|

[
dtH,Γw(eH)−

∑
k∈H

∆w,t
k (H, eH , D

m
H,Γw)

]
(10)

for all i ∈ H and for all t ∈ Nm. Furthermore,

∆w,t
i (H, eH , D

m
H,Γw)

= inf
j∈E+

i

{w(j)[dtH,Γw(eH\{i}, j)− dtH,Γw(eH\{i}, 0)]}

= inf
j∈E+

i

{w(j)[dt(e−i, j)− dt(e−i, 0)]}

= ∆w,t
i (P, e,Dm).

(11)
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By equations (10), (11) and definitions of dtH,Γw and Γw,

Γw,t
i (H, eH , D

m
H,Γw)

= ∆w,t
i (P, e,Dm)

+ 1
|H|

[
dtH,Γw(eH)−

∑
k∈H

∆w,t
k (P, e,Dm)

]
= ∆w,t

i (P, e,Dm)

+ 1
|H|

[
dt(e)−

∑
k∈P\H

Γw,t
k (P, e,Dm)

−
∑
k∈H

∆w,t
k (P, e,Dm)

]
= ∆w,t

i (P, e,Dm) + 1
|H|

[ ∑
k∈H

Γw,t
k (P, e,Dm)

−
∑
k∈H

∆w,t
k (P, e,Dm)

]
(
by MCEFF of ∆

)
= ∆w,t

i (P, e,Dm) + 1
|H|

[
|H|
|P |

[
dt(e)

−
∑
b∈P

∆w,t
b (P, e,Dm)

]]
= ∆w,t

i (P, e,Dm) + 1
|P |

[
dt(e)−

∑
b∈P

∆w,t
b (P, e,Dm)

]
= Γw,t

i (P, e,Dm)

for all i ∈ H , for all weight function for levels w and for all
t ∈ Nm. So, the 2-IWENSD satisfies MCBCIY.

Remark 2: By Definition 2, it is easy to show that the
1-IWENSD violates MCSYM. Similarly, the 2-IWENSD
violates MCSYM and MCZI.

Theorem 4:

• On MF, the 1-IWENSD Γf is the only evaluation
satisfying 1WSS and MCBCIY.

• On MF, the 2-IWENSD Γw is the only evaluation
satisfying 2WSS and MCBCIY.

Proof: By Lemma 5, Γf and Γw satisfy MCBCIY
simultaneously. Clearly, Γf and Γw satisfy 1WSS and 2WSS
respectively.

To prove the uniqueness of result 1, suppose τ satisfies
1WSS and MCBCIY. By 1WSS and MCBCIY of τ , it is
easy to derive that τ also satisfies MCEFF, hence we omit
it. Let (P, e,Dm) ∈ MF and f be a weight function for
participants. By 1WSS of τ , τ(P, e,Dm) = Γf (P, e,Dm)
if |P | ≤ 2. The case |P | > 2: Let i ∈ P , t ∈ Nm and
H = {i, k} for some k ∈ P \ {i}.

τ ti (P, e,D
m)− Γf,t

i (P, e,Dm)

= τ ti (H, eH , D
m
H,τ )− Γf,t

i (H, eH , D
m
H,Γf )(

by MCBCIY of τ and Γf
)

= Γf,t
i (H, eH , D

m
H,τ )− Γf,t

i (H, eH , D
m
H,Γf )(

by 1WSS of τ
)

= f(i)∑
b∈H

f(b)

[
dtH,τ (eH)− dtH,Γf (eH)

]
(
similar to equation (9)

)
= f(i)∑

b∈H

f(b)

[
τ ti (P, e,D

m) + τ tk(P, e,D
m)

−Γf,t
i (P, e,Dm)− Γf,t

k (P, e,Dm)
]
.

Thus,

f(k)
[
τ ti (P, e,D

m)− Γf,t
i (P, e,Dm)

]
= f(i)

[
τ tk(P, e,D

m)− Γf,t
k (P, e,Dm)

]
.

By MCEFF of τ and Γf ,∑
k∈P

f(k)

f(i) ·
[
τ ti (P, e,D

m)− Γf,t
i (P, e,Dm)

]
=

∑
k∈P

[τ tk(P, e,D
m)− Γf,t

k (P, e,Dm)]

= dt(e)− dt(e)
= 0.

Hence, τ ti (P, e,D
m) = Γf,t

i (P, e,Dm) for all i ∈ P , for all
weight function for participants f and for all t ∈ Nm. To
prove the uniqueness of result 2, suppose τ satisfies 2WSS
and MCBCIY. By 2WSS and MCBCIY of τ , it is easy to
derive that τ also satisfies MCEFF, hence we omit it. Let
(P, e,Dm) ∈ MF and w be a weight function for levels. By
2WSS of τ , τ(P, e,Dm) = Γw(P, e,Dm) if |P | ≤ 2. The
case |P | > 2: Let i ∈ P , t ∈ Nm and H = {i, k} for some
k ∈ P \ {i}.

τ ti (P, e,D
m)− Γw,t

i (P, e,Dm)

= τ ti (H, eH , D
m
H,τ )− Γw,t

i (H, eH , D
m
H,Γw)(

by MCBCIY of τ and Γw
)

= Γw,t
i (H, eH , D

m
H,τ )− Γw,t

i (H, eH , D
m
H,Γw)(

by 2WSS of τ
)

= 1
|H|

[
dtH,τ (eH)− dtH,Γw(eH)

](
similar to equation (11)

)
= 1

2

[
τ ti (P, e,D

m) + τ tk(P, e,D
m)

−Γw,t
i (P, e,Dm)− Γw,t

k (P, e,Dm)
]
.

Thus, [
τ ti (P, e,D

m)− Γw,t
i (P, e,Dm)

]
=

[
τ tk(P, e,D

m)− Γw,t
k (P, e,Dm)

]
.

By MCEFF of τ and Γw,

|P | ·
[
τ ti (P, e,D

m)− Γw,t
i (P, e,Dm)

]
=

∑
k∈P

[τ tk(P, e,D
m)− Γw,t

k (P, e,Dm)]

= dt(e)− dt(e)
= 0.

Hence, τ ti (P, e,D
m) = Γw,t

i (P, e,Dm) for all i ∈ P , for all
weight function for levels w and for all t ∈ Nm.

The following examples are to show that each of the
axioms used in Theorem 4 is logically independent of the
remaining axioms.

Example 8: Define an evaluation τ by for all (P, e,Dm) ∈
MF, for all t ∈ Nm, for all weight function w and for all
i ∈ P ,

τ ti (P, e,D
m) = 0.

Clearly, τ satisfies MCBCIY, but it violates 1WSFG and
2WSFG.

Example 9: Define an evaluation τ by for all (P, e,Dm) ∈
MF, for all t ∈ Nm, for all weight function for participants
d and for all i ∈ P ,

τ ti (P, e,D
m) =

{
Γf,t
i (P, e,Dm) if |P | ≤ 2,

0 otherwise.

Clearly, τ satisfies 1WSFG, but it violates MCBCIY.
Example 10: Define an evaluation τ by for all

(P, e,Dm) ∈ MF, for all t ∈ Nm, for all weight
function for levels w and for all i ∈ P ,

τ ti (P, e,D
m) =

{
Γw,t
i (P, e,Dm) if |P | ≤ 2,

0 otherwise.

Clearly, τ satisfies 2WSFG, but it violates MCBCIY.
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VI. CONCLUSIONS

In numerous situations, each participant is granted the
flexibility to engage with an infinite range of energy levels (or
make decisions and strategies). Participants are increasingly
required to efficiently address multiple objectives in relative
operational processes. Consequently, we concurrently ad-
dress fuzzy behavior and multiple criteria situations. Weights
naturally play a role in the framework of damage evaluation.
For instance, when evaluating damage among investment
projects, weights could be linked to the profitability of
each project. Thus, we also explore generalized concepts
for weighted evaluating. Differing from previous investiga-
tions on traditional transferable-utility situations and fuzzy
transferable-utility situations, this paper presents several
novel contributions.

• Simultaneously considering fuzzy behavior and multiple
criteria situations, we consider the framework of multi-
ple criteria fuzzy transferable-utility situations.

• By applying infinitesimal marginal damages under fuzzy
behavior and multiple criteria situations simultaneously,
we propose the IEENSD, the normalized marginal-
index, and related axiomatic processes.

• To mitigate discrimination and relative effects caused
by participants and its energy levels, we introduce
two weighted extensions of the IEENSD and related
axiomatic processes.

• All evaluations and related results are initially presented
within the frameworks of traditional transferable-utility
situations and fuzzy transferable-utility situations.

Building upon the key findings of this study, an intriguing
prospect is to explore the extension of traditional evalua-
tions by simultaneously incorporating infinitesimal marginal
damages with the context of multiple criteria situations under
fuzzy behavior. This endeavor is left for further investigation
by interested readers.
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