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Abstract—T he optimal power flow (OPF) in electrical power
systems focuses on optimizing objective parameters such as
generating costs by altering control factors while remaining
within operational restrictions and supply-demand balance.
Grid power balance, specifically the upper and lower bounds
of generator power exports, and the upper limit of reactive
power compensator capacity are all employed as constraints
in the optimal power flow problem, and a mathematical model
of the problem is developed. The Nutcracker Optimization
Algorithm (NOA) is implemented to resolve the optimal power
flow issue, which is then assessed an IEEE-30 bus system.The
objective functions used for this study encompass generating
cost, active power losses, voltage stability, and bus voltage
variations. The results were then compared to those obtained
using Gray Wolf Optimizer (GWO), Sand Cat Swarm
Optimization (SCSO), Whale Optimization Algorithm (WOQOA),
and Dung Beetle Optimizer (DBO). The NOA can indeed deal
with the optimal power flow problem, as the simulation results
show.

Index Terms—optimal power flow, nutcracker optimization
algorithm, constrained optimization, electric network

I. INTRODUCTION

Ptumal power flow (OPF) is a critical strategy for
ensuring economic and secure operation of the
electricity grid. It's also the fundamental component of the
energy governance framework, the essence of which refers
to the optimization of one or more performance indicators
characterizing the level of grid operation by adjusting the
control equipment, given the system structural parameters
and loads. The optimal OPF issue is a nonlinear,
non-convex, and extremely complex optimization challenge
that includes both continuous and discontinuous control
variables.
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A wide range of optimization strategies have been used
to meet the OPF difficulty These methods are roughly
categorized into two types: traditional optimization
approaches and meta-heuristic algorithms. The former
include linear programming ({L.LP) [3], quadratic
programming (QP) [4], sequential programming [5],
newton's method [6], nonlinear programming [7-8], mixed
integer nonlinear programming (MINLP) [9], interior point
method (IPM) [10-11], simplified gradient method (SGM)
[12], and other mathematical optimization methods. In
these traditional methods, due to the inability of the
mathematical methods to deal with the nonlinear nature, the
nonlinear objective function and constraints must be
converted to a linear form [13]. Such alterations can have
an impact on the accuracy with which power systems are
operated and planned. These approaches face three main
obstacles. To begin, the ideal Power Flow (OPF) problem
often contains numerous local optima, and standard
methods may fail to produce the ideal solution, instead
converging to a local optimum. Second, these methods
need the continuity and differentiability of the goal function,
which 1s not always possible in real-world systems. Finally,
these methods are not appropriate for discrete vanables like
transformer tap settings.

To circumvent the constraints of standard mathematical
optimization methods, various successful metaheuristic
algorithms have been devised based on biclogical behavior.
Inspired by their origins, these algorithms fall into two
classes: evolutionary algorithms and swarm intelligence
algorithms. Evolutionary algorithms are those that model
natural evolutionary processes. Ref. [14] describes a
combination of genetic algorithm and Matpower. Simple
behaviors that mimic social organisms are classified as
swarm intelligence algorithms. Ref [15] describes an
effective whale optimization algorithm (EWOA) that
introduces Lévy motion to encircle prey and Brownian
motion to search for prey to improve the ability to explore
the globe and maintain an appropriate balance between
exploration and exploitation. In Ref. [16], swamm
algorithms are utilized to tackle OPF challenges for hybrid
systems. In addition, there are many hybrid meta-heuristic
algorithms. In Ref. [17], an updated JAYA algorithm was
used to settle the OPF issue in a test system using
renewable power options. This revised JAYA algorithm
successfully addressed the OPF problem in such a system.
InRef. [18], a stack planning method was used to tackle the
OPF problem for solar and wind energy. This study looked
at photovoltaic panels, power plants, and daily load curves,
and used the stack planning algorithm to solve the OPF
problem. Ref [19] used a hybrid approach to tackle the
OPF problem. A hybrd algorithm called DA-PSO, which
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combines the Dragonfly Algorithm (DA) with Particle
Swarm Optimization (PS0), was applied. This hybrid
approach used the exploration and exploitation stages of the
DA and PSO algorithms, to settle multi-objective OPF
issue. Ref. [20] utilized a hybnid Firefly Particle Swarm
Optimization (HFPSO) algorithm to address various
nonlinear and non-convex OPF issue.

Nutcracker optimization algorithm (NOA) is a new
optimization algorithm presented by  Abdel-Basset
Mohamed and Reda Mohamed et al. in 2023 [21], which 1s
inspired by Clark's nutcracker, which is distributed in the
mountains of the western United States and Canada.
Compared to other meta-heuristic algorithms, NOA uses
different local and global search operators and introduces
more positional information to make better use of the
exploration domain, which enables it to solve problems in a
better way.In this study, the NOA is employed to address
the OPF problem. This method's effectiveness was
confirmed initially with CEC2017 test functions before
being applied to the IEEE-30 bus system. The findings
showed that NOA is an effective strategy for treating OPF
1SSUes.

The second section contains the mathematical
formulation for the Optimal Power Flow (OPF) model. The
third section outlines the IEEE-30 bus power grid and the
targets to be optimized. Section IV introduces the NOA.
Section V evaluates the NOA's performance using the
CEC2017 benchmark functions. Section VI outlines the
objective functions to be employed in the simulation
experiments on the THEE-30 bus system. Finally, Section
VII offers a synthesis of the preceding sections and presents
a concluding remark.

II. MATHEMATICAL MODEL OF OPTIMAL POWER FLOW
PROBLEM

The Optimal Power Flow (OFF) issue aims to identify an
arrangement of control parameters which mimimize the
specified objective operates while adhering to particular
equality and non-equality restrictions. The mathematical
formulation of the OPF is described below.

Min  f(x,¥) (0
st glx,y)=0 (2)
h(x,y) <0 (3)

The goal of the perferm f(x, ¥) ndicates the framework's
efficiency target. In multi-objective OPF, / may be a scalar
or matrix function. Vector variables g(x.¥) and A(x,¥)
define the framework’s disparity and equality requirements.
The OPF problem can be turned into linear, mixed-integer,
nonlinear  (possibly non-convex), or mixed-integer

nonlinear coding 1ssues depending on the values of
f.8and k.

A. Equation Constraints

The OPF issue involves numerous equations and
inequality restrictions. The equality requirements ensure
that the total power generated equals the load power plus
any line losses. In contrast, inequality constraints are
required for the system's safe and stable operation. The

equations for both reactive and active electricity balancing
are provided in polar coordinates below.

B, =P, +V, gl'/:,[qjcos(ci ~ &, )+B,sin(d, -8, ),i=1..,NB

4)
J=1
Qn =0, tV, %T/:,[Qjcos(@ —d)+B s, —9,),i=1,....NB

(5)
The active power equation constraint, represented by Hqg.
(4), is a fundamental component of the model, £x, denotes
the active power consumption of the load, whereas £t
reflects the active power output of the i -th bus generator.
HEquation (5) expresses the reactive power restrictions, with
Ur, signifying the load's reactive electrical consumption.
And ¥ denotes reactive power output of the generator at
bus i -th; & denotes the phase angle of the i-th phase angle
of the i-th bus; G, and B, are the 7 -th and J -th bus of
conductance and susceptance of the transmission line
between them; NB denotes the total amount of nodes.
Equations (4) and (3) act as Newton-Raphson technique
termination criterion. This indicates that the power flow
calculation process has completed and the equation
restrictions have been satisfied.

B.  Inequalily Constraints on Control Variables

The electric network operating state can be altered by
modifying factors known as control variables or decision
parameters. These include generators' active power output,
voltage magnitude at generator buses, shunt capacitors'
reactive power, and changeable transformer tap settings.

Pr* <P, < P7™,i=1,..,NG (6)
Ve <V, <VFTi=1,...,NG (7
O <Q. Q" i=1,..,NC (8)
T/ <T, <T7" K =1..NT (9)

where, Eqgs. (6-7) represents generator constraints, Eq. (8)
represents reactive power compensator constraints, and Eq.
(9) represents transformer constraints. The complete control
variables of the system can be described as follows,

=[P By Voo Vo D D Qo O
(10)
where, the generator's active power output is £z -2 Fp

the magnitude of the generator bus voltage is V-V, ;
T,....Tyr is the setting of the transformer taps,
Qo seesley, rtefers to the reactive shunt capacitor's
capacity. The number of generators is denoted as NG | the
number of reactive power capacitors as NC | and the
number of transformers as NT |

C. Inequality Constraints on State Variables

State variables react to changes in control factors. The
Newton-Raphson approach is implemented in electrical
energy calculations to determine these state variables.

Pmn <P

max
Slack — = Slack = PSI::C}C (1 1)
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Or" <0, <05 i=1....NG (12)
ViV, <V m=1,...,NL (13)
S, iSf‘“,nzl,...,Nl (14)

Eqg. (11) 1s the equilibrium node constraint, Eq. {12) 1s
the generator constraint, and Eqs. (13-14) are the safety
constraints. The state wvariables in the system are
represented as follows:

y:[PszachaVzia '>I/LM=QG1="'=QGNG=SJI>"'>SJM] (15)

where, Py indicates the active power input to the slack
node, which operates in fulfilling the active power harmony

criteria specified in Section 2.1. V7.----V7, represents the
voltage across each load point. Uy »---»Us,,. Tepresents the
reactive power produced by generators, while 5,.-.-. 5,

represents the electric delivered via the lines. NL and NI
denotes the current load knots and the total transfer lines.

Inequality restrictions on decision variables do not
require separate processing owing to their function as
higher and lower limits. If the selected vanable violates
these boundaries, it will be adjusted to its maximum or
lowest amount. Inequality requirements on state variables
are controlled via penalty functions.

D. Penalty Function

In general, solving the OPF formulation becomes more
computationally challenging as the system representation
becomes more accurate. The presence of nonconvex
objective and constraints makes the OPF problem
computationally and theoretically challenging. Furthermore,
complicated structural restrictions are difficult to manage
using random or stochastic search methods. To solve these
concerns, the penalty function method is often used. The
penalty function approach converts confined OPF problems
to unconstrained ones. The penalty term is stated as Eq,
{16), whereas the fitting function for each scenario is recast
as Eq. (17).

i=1 X
penally =K x (Foy = Fi' Y + Ko x 20 = 057

m=1 i n=1 (1 6)
+K, < 2, —V;;”ﬁ)z + K < 2(S, -8y
ML M "
fitness = f,... + penalty an
where, K. equals to the value of 10°, K, equals to

10°, K, equalsto 10°,and K; equalsto 10°.
I[II. STtuDY CASES AND OBJECTIVE FUNCTIONS

We exploited the standard THEE-30 bus system to
validate the proposed method's effectiveness. Table I
summarizes the test system, including the placements of
generators, transformers, shunt compensators, and other
essential data.

Bus 1 is the swing or slack bus, also known as the V&
bus. In power flow studies, the swing bus plays a crucial
role in balancing active and reactive power in a system that
satisfies the power balance equation. For practical purposes,
the slack bus's voltage scale and voltage angle are set to 1

p-u and O degrees, respectively. The volts and angles of all
other buses are normalized in relation to the swing bus and
used as outputs for the load flow analysis. The following
part will describe the bus test system study case's
development procedure.

Fig. 1 depicts the structure of the TEEE-30 bus system,
consisting of six generators, four transformers, and two
electrically reactive capacitors. The active power require
for the entire network 1s 283.4 MW, while the need for
reactive electnicity 15 1262 MVAR, assuming a
fundamental voltage of 100 MVA. The voltage restrictions
for generator buses range between 0.95 to 1.1 per unit (p.u.),
while for load buses, they range from 0.95 to 1.05 pu
Table 1 provides an overview of the standard TEEE-30 bus
system. The examination framework encounters four
unique the improvement goals: fuel cost, active power loss
of the system, bus voltage variation, and constant voltage.
Each goal is accomplished via single objective optimizing.

A. Case 1: Fuel Cost

This is OPF's most fundamental objective function, and
it has been extensively researched in the literature.
Quadratic functions are commonly used to characterize
thermal generators consumption characteristics. The
objective function that must be minimized is defined as
follows:

i=1
j;'osr = A%ai +bIPG! +CiPC§] (18)

where, @, , b, and ¢, are the cost coefficients for generating

the generator's output power, while NG is the number of
system units. P refers to the active output power of i-th unit.
Table II illustrates the cost coefficients for generators
within the TEEE-30 node the electrical network.
B. Case 2: System Active Power Loss

Eq. (19) aims to minimize the active power losses in
megawatts (MW).

i=1j#t

_ 2 2
Jouss = ZLG, IV 4V =2V c05(8, - 6,))] (19)

0 26
235
2
21
1 ;:

Fig. 1 Framework of standard IEEE-30 bus network
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TABLE 1. DETAILED DESCRIPTION OF STANDARD [EEE-30 BUS NETWORK

Item Quantity Details
Bus 30
Branch 41 -
Buses: 1 {slack),
Thermal generator 6 2.5.8 11 and 13
Shunt VAR 9 Buses: 10 and 24

compensation
On-load tap changer

4 Branches: 11, 12,15 and 36
transformer

Control variables 17
Connected load 2834 MW, 126.2 MV Ar

Load bus voltage 24 [095-1.05]pu.

TABLE II. GENERATOR-RELATED PARAMETERS

Generator Bus a b ¢
G, 1 ] 2 0.00375
G, 2 ] 1.75 0.0175
G, 5 0 1 0.0625
G4 8 0 325 0.00834
G 11 ] 3 0.025
G, 13 ] 3 0.025

C. Case 3: Voltage Stability

Voltage stability issues have recently received more
attention 1n the world of electrical power systems. This
increased focus arises from previous occurrences in which
electrical systems in specific countries failed due to voltage
instability. In power systems, "stability" refers to the
system's capacity to keep all bus voltages within acceptable
levels after disturbances. When disturbances, ncreasing
load demands, or changes in system circumstances result in
unmanageable voltage dips, the system will unavoidably
enter a state of voltage instability. Networks with longer
connections and heavier loads are prone to encounter
unstable voltages.

The L -index for each node provides an accurate measure
of any electrical system's reliability. This index fluctuates
between O to 1, while 0 representing empty load and scores
larger than 1 indicating voltage collapse. The voltage
stability metric used in this paper is obtained from a solved
power flow with variables and parameters to compute the
voltage stability metric, which can be used to quantitatively
characterize the distance between the actual state and the
stability limit. The system nodes are classified into two
categories, one for all load nodes comer denoted as L, and
the other for nodes including generators denoted as G. The
system node equation can be expressed as:

L Y. Yl
{UG :{ 1 2}|: L} (20)
ve |y, r |,
Partial inverses are performed on it:
UL B 1"{‘l H2 IL B ZLL FLG IL (21)
I - H3 H4 7 - K% y9e || o
U, I, U and I, are the voltage vector and
current vector of the PV node and load node; 7%, F%,

K# and Y9 are the submatrices of the matrix of
mixtures. The local voltage stabilization index L, is
determined for each load node as follows:

i=1 V
L =[1-YF | j=1..N (22)
HF Vj

Of these, the ¥, and ¥, denote the voltages of the
generator of generation  and the P-Q bus of the J -th
generation, respectively; £, can be calculated by the
YBUS matrix with the following formula:

Fﬂ = 7[YLL ]_1[YLG] (23)

where, extract submatrices I;; and I}, from the network's
YBUS framework, isolating the load (PQ) and generator
(PV) nodes. Calculate the . -index for all load buses; the
highest number indicates reliability of the system. Hence,
the ultimate operate for system security is:

stmbxh’iy = maX(L_j) J=L.. N 24

In the case where the generator node voltage is
maintained constant, 7L <01, with smaller values indicating
a more stable system.

D. Case 4: Voltage Stability

Voltage deviance is an essential statistical measure used
to assess the reliability of an electrical network. It indicates
the condition of the system voltage. The goal function is
defined as the accumulated departure of all P-Q bus
voltages in the power structure, as determined using the
following formula:

m=1
deevmﬁon = Z‘ I/'Lm - 1 0 | (25)
NL

IV, NUTCRACKER OPTIMIZ ATION ALGORITHM

NOA is an innovative metaheuristic algorithm. The
nutcracker's behavior can be categorized as two basic tasks.
The first objective is to gather and store pine nuts (food).
The second task comprises looking for and retrieving saved
locations. These activities take place in two distinct seasons.
The suggested method models the nutcracker's behavior
based on these two basic actions. The two basic tactics are
foraging and subsequent storage, and caching search and
subsequent retrieval. In either scenario, the process of
exploration and exploitation exists in the nutcracker
population, 1.e., each strategy in turn contains two different
population behaviors, as shown in Fig. 2.

A. Population Initialization

The initialization of the NOA population mvolves
randomly generating points in the problem's search space as
individual nutcrackers. The formula for imtialization is as
follows, assuming a population size of N and problem
dimension of .

—

— — —— —
X, = +[UJ—LJJ-RM+LJ,:’ 12,..N.j=12..D (26)
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Proposed information sharing mechanism among two slrategies
| Foraging and storage strategy | | Cache-search and recovery strategy |
v v
Exploration Exploitation Exploration Exploitation
phase | phase | phase 2 phase 2
3 e 1
t t=t+1

Fig. 2 Exploration and exploitation processes.

Eq. (26) denotes the j-th dimensional variable of
individual 7, and denotes the highest and lowest boundaries

of the j-th dimensional variable, gj; is an arbitrary vector
between [0, 1].

B. Phase I-Exploration

As a result, the nutcracker occupies the beginning
positions/food sites within the search space (gathering area)
generated by Eq. (26). Subsequently, the nutcrackers assess
the preliminary position of the fruit, which contains seeds.
If the nutcracker comes across viable seeds, it takes them to
a storage place and buries them in a cache. If suitable seeds
are not found, the nutcracker looks for cones on another
pine tree or several trees. The following position update
method can be used to quantitatively approximate this
behavior:

X, .. if £, <1,

X:w * }/-(qu,] _X;,J)

+u(r’d, - L)), if 150,120 gy

X}H _

X .+y-(X’ X! ) otherwise

o) A7 B.J

+y.(r1 < §).(r2.Uj 7LJ),

where, X' is the new placement of the i-th individual in
the current generation; X, is the j-th placement of the i-th
nutcracker in the present generation, L, , U, are scalar
vectors including the lower and higher bounds of the j-th
digit, v is a real number based on Lévy's flight
and 4, B and C are three persons chosen at random from
the population to study the excellent state of the alimentary
supply.; 7,, T, , ¥, # are real number generated randomly in
the range of [0,1]. X, ; is the J -th dimensional mean of all
solutions of the current population at the £ -th iteration, { is
the count of iterations, and & 1s fixed to 0.05. # 1s a value
generated on the basis of a normal distribution ( 7,), Lévy
flight ( 7, ), randomly between O and 1 ( 7; ) as follows:

nifn <y

H=9T 0 1 <1 (28)
i<

where , %, are random real numbers in the range [0.1].

C. Phase I-Development

The nutcracker will imtially facilitate the transfer of the
food items procured during the preceding stage
(Exploration Stagel) to a provisional storage location. This
1s the Exploitation Phase 1, which is the stage during which
the nutcracker stores pine seeds. Mathematically, the
behavior may be expressed as follows:

)?:er-()?’ )f‘)-|}i|+r1-()?;f)?;) ifr, <1,

best Mg

)?:H(MW): )E‘;Est+#.(j;7‘);v;) ifrn <t
)?ém ) otherwise
(29)

where, X" is the new position of the nutcracker storage
region in the present iteration ¢ , X[ is the optimal
individual of the current population, 4 18 a random number
created by Lévy's flight, 7; is a number randomized from 0
to 1, and [ 1is a decreasing linear factor from 1 to 0. In
furtherance of avoiding local minima that may occur during
unidirectional searches, the diversity of NOA's
development operators helps to accelerate its convergence
rate.

The transition between foraging and caching stages is
contingent on the following equation, which strives to
attain equilibrium between exploration and exploitation.

P - Eq(27), if > F,
Eq.(29), otherwise

s (30)

i

where, ¢ 1s a random number ranging from O to 1, and
P, denotes a probability value that decreases linearly
from 1 to 0 based on the present generation.

D. Cache Search and Retrieval Strategy

Throughout the winter, it is a good idea to be in
exploration and search mode. The second exploration phase
begins for nutcrackers as they begin to search for their
cache. Nutcrackers use spatial tactics to locate their caches,
typically using multiple reference points to cue a hiding
place. For simplicity, let us assume that every cache is
identified by two objects, called reference points (RP). The
two chosen landmarks are computed as {ollows:
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)?f+oc-cos(¢9)-(()?jl 7)?;))+05-RP, ifo=x/2

)

il =

X! +a-cos(é’)-(()?jq - X )) otherwise
(31
R X! +(cc-cos(6)-(([7—f)-r3 +f)+a-RP)-[}2,iﬂ9: Ti2
j’:JrCZ'COS(g)'(([}*E)'fB+Z)'[72 , otherwise
(32)

1 7 <P,

U, = (33)
' { 0 otherwise

o= (34)

l’ H
— , otherwise

max

(=)

where, & is arandom radian between [0, 7]. 4. B are
two different individual nutcrackers randomly selected . #
and # are random real numbers in the range [0,1]. T 1is
the maximum number of iterations, and the very first
reference point is generated by using Eq. (33). £, is the
probability used to determine the percentage of the search
space that 1s used to explore the rest of the regions globally,
where ¢ and T,,. rand display the present and maximal
generation, correspondingly. The first term in Eq. (34)
reduces exponentially with the number of iterations, which
improves the algorithm's convergence rate. Simultaneously,
the second term grows gradually to avoid becoming trapped
in local minima. .

E. Phase II-Exploration

There are several possibilities for a nutcracker to locate
its cache of food The first hypothesis is that the nutcracker

remembers the position of its cache using the first RP value.

The second option is that the nutcracker can't remember
where its cache 1s.In this case it will search using the
second RFP |, which is the second stage of development
shown in Eq. (38). For the first case location, there are two
possibilities: Either the food exists or it does not The
following equation can be used to mathematically model
this behavior:

X T <,
o Xf_j+r1-()(z fo_J)+r2-(R}?fleéJ),orhersze

¢
4 _

best, j

(35)

Eq. (35) has two states. The first state models the
possibility that food exists, which means that certain
dimensions of the cache/solution have a probability of
surviving the next generation. It is beneficial to keep a
stock of pine nuts. Indeed, the nutcracker will put emphasis
on food storage the following time. The second situation of
Eq. (35) represents the risk of no food being available.

Due to poor solution spaces, the algorithm uses an
escape strategy to prevent slipping to the minima. Hidden
things may be stolen by other nutcrackers and lost, or it
may be damaged by natural forces such as rain or snow. Eq.
(35) and state (1) enable the nutcracker to investigate
potential portions of the search space, improving NOA's
local search capabilities. Eq. (35) and state (2) allow the
nutcracker to explore places in the search space, enhancing
NOA's global search capabilities.

i

X, LT < T
YO XE e X X Var (RPL X, otherwise
i 1 best, j i 2 i,2 [s9y N &

e+l

(36)

where, RP’, is the second RP of the i -th nutcracker's
current cache at iteration £ . Using Eq. (39), the Nutcracker
Optimization Algorithm (NOA) can investigate new ranges
surrounding the second reference point ( RP ) and develop
viable ranges for possible solutions. NOA implies each
nutcracker utilizes the second RP to locate the stash, and
therefore, Eq. (35) is updated to Eq. (36) based on the
second P The first stage of Eq (35) permits the algorithm
to focus its search on the most suitable region containing
the best solution. Using the second state of Eq. (36), the
method can explore new parts of the search space and
improve its overall search. In conclusion, the simulation of
retrieval behavior can be summarized as follows:

o Eq.(34).if 1, < g,
Eq.(35), otherwise

= (37

i

where, 7; and 7; are random numbers between the range [0,
1]. The 1st example in the formula represents the
nutcracker that remembers its hidden cache, while the 2nd
example represents the nutcracker that does not remember.

F. Phase II-Development
Eqgs. (38)-(39) depict the second stage of development.

fn {X— I S@ )

RP: , otherwise

)

o | XLATED<f®E) 39
RP;: , otherwise

The equation determines the trade-off between
exploratory behavior for the first and second RP .

el {EQ-GS), if f(Bq.(38)) < f(Eq.(39)

) (40)
Eq.(38), otherwise

The subsequent formula determines the interchange
during cache search cycles and the retrieval phase in order
to strike an equilibrium between exploration and
exploitation.

Eq.(37),if ¢ > P,
" | Eq.(40), otherwise

i+1

(41)

Update the optimal value by Eq. (42).
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)E—£+l _

i

{X A< SED

X, otherwise

The procedure of the Nutcracker Optimization Algorithm
1s depicted in Fig. 3.

V. FUNCTION OPTIMIZATION SIMULATION AND
RESULT ANALYSIS

A. Test Function

To evaluate the efficiency of the Nutcracker optimization
algorithm, this section employs the CEC2017 benchmark
functions, consisting of 29 functions for testing single-peak,
multimodal, hybrid, and combinatorial problems with shifts
and rotations. It is important to note that the F2 functions
have unresolved issues that are not considered[23]. The
search domain for all functions is [-100, 100], and their
dimension is 10. This section compares seven algorithms:
Nutcracker Optimization Algorithm (NOA), Harris Hawk
Optimization Algorithm (HHO), Sandy Cat Swarm
Optimization Algorithm (SCSO), Gray Wolf Optimizer

(GWOQO), Whale Optimization Algorithm (WOA), Beluga
Whale Optimizer (BWO), and Dung Beetle Optimization
Algorithm (DBO). Each algorithm was tested with 30
populations, 500 iterations, and 30 independent runs of
each test function. The results were plotted against their
averages.

B. Simulation Results and Analysis

Table II and Fig. 4 show that the NOA performs well in
all types of benchmark functions. For the single-peak
functions (F1, F3), the performance 1s ranked first for all of
them. In the simple multi-peak functions (F4-F10), F4 and
F10 have the best performance. In the hybrid functions
(F11-F20), F11-F15, F18 and F19 have the best
performance. In the combined functions (F21-F30), F25,
F27, F28 and F30 rank first in terms of performance.
According to the comprehensive performance analysis,
NOA ranks first on average among 29 tested functions,
followed by DBO in second place. The BWO ranks the
lowest. Effectiveness of Nutcracker optimization algorithm
has been proven

Return the best X—besr

| Imitialization

Generate random numbers
a and ay between 0 and 1.

o
Updating using Yes . ¢ is a random number _Yes =
“« — <
Eqs(27)and (42), PP between 0 and 1. TR
Nao No
et Updating using Generale RP matrix using
& Eqs.(29)and (42) . Egs. (31-32)
e
Updating using M B ¢ is a random number
Eqs. (37) und (42). . #>Po, il between 0 and 1.
e
=
No
Updating using
Ligs. (40) and (42).
Fig. 3 NOA flow chart.
TaBLE III. CEC2017 BENCHMARK FUNCTION SIMULATION RESULTS
NOA HHO SCSO GWO WOA BWO DBO

MINIMUM 2. 28E+05 2.00E+07 1.32E+09 1.46E+08 1.58E+09 4 22E+10 1.69E+05

F1 MAXIMUM 3.62E+06 5.66E+07 1.84E+10 6.33E+09 2.17E+10 7TA8E+10 4 33E+06
AVERAGE 1.23E+06 3.88E+07 8.72E+09 1.75E+09 1.02E+10 6.55E+10 1.34E+06

RANK 1 3 4 6 7 2

MINIMUM 7.17E+03 2.84E+04 3 42E+04 3 86E+04 1.69E+04 7.93E+04 3.72E+04

F3 MAXIMUM 3.74E+04 6.44E+04 8.53E+04 1.19E+05 5.42E+04 1.11E+05 8.24E+04
AVERAGE 1.81E+04 4.60E+04 5.94E+04 7.17E+04 3.82E+04 9 25E+04 6.30E+04

RANK 1 3 6 2 7 5

MINIMUM 4 40E+02 5.23E+02 7.17E+02 5.25E+02 5.91E+02 1.25E+04 4 67E+02

F4 MAXIMUM 2.24E+02 6.90E+02 4.16E+03 7.03E+02 1.84E+03 2.16E+04 5 48E+02
AVERAGE 5.08E+02 5.89E+02 1.59E+03 5.91E+02 9.27E+02 1.71E+04 5.10E+02
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Fig. 4 Convergence plot of test function optimization.

VI. SOLVING OPTIMAL POWER FLOW CALCULATION
BASED ON NUTCRACKER OPTIMIZATION ALGORITHM

The nutcracker optimization approach was evaluated in
an [EEE-30 bus system with a population size of 50, up to
100 iterations, and 30 independent runs per objective
function. This methodology allows for thorough assessment
of the algorithm's performance across objective functions.

A. Results of Case 1

The objective of optimization is to minimize power
generation costs, with lower values indicating greater cost
savings. Figure 5 depicts the iteration curves for each
algorithm in Case 1, with the mean of 30 iterations plotted.
Table IV  quantitatively contrasts the execution
performance for goal condition 1, illustrating the minimal,
mean, and maximal costs achieved using the Nutcracker
Optimization Algorithm (NOA) and other algorithms. The
NOA achieved a minimum cost of $799.2885/h and the
lowest average cost of $799.6691/h, demonstrating high
stability. Table V shows the ideal response values for every
purpose of the IEEE 30 node grid, with Scenario 1
indicating the optimal objective.

B. Outcomes of Case 2

The objective function is active power loss, where a
smaller value indicates lower power transmission losses
and higher active power delivered to each load. Figure 6
illustrates the iteration curve of the algorithm in Case 2.
Tables VI and VII present comparative results with other
algorithms in the selected test system, showing an average
improvement of 8.98% compared to the second-ranked
DBO.

C. Results of Case 3

The objective function is voltage stability, with a smaller
value suggesting greater reliability of voltage in the
electrical network. Figure 7 depicts the iteration bends for
each algorithm. Table VIII presents a statistical assessment
of the computational outcomes for the specified test
system's objective features. NOA achieves the lowest
average value at 0.7939 p.uTable IX shows the optimal
solution of NOA compared to the other algorithms, with an
improvement of 0.12% compared to the second-place mean
value of DBO.
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TABLE VIII. RESULTS OF EACH ALGORITHM IN CASE 3

Algorithm Fuel cost Ploss LKmax VD
NOA 799.2885 8.7768 0.9843 2.0589 Algorithm Minimum Maximum Mean
SCS0O 819.8739 10.3343 0.9954 0.8507 NOA 0.7934 0.7957 0.7939
GWO 799.6103 8.9354 0.9809 1.6098 SCS0O 0.8179 0.9237 0.8537
WOA 799.9401 9.0045 0.9843 22950 GWQO 0.7955 08136 0.8036
DBO 799.2204 8.7311 0.9812 21176 WOA 0.7995 0.8735 0.8225
DBO 0.7935 0.8071 0.7949
45 . ; ; .
ml TABLE IX. COMPARISON OF EACH OBJECTIVE FUNCTION WITH CASE 3 AS
THE OPTIMAL OBJECTIVE AND OTHER ALGORITHMS
3 Algorithm Fuel cost Ploss LKmax vD
§ 3 NOA 1313.8565 22.1283 0.7934 1.1244
§ SCSO 1777.3322 20.2741 0.8179 0.9605
E 25 GWO 1231.1344 20.7093 0.7955 1.0709
g
=@ R WOA 1949.8284 33.2691 0.7995 1.1391
DBO 13503797 19.5681 0.7935 1.1086
155 s g S N D. Results of Case 4
i e s = — — I_n this scenario, voltage diver_ger}ce serves as the goal
feeafion variable, where a smaller value indicates a better voltage
level of the electrical network. Figure 8 shows the trace of
Fig. 6 Iteration bights of each algorithm in Case 2. the algorithm in case 4. A statistic analysis of the
TABLE VL. RESULTS OF EACH ATGORITHM IN CASE 2 experimental performance for this goal in the selected
pYP— A— — o system 1s shown in Table X. NOA recorded the lowest
mean value of 0.1645 pu. Table XI shows the optimal
NOA 1.1516 12757 1.1990 solution of NOA compared to the other algorithms,
8CS0 1.5408 3.7978 2.5299 indicating an improvement of 14.14% compared to the
QWO 1.1999 1.7372 14101 average value of the DBO in the second position.
WOA 1.2931 2.839 1.6708
DBO 1.1511 1.3793 1.2294
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Fig. 8 Iteration curves of each algorithm in Case 4.

TABIE X. OUTCOMES OF EACH ALGORITHM IN CASE 4

Algorithm Minimum Maximum Mean
NOA 0.1511 0.1795 0.1645
SCSO 0.3020 0.6324 04512
GWO 0.1796 03193 0.2200
WOA 0.1940 03505 02649
LBO 0.1652 0.2229 0.1916

TABLE XI. COMPARISON OF EACH OBJECTIVE FUNCTION WITH CASE 4 AS

THE OPTIMAL OBJECTIVE AND OTHER ALGORITHMS

Algorithm Fuel cost Ploss LKmax VD
NOA 1231.6607 25698 0.9819 0.1511
SCs0 1631.3840 54094 0.9691 0.3019
GWO 1705.1089 3.9055 0.9847 0.1796
WOA 9449224 45392 0.9909 0.1940
DBO 12776473 55797 0.9746 0.1652

VII. CONCLUSION

This research uses the nutcracker optimization algorithm
(NOA) to address two optimization problems: CEC2017
function optimization and optimal power flow in the
[EEE-30 bus system. The technology effectively minimizes
generation expenses,active power loss, steady voltage, and
point voltage volatility. Simulation results show NOA's
good convergence and robustness, making it a viable option
for solving optimal power flow problems.
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