

Abstract—The K-Means clustering algorithm is widely

employed in cluster analysis but is known for its sensitivity to

initial center selection and its tendency to become trapped in

local optima. These limitations have prompted researchers to

explore optimization techniques. The genetic K-Means

algorithm (GKA) leverages the optimization capabilities of

genetic algorithms to enhance the clustering performance of

K-Means. However, this improvement comes at the cost of

increased computational complexity, rendering the algorithm

less efficient for large-scale datasets. To address these issues, we

propose a parallel genetic K-Means algorithm (PGKA) based

on the island model. In PGKA, the overall population is

partitioned into multiple sub-populations of equal size, each

evolving independently on different nodes. The evolutionary

process is divided into several generations, with

sub-populations exchanging information between generations

to preserve diversity. We employ multi-threaded computation

to maximize the CPU utilization for the most computationally

intensive part of the algorithm, the fitness computation.

Additionally, we have modified certain evolutionary operators

to better suit the optimization of the K-Means algorithm.

Experimental results demonstrate that the proposed algorithm

achieves superior clustering accuracy compared to other recent

proposed GKA variants. It also significantly enhances

computational efficiency relative to the serial GKA and the

non-multi-threaded PGKA. Specifically, with a configuration of

16 nodes, PGKA is 12.4 times faster than the serial version when

tested on the largest dataset in our experiments. Furthermore,

the speedup can be further improved with clusters having more

CPU cores.

Index Terms—Parallel Computing, MapReduce, Genetic

K-Means Algorithm, Clustering

I. INTRODUCTION

he K-Means clustering algorithm [1] is widely used in

cluster analysis, which adopts a partitioning method and

can customize similarity methods for data features with

unsupervised learning and fast execution. However, the

K-Means algorithm has the disadvantage of being sensitive to

the initial clustering center and the data input sequence,

which makes it easy to fall into the local optimum [2].

Manuscript received December 12, 2023; revised June 28, 2024.

This work was supported in part by the National Natural Science
Foundation of China (62276032)

Xikang Wang is a postgraduate student of Yangtze University, Jingzhou,
Hubei, 434020, China. (e-mail: 2021710547@yangtzeu.edu.cn)

Tongxi Wang is an associate professor of Yangtze University, Jingzhou,

Hubei, 434020, China. (corresponding author to provide e-mail:
txwang@yangtzeu.edu.cn).

Hua Xiang is a lecturer of Yangtze University, Jingzhou, Hubei, 434020,
China. (e-mail: xianghua@yangtzeu.edu.cn).

Lan Huang is an associate professor of Yangtze University, Jingzhou,

Hubei, 434020, China. (e-mail: lanhuang@yangtzeu.edu.cn).

To enhance the clustering performance of the K-Means

algorithm, researchers have proposed various modifications,

such as the K-Means++ algorithm [3] and the kernel

K-Means algorithm [4]. Despite these improvements, these

algorithms still produce unstable clustering results and

remain sensitive to noise. To address these issues, K. Krishna

et al. introduced the Genetic Algorithm based K-Means

Algorithm (GKA) [5], which offers more stable and accurate

clustering outcomes [6]-[7]. GKA has found applications in

numerous fields. For instance, Reza Ghezelbash et al.

developed a GKA to detect multi-element geochemical

anomalies [8], while Qingguo Liu et al. used GKA in an

optimized non-dominated sorting genetic algorithm [9].

While GKA can significantly enhance the clustering

accuracy of the K-Means algorithm, it also introduces a

substantial computational burden. This increased

computational demand results in the algorithm's inefficiency

when handling large-scale datasets, a notable drawback in the

current era of big data. There are fewer recent studies on the

parallel model of the GKA, and the recent studies mainly

focus on applying the GKA in various fields [10]-[11].

However, the main body of the GKA is the evolutionary

operation of the genetic algorithm, in which the K-Means

algorithm is mainly used to evaluate chromosome fitness, so

the research of parallel GKA can be based on the research of

parallel genetic algorithms. Hao-Chun Lu et al. highly

integrated the genetic algorithm into Hadoop, used the

traveling salesman problem to test it, and achieved good

optimization results [12]. Matheus F. Torquato et al. [13]

proposed an FPGA algorithm to achieve the full parallel

implementation of the genetic algorithm. Regarding the

distributed parallel genetic algorithm, E Alba discussed

applying parallel computing technology to meta-heuristic

algorithms [14]. Carolina Salto et al. compared the efficiency

of parallel genetic algorithms on distributed computing

frameworks such as Hadoop and Spark [15]. Tomohiro

Harada et al. fully summarized and prospected the research

status of parallel genetic algorithms [16]. These studies have

shown that implementing genetic algorithms in a distributed

computation framework can effectively improve

computational efficiency. In the study conducted by

Filomena Ferrucci et al. [17], the computational efficiency of

three different parallel model of genetic algorithms was

compared: the global, grid, and island models. Among these

models, the island model demonstrated the highest

computational efficiency.

Based on the above problems and research, we propose a

Parallel Genetic K-Means Algorithm (PGKA), which

improves the evolutionary operator to make it more suitable

for optimizing K-Means, implements its parallel execution

based on MapReduce and the island model, and parallelizes

A Parallel Genetic K-Means Algorithm based on

the Island Model

Xikang Wang, Tongxi Wang, Hua Xiang, Lan Huang

T

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

its fitness computation part (which contains the K-Means

operations) using a multithreaded approach. The PGKA

shows high computational efficiency and scalability when

facing large-scale datasets, offering a novel method for

implementing the GKA to efficiently process large-scale

datasets.

II. BACKGROUND

A. K-Means Algorithm

The K-Means algorithm iteratively assigns data points to

the closest clusters and updates the cluster centroids until a

stopping condition is reached, resulting in a dataset

partitioned into K distinct clusters.

The goal of the classical K-Means algorithm is to

minimize the sum of squares of the distance between the data

points in each cluster and the center point, that is, minimize

(1):

2

1 i j

k

i jj x C
x m

= 
−  (1)

The process of the K-Means algorithm is shown in Fig. 1.

B. Genetic Algorithm

The genetic algorithm is an optimization method inspired

by natural selection, where solutions evolve over generations

to solve complex problems. It utilizes techniques such as

mutation, crossover, and selection to generate increasingly

better solutions to a given problem [18]. Genetic algorithms

are commonly used to address combinatorial optimization

problems, such as the traveling salesman problem and

function optimization [19].

The performance of genetic algorithms depends on

parameter settings, such as population size, crossover

probability, and mutation probability. The process of the

genetic algorithm is shown in Fig. 2.

C. Genetic K-Means Algorithms

To address the sensitivity of the K-Means algorithm to

initial centroids and its tendency to fall into local optima,

researchers have developed various GKAs. D. Mustafi et al.

applied a hybrid optimization method combining differential

evolution and genetic algorithm for text clustering,

optimizing both the number of clusters and the initial

centroids [20]. Dharmendra K Roy et al. proposed a GKA

that effectively handles mixed numeric and categorical data

by redefining the cluster center [21]. Xiao et al. introduced

KMQGA, a quantum-inspired genetic algorithm for

K-Means clustering [22].

In the research on the GKAs, researchers have proposed

various chromosome encoding forms, such as real-number

encoding [7] and index encoding [6]. Each encoding form has

its advantages and disadvantages in different scenarios. Due

to the differences in chromosome encoding, their evolution

methods also vary. However, the common goal of the GKAs

is to find a set of optimal centroids for the K-Means

algorithm in the solution space and use a clustering

evaluation metric to assess the capability of the chromosomes

in the GKAs to solve the problems.

D. Hadoop MapReduce

Hadoop MapReduce is a distributed computing framework

within the Hadoop ecosystem, widely used for processing

large-scale datasets. The core concept of this framework is to

break down a task into smaller parts and execute these parts

in parallel across different nodes. Inspired by Google's

MapReduce research [23], the Hadoop MapReduce

framework adopts Google's approach to processing

large-scale datasets.

The Hadoop MapReduce process is as follows:

Splitting: The input data is divided into multiple

equal-sized blocks (default size is 64 MB). Each 'Input Split'

object represents a block.

Map Tasks: Each input split is assigned to nodes in the

cluster for processing. The map task reads data from the input

split and transforms it into key-value pairs. Each key-value

pair then executes a map function, producing a new

key-value pair as output.

Shuffle: Upon completion of all map tasks, the output data

is sorted by key and directed to the corresponding reduce task

for each key.

Reduce Tasks: Reduce tasks receive key-value pairs from

the map task outputs and execute the reduce function. This

function aggregates each key with its associated values,

generating an output key-value pair. The results from the

reduce tasks are then written to the Hadoop Distributed File

System (HDFS).

In summary, Hadoop MapReduce decomposes a massive

Fig. 2. Process of the Genetic algorithm.

Fig. 1. Process of the K-Means algorithm.

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

task into multiple smaller tasks, executing them in parallel

across multiple nodes, thus making the processing of

large-scale datasets efficient, fast, and reliable.

E. Fork Join

In modern computing, where multicore processors are

prevalent and the demand for large-scale data processing is

escalating, the significance of efficient parallel computing

frameworks is paramount. Among these, the Fork/Join

framework offers a powerful solution for tackling parallel

computing challenges in Java programming. Conceived by

Doug Lea and introduced in Java 7 [24], with subsequent

enhancements in Java 8, this framework embodies a parallel

model grounded on task decomposition and work-stealing

principles. Such a model is adept at harnessing the

computational might of multicore processors, thereby

elevating both the performance and scalability of

applications.

At its core, the Fork/Join framework is inspired by the

divide-and-conquer strategy. It commences by breaking

down large tasks into manageable subtasks. These subtasks

are then executed in parallel, following which their results are

amalgamated to form the ultimate outcome. This method of

breaking tasks down facilitates a more efficient use of

multicore processors' computing resources and significantly

boosts program execution speed.

Central to the Fork/Join framework are the operations

known as 'fork' and 'join.' The 'fork' operation splits a sizeable

task into smaller, more manageable subtasks, dispatching

these subtasks to a work queue for execution. Upon

completing a task, a thread may engage in 'work-stealing' by

appropriating tasks from the queues of other threads, thus

maintaining load balance and maximizing the utilization of

the processor's computing capabilities.

Moreover, the Fork/Join framework extends various

methods for task execution control and results in retrieval,

such as 'invoke()' and 'join().' These provisions empower

developers to swiftly craft parallel computing code while

minimizing the intricacies associated with thread

management and synchronization, thereby streamlining the

development process.

III. PROPOSED PGKA

A. Evolutionary operators

In the GKA proposed by Mahnaz Mardi et.al [6], a

chromosome encodes each feature vector of the initial center

as a single gene bit. That is, assume the dataset is

1 2{ , ,..., }nD d d d= where 1 2{ , ,..., }i md v v v= , m is the feature

dimension, for the center point set
1 2{ , ,..., }kC d d d= ,where

k is the number of clusters, there is a chromosome

1 2 *{ , ,..., }m kI v v v= . The GKA proposed by Shruti Kapil et al.

[7] uses 1/0 to encode chromosomes; that is, for the dataset

D the encoding form of the chromosomes is

1 2{ , ,..., }nI g g g= , which represents a solution. The

chromosome length is equal to the length of the dataset,

where ig has only two possible values: 0 or 1, and when ig

is 1,
id in the dataset is one of the initial centers. Both

genetic K-Means algorithms adopt single-point crossover.

Considering the IO overhead on Hadoop MapReduce, our

model draws on the chromosome coding method of the

research by Shruti Kapil et al. [7] and improves some

evolutionary operators based on it. The evolutionary

operators in our PGKA are as follows.

1. Initialization: For each chromosome
1 2{ , ,..., }nI g g g= ,

randomly select K data points as the initial centers.,
ig = 1

indicates that
id in the dataset is one of the initial centers.

2. Crossover: The proposed algorithm performs a

double-point crossover. Compared with single-point

crossover, double-point crossover can better retain the

information of excellent individuals. Single-point crossover

can only exchange chromosome fragments at one crossover

point, which easily destroys excellent individuals' overall

structure and information. In contrast, double-point crossover

can exchange information at two points, which can retain the

important information of excellent individuals and better

avoid premature convergence [25]. The process involves

selecting two parent chromosomes and determining whether

to perform the crossover operation based on the crossover

probability, if yes, the selected two parental chromosomes

are divided into four fragments, and the four chromosome

fragments are spliced according to the selected two points to

form two new chromosomes, which are added to the next

generation population as offspring chromosomes.

The number of offspring chromosomes generated in the

crossover stage is 50 % of the number of chromosomes in the

parent generation. Moreover, because the number of ‘1' in the

offspring chromosome generated after the crossover

operation may be different from the parent chromosome, the

mutation operation at the gene level is performed for those

offspring chromosomes where the number of ‘1’ is not the

same as the parent chromosomes. That is, if the number of ‘1’

is less than the parent chromosome. In these single/multiple

genes, the value is ‘0’ are randomly selected for inversion to

‘1’, and vice versa, until the number of ‘1’ is the same as the

parent chromosome. The crossover operator is as shown in

Fig. 3.

3. Mutation: Unlike the gene-level mutation in crossover,

the proposed algorithm uses a chromosome-level mutation

operator. The traditional mutation method described by

Shruti Kapil et al. [7] relies on the mutation probability of

each gene, where the operation flips the gene's value.

However, in this encoding form, the number of '1's

corresponds to the K value in the K-Means algorithm. If the

mutation operation is performed separately for each gene, the

number of ‘1’ needs to be kept unchanged, which increases

the complexity of the algorithm and causes additional

Fig. 3. Crossover operator in the proposed PGKA

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

inversion operations that do not follow the mutation

probability: flip some positions to keep the K value

unchanged just like the mutation operation in Crossover.

Therefore, in the proposed GKA, the chromosome selected

according to the mutation probability will be randomly reset

to a new chromosome. The chromosomes from parents and

offspring are all involve in mutation. The mutation operator

is as shown in Fig. 4.

4.Fitness evaluation: a small amount of K-Means

operation is performed after decoding the chromosome, and

compute the Calinski-Harabasz Index (CHI) [26] for the

clustering result, using it as the chromosome's fitness. The

formula is shown in (2).

()

*
() 1

Tr B N k
CHI

Tr W k

−
=

−
 (2)

Among them, ()Tr B is the covariance matrix between the

clusters, ()Tr W is the covariance matrix within the cluster,

N is the number of instances in the dataset, k is the number

of the clusters, the larger the CHI, the better the result.

5.Selection: All chromosomes, including parents and

children, are involved in the selection. The elitism operator

[27] is performed in the selection. A small number of

excellent individuals in the population are retained and

directly entered into the next generation, and the remaining

individuals are selected using the roulette selection. The

process of the selection is as follows: First, calculate the

probability of each chromosome entering the next generation

as (3).

1

()
()

()

i

i N

jj

f x
P x

x
=

=


 (3)

Among them, ()if x is the fitness of the chromosome
ix ,

N is the current population size. Then, calculate the

cumulative probability sequence
1 2{ , ,..., }NQ q q q= , where

iq is as (4).

1

()
i

i jj
q P x

=
=  (4)

Then, generate a random number [0,1]r  . traverse

sequence Q , until
iq is found that fits

1i iq r q−   . The

selection restores the population size that becomes larger

after the crossover to the initial population size to keep the

number of populations in each iteration unchanged.

The process of the serial version of the proposed

PGKA(SGKA) is as Fig. 5.

Fig. 4. Mutation operator in the proposed PGKA.

Fig. 5. Process of the SGKA.

Fig. 6. A generation in the PGKA, the number of generations depends on the parameter.

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

B. PGKA on Hadoop MapReduce

In the study by Filomena Ferrucci et al. [17], various

parallel Genetic Algorithm models are compared using

Hadoop MapReduce. Among these models, the Genetic

Algorithm based on the island model demonstrates clear

advantages in computational efficiency compared to global

and grid models. Building upon this insight, we propose a

Parallel Genetic Algorithm (PGKA) implemented on Hadoop

MapReduce, leveraging the island model as its foundation.

In the island model, each subpopulation evolves

independently within its own environment, thereby ensuring

diversity within the overall population. This autonomy

allows each subpopulation to potentially explore different

evolutionary paths [28]. However, to prevent subpopulations

from becoming trapped in local optima, it is crucial to

facilitate information exchange between them. In the island

model, evolutionary tasks are organized into multiple

generations, during which subpopulations exchange

information at regular intervals.

To maximize the computational resources of the clusters,

the Fork/Join framework is employed in fitness evaluation.

This framework optimizes CPU utilization across nodes,

thereby enhancing computational efficiency.

The process of a generation in PGKA is shown in Fig. 6.

1) Driver

The Driver begins by configuring the parameters and

initializing the population, then submitting MapReduce tasks

to the processing framework. In scenarios involving multiple

generations, the Driver adopts an iterative approach,

submitting multiple MapReduce tasks. Process of the Driver

is illustrated in Fig. 7.

To optimize clustering operations within the Map phase,

the dataset file is pre-loaded into the distributed cache to

leverage data locality, thereby enhancing efficiency. Upon

the completion of all MapReduce jobs, the global best

chromosome is selected from the best chromosomes of

various subpopulations. This selected chromosome is then

decoded into a series of initial center points for the K-Means

algorithm, which is subsequently executed using these points.

2) Map

In the Maps, evolutionary operators are applied to each

subpopulation. Following the division of the population by

the Driver, each Map processes a sub-population, executing

the evolutionary operators on its designated subpopulation.

The process of the Maps is as shown in Fig. 8.

After completing the evolutionary task for a generation, if

F equals false, this indicates that additional generations

require processing. Each Map then duplicates and dispatches

migrants to other subpopulations, subsequently removing the

chromosomes of the lowest fitness to make room for

incoming migrants from other subpopulations before finally

outputting the survivors. Conversely, if F equals true,

signaling the final generation, each subpopulation outputs

solely the best chromosome and its fitness. Consequently,

2K is set to a fixed value, ensuring a singular reducer in the

subsequent reduce phase to minimize overhead.

The fitness evaluation is the most computationally

intensive part of the algorithm; we use a multi-thread

framework to improve the computational efficiency. The

method is similar to MapReduce. Both of them split large

computing tasks into multiple small computing tasks for

processing, which can efficiently use the computing power of

the CPUs in the distributed clusters, the process of fitness

evaluation in PGKA is as shown in Fig. 9.

3) Reduce

Reduce receives V2 values with the same K2 value as an

Fig. 7. The process of the Driver of the PGKA

Fig. 8. The process of the Map of the PGKA, the variables here are the same

as those in Driver

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

iterator. There are multiple Reducers processing tasks in the

MapReduce job in the non-last generation, and only one in

the last generation. Reducer’s task is to write the V2 as the

input format of the Map to HDFS for the next generation, or

output the global best chromosome for the Driver, the process

is as shown in Fig. 10.

IV. EXPERIMENTS

A. Datasets

 The datasets utilized in this study are obtained from the

UCI Machine Learning Repository, with different datasets

chosen for two separate experiments: one focusing on

clustering accuracy and the other on computational efficiency.

This differentiation is based on the premise that smaller

datasets facilitate numerous executions, yielding more

precise outcomes. Conversely, larger datasets, which require

more processing time, are better suited for assessing the

computational efficiency of the algorithms.

As shown in Table I, the Seeds, Wine, and Wholesale

customers datasets are employed for the clustering accuracy

experiment, while the remaining datasets are reserved for

evaluating computational efficiency. Additionally, two

datasets from the experiments are chosen to examine the

sensitivity of the algorithms to parameter changes.

B. Distributed clusters

The experiment is conducted on a distributed cluster

comprising up to 16 nodes, with the specifics of the software

and hardware detailed in Table II.

To clarify the identification of cluster configurations

varying by node count within the experiment, the naming

conventions for these configurations, corresponding to the

different numbers of nodes, are shown in Table III.

C. Clustering accuracy

1) Evaluation metrics

The results are evaluated using four different clustering

evaluation indices: Davies-Bouldin Index (DBI) [29],

Silhouette Coefficient (SC) [30], Calinski-Harabasz Index

(CHI), and SSE.

The formula for DBI is shown in (5).

Fig. 9. The fitness evaluation in the PGKA

Fig. 10. The process of the Reduce of the PGKA

TABLE I

DATASETS USED IN THE EXPERIMENTS

Name Instances Features

Seeds 345 6
Wine 440 8

Wholesale customers 178 13

Toxicity 171 1203
Har70 2259597 6

Cover type 581010 54

TABLE II
SOFTWARE AND HARDWARE OF THE DISTRIBUTED CLUSTERS

Architecture 64bit

CPU cores 4
Ram 4GB

Storage 20GB

Network LAN 1Gbps
OS CentOS 7

Java 1.8.0
Hadoop 3.1.3

TABLE III
CONFIGURATIONS OF DISTRIBUTED CLUSTERS WITH VARYING NUMBERS OF

COMPUTER NODES

Configurations Master Worker(s) Total

C1 1 0 1

C2 1 1 2

C4 1 3 4

C8 1 7 8

C16 1 15 16

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

1

1
max ()

k i j

j ii

ij

S S
DBI

k M
=

+
=  (5)

Among them, k is the K value in K-Means algorithm,
iS

is the average distance between the data points in the cluster

and the center of the cluster, ijM is the distance between the

two cluster centers, a smaller DBI indicates a better result..

The formula for SC is shown as (6) and (7).

1

1 N

ii
SC s

N =
=  (6)

max{ , }

i i

i

i i

b a
s

a b

−
= (7)

Among them,
ia represents the average distance of a data

point to other data points within the cluster, while
ib

represents the average distance from the data point to the

nearest other cluster. A larger SC indicates a better result.

The formula for SSE is as (8).

2

1 1

1
(())

k n

ij i
SSE x x

n

−

= =
= −  (8)

Among them, n is the number of datapoints in the cluster,

x is the center of the cluster, k is the number of clusters.

The smaller the SSE, the better the result.

2) Clustering accuracy

This experiment compares the clustering accuracy of

K-Means, KGA [7], GBKM [6], and PGKA. The

(a) The results on wine dataset

(b) The results on seeds dataset

(c) The results on wholesale customers dataset

Fig. 11. Clustering metrics of the algorithms on different datasets

TABLE IV

PARAMETERS OF THE ALGORITHMS USED IN THE CLUSTERING ACCURACY

EXPERIMENT

Algorithms K-Means KGA GBKM PGKA

K 30 30 30 30

Iterations 100 100 100 100
Population \ 200 200 200

Crossover prob. \ 0.5 0.5 0.5

Mutation prob. \ 0.05 0.05 0.05
Elite rate \ \ \ 0.05

Number of migrations \ \ \ 0

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

experimental parameters are shown in Table IV. Given that

population splitting can influence clustering accuracy, the

PGKA algorithm was executed on a single node to ensure the

reliability of the experimental results. Additionally, the

parameters for PGKA are aligned with those of KGA and

GBKM in terms of the common parameters.

Employing a larger K value in the clustering accuracy

experiment serves to broaden the search space and elevate the

optimization challenge, thereby more effectively highlighting

the performance disparities between the algorithms.

All algorithms were executed 30 times under each

configuration, and the value of each metric is recorded as the

outcome and takes average as the result.

The results, shown in Fig. 11, reveal that PGKA surpasses

both KGA and GBKM across all metrics and datasets.

Additionally, all GKAs outperform K-Means on every

evaluated metric.

D. Computational efficiency

In this experiment, we compare the execution times of

SGKA (the serial version of PGKA), nm-PGKA (the PGKA

algorithm without the multi-threaded framework), and

PGKA. The parameters used in the computational efficiency

experiment are shown in Table V.

PGKA, which is built upon the MapReduce framework,

follows the same procedure for executing evolutionary

operators on a single node as SGKA. However, the

implementation of the MapReduce framework introduces

additional overheads. Therefore, to ensure a more accurate

and fair comparison, the SGKA algorithm is utilized in place

of PGKA with a single node for the experiment.

1) Execution time

The nm-PGKA and PGKA algorithms were executed 10

times across all datasets and configurations. SGKA was also

executed 10 times on all datasets using the master node, with

averages computed for the results. These results are presented

in Fig. 12.

The results show that nm-PGKA's execution time exceeds

that of SGKA on the Toxicity dataset under the C2

configuration. In contrast, for other scenarios, the execution

times for the MapReduce algorithms (nm-PGKA and PGKA)

are shorter than that of SGKA, with PGKA consistently

outperforming nm-PGKA across all cases.

The results indicate that multi-thread computing

significantly enhances PGKA's performance. The execution

time of nm-PGKA is longer than that of SGKA on the

Toxicity dataset and C2 configuration because the overhead

of the MapReduce framework negates the computational

advantage of parallel computing on the two nodes. On larger

data sets, time is mainly consumed in computing; multi-node

parallel computing brings more advantages in computing, so

the execution time of nm-PGKA is less than that of the

SGKA. The speedup rate of the two MapReduce algorithms

on the SGKA algorithm is shown in the Fig. 13.

With the increase in the number of nodes, the speedup rate

of the two MapReduce algorithms increases, showing good

scalability. The speedup rate is as (9).

TABLE V

PARAMETERS OF THE ALGORITHMS USED IN THE COMPUTATIONAL

EFFICIENCY EXPERIMENT

Algorithm K-Means KGA GBKM PGKA

K value 5 5 5 5

Iterations 100 100 100 100
Population size \ 200 200 200

Crossover prob. \ 0.5 0.5 0.5

Mutation prob. \ 0.05 0.05 0.05

Elite rate \ \ \ 0.05

Number of migrations \ \ \ 3

(a) The speedup rate on Toxicity dataset (b) The speedup rate on Har70 dataset (c) The speedup rate on Cover type dataset

Fig. 13. Speedup rate of the 2 MapReduce algorithms on the SGKA

Fig. 12. Execution time of the algorithms on different datasets

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

 s

p

T
Speedup

T
= (9)

Among them,
sT represents the execution time of the

serial algorithm, while pT denotes the execution time of the

parallel algorithms.

2) Efficiency under different CPU cores

In this experiment, we compare the execution times of

SGKA, nm-PGKA, and PGKA across various CPU

configurations within same clusters. This comparison aims to

determine the sensitivity of each algorithm to CPU

configuration variations.

 The experiment was conducted on virtual machines

hosted by VMware Workstation, which allowing easy

modification of the number of CPU cores. Despite the

difference in CPU models compared to the previous

experiments, all other configurations remained consistent

with those shown in Table II. The different CPU core

configurations are shown in Table VI, with the Toxicity

dataset selected for this evaluation.

Each algorithm was executed 10 times under all

configurations, with the average results presented in Fig. 14.

The results indicate that both SGKA and nm-PGKA

exhibit low sensitivity to changes in the number of CPU cores.

Conversely, the execution time of PGKA decreases as the

number of CPU cores increases, demonstrating PGKA's

robust scalability across both distributed clusters and CPU

configurations. This shows PGKA's ability to leverage

additional computational resources to enhance performance

effectively.

E. Parameter sensitivity

In this experiment, we examine how PGKA's performance

is influenced by specific parameters, notably the impact of

population splitting on clustering accuracy and the effect of

migration numbers on both clustering accuracy and

computational efficiency.

1) Number of subpopulations

In PGKA, the number of subpopulations matches the

number of nodes in the cluster. Therefore, PGKA was

executed on clusters with varying node counts to assess the

impact of population division on clustering accuracy.

The parameters used in this experiment are the same as

those in Table IV. The environment is consistent with Table

II and Table III, and the seeds dataset was used. PGKA was

executed 30 times under all configurations, with the average

CHI taken as the result. The results are shown in Fig. 15.

The results show that clustering accuracy gradually

decreases as the number of nodes increases. This indicates

that to achieve better clustering results with more nodes, the

population size or the number of migrations should be

appropriately increased.

2) Number of migrations

TABLE VI

CONFIGURATIONS WITH DIFFERENT NUMBER OF CPU CORES

Configuration CPU cores Total nodes

V1 1 4

V2 2 4

V3 3 4

V4 4 4

Fig. 14. Execution time on the configurations with different CPU cores of
the algorithms

Fig. 15. The clustering accuracy of the PGKA on different number of nodes

on the seeds dataset

(a) The execution time of the PGKA with different number of migrations

(b) The CHI of the PGKA with different number of migrations

Fig. 16. The CHI and the execution time of the PGKA with different number

of migrations

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

The number of migrations affects both clustering accuracy

and computational efficiency. In this part of the experiment,

PGKA is tested on the C4 configuration and the Toxicity

dataset. Except for the number of migrations, all other

parameters are the same as those in Table IV. PGKA with all

parameters is executed 10 times, and the average is taken as

the result. The results are shown in Fig. 16.

The results indicate that as the number of migrations

increases, both the execution time and clustering accuracy of

PGKA increase, suggesting that this parameter needs to be

adjusted according to different situations.

F. Further analysis on the PGKA

1) Wilcoxon test

To ensure the reliability of the experimental results, a

Wilcoxon test was conducted on the outcomes of the

computational efficiency experiment. The Wilcoxon test

results are detailed in Table VII.

A Wilcoxon statistic of 0 implies that all observed

differences consistently favor one algorithm over another,

indicating that one algorithm invariably executes faster.

The p-value, on the other hand, measures the likelihood of

observing the current or more extreme results under the

assumption that the null hypothesis is true. In this context, the

null hypothesis posits that there is no significant difference in

the efficiency of the two algorithms being compared.

Most of the p-values obtained were 0.0019, which is well

below the commonly accepted significance thresholds of

0.05 or 0.01 in research. This strongly suggests rejecting the

null hypothesis in most cases, providing substantial statistical

evidence of a significant efficiency difference between the

algorithms.

Analyzing the execution times from the results of

computational efficiency experiments, it is evident that

PGKA consistently outperforms both SGKA and nm-PGKA

in terms of computational efficiency. However, the results for

the C16 configuration with the Har70 dataset do not show a

significant difference between nm-PGKA and PGKA.

This lack of significant difference is likely due to the

diminishing returns of multithreaded computation when the

number of nodes is sufficiently large or the dataset size is

relatively small. Conversely, the benefits of multithreaded

computation were evident in experiments with larger datasets,

such as those involving the cover type dataset.

2) Analysis on MRPGKA

A Wilcoxon statistic of 0 suggests that one algorithm

consistently outperforms another in execution time. The

p-value, in contrast, measures the likelihood of obtaining the

observed results under the assumption that the null

hypothesis is true. Here, the null hypothesis states that there

is no efficiency difference between the two algorithms.

To gain a more comprehensive understanding of PGKA's

computational performance, we apply Gustafson's Law to its

execution steps. This principle helps evaluate the algorithm's

scalability and efficiency in parallel computing contexts,

offering broader insights into its performance.

The formula for Gustafson's Law is as follows:

 *(1)s

p

t
P

t
 = + − (10)

In this context,
st represents the execution time of the

serial algorithm, pt denotes the execution time of the

parallel algorithm, a is the proportion of the

non-parallelizable part of the program, and P is the number

of units involved in parallel computation.

The execution process of SGKA, nm-PGKA, and PGKA

can be broken down into multiple steps, as detailed in Table

VIII.

Assuming the distributed cluster has n nodes, and each

with c cores,the number of migrations is m .

For the SGKA, the execution time is:

 SGKA i c m sl eT T T T T T= + + + + (11)

The execution time of nm-PGKA can be calculated as

follows:

TABLE VIII

NOTATIONS OF THE STEPS IN THE DIFFERENT ALGORITHMS

Notation Description

iT Execution time of initialization.

cT Execution time of crossover operator.

mT Execution time of mutation operator.

slT Execution time of selection operator.

eT Execution time of evaluating the chromosomes

mrT
Time overhead introduced by the MapReduce

framework.

fjT Time overhead caused by the Fork/Join framework.

imT
Time consumption in migrating and resubmitting

MapReduce task once.

TABLE VII

RESULTS OF THE WILCOXON TESTS

Dataset Conf. SGKA & nm-PGKA nm-PGKA & PGKA SGKA & PGKA

Statistic P Statistic P Statistic P

Toxicity C2 0 0.0019 0 0.0019 0 0.0019

C4 0 0.0019 0 0.0019 0 0.0019

C8 0 0.0019 0 0.0019 0 0.0019
C16 0 0.0019 0 0.0019 0 0.0019

Har70 C2 0 0.0019 0 0.0019 0 0.0019
C4 0 0.0019 0 0.0019 0 0.0019

C8 0 0.0019 0 0.0019 0 0.0019

C16 0 0.0019 0 0.0019 11.0 0.1054
Cover type C2 9.0 0.0644 0 0.0019 0 0.0019

C4 0 0.0019 0 0.0019 0 0.0019
C8 0 0.0019 0 0.0019 0 0.0019

C16 0 0.0019 0 0.0019 0 0.0019

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

*()

i c m sl e

nm PGKA mr

i c m sl e

T T T T T
T T

T n T T T T
−

+ + + +
= +

+ + + +
 (12)

The execution time of nm-PGKA can be calculated as

follows:

*

*()
* *

i c m sl e

PGKA mr im

e
i c m sl fj

e

T T T T T
T T m T

T
T n T T T T

n c T

+ + + +
= + +

+ + + + +

(13)

Ideally, the computational efficiency of PGKA increases

significantly as the n and c increase. However, real-world

applications must take other factors into account, especially

since the execution time of a MapReduce task often depends

on the performance of the least computationally efficient

node in the cluster.

These analyses establish that PGKA's computational

efficiency substantially surpasses that of both SGKA and

nm-PGKA, offering a theoretical foundation for its

application in various settings.

V. CONCLUSION

In this research, we proposed the PGKA, which

implements distributed parallel computing based on the

MapReduce framework. It uses the multi-threaded

computing framework Fork/Join to improve its

computational efficiency further. The distributed model of

the PGKA is based on the island model. In the most

time-consuming fitness evaluation part in the PGKA,

multi-threaded computing is used to fully use the computing

power of multi-core CPU in the distributed clusters.

We conducted multiple experiments on PGKA, focusing

on clustering accuracy, computational efficiency, and

parameter sensitivity. All datasets were sourced from the UCI

Machine Learning Repository.

In the clustering accuracy experiment, PGKA

demonstrated superior clustering accuracy compared to the

two GKA algorithms proposed in other studies and the

K-Means algorithm across four clustering evaluation indices.

In the computational efficiency experiment, we compared

the execution time of PGKA with its serial version, SGKA,

and the nm-PGKA algorithm, which does not use

multi-threaded computing. PGKA consistently had shorter

execution times than both SGKA and nm-PGKA across all

datasets and configurations. Notably, nm-PGKA also

outperformed SGKA except in a few specific cases. For the

largest dataset and given parameters, PGKA's speedup rates

compared to SGKA were 1.3, 4.6, 10.7, and 12.4 times faster

on 2, 4, 8, and 16 nodes, respectively.

We also tested the algorithms on different CPU

configurations. The results showed that SGKA and

nm-PGKA were not sensitive to the number of CPU cores,

while PGKA's execution time decreased as the number of

CPU cores increased.

In the parameter sensitivity experiment, we examined the

effects of the number of subpopulations and the number of

migrations on PGKA's performance. The results indicated

that as the number of subpopulations increased, PGKA's

clustering accuracy decreased, suggesting the need to

increase the population size or the number of migrations

appropriately. Additionally, while an increase in the number

of migrations improved clustering accuracy, it also resulted

in longer execution times. It shows that the parameters must

be adjusted in different situations to achieve better results.

Finally, we examined the experimental results on

computational efficiency using the Wilcoxon test, verified

the conclusion that PGKA is more computationally efficient,

and analyzed PGKA using Gustafson's law.

There are also some other problems. For example, Hadoop

MapReduce does not support saving intermediate results but

reading and writing in HDFS. Therefore, iterative algorithms

such as the PGKA have a large IO overhead. The PGKA's

computational efficiency on Spark will be better [31].

Compared with Hadoop MapReduce, iterative algorithms

there are more suitable platforms [32] to implement

distributed parallel computing.

In the future, we will test the performance of the PGKA on

different platforms or investigate distributed computing

solutions to the problem of optimizing K-Means with more

advanced optimization algorithms [33].

REFERENCES

[1] MacQuuen, J. B. "Some methods for classification and analysis of

multivariate observation." Proceedings of the 5th Berkley Symposium

on Mathematical Statistics and Probability. 1967.
[2] Jain, Anil K. "Data clustering: 50 years beyond K-means." Pattern

Recognition Letters 31.8 (2010): 651-666.
[3] Arthur, David, and Sergei Vassilvitskii. "K-means++ the advantages of

careful seeding." Proceedings of the eighteenth Annual ACM-SIAM

Symposium on Discrete Algorithms. 2007.
[4] Dhillon, Inderjit S., Yuqiang Guan, and Brian Kulis. "Kernel k-means:

Spectral Clustering and Normalized Cuts." Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and

data mining. 2004.

[5] Krishna, K., and M. Narasimha Murty. "Genetic K-means algorithm."
IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 29.3 (1999): 433-439.

[6] Mardi, Mahnaz, and Mohammad Reza Keyvanpour. "GBKM: A New

Genetic Based K-Means Clustering Algorithm." 2021 7th International

Conference on Web Research (ICWR). IEEE, 2021.
[7] Kapil, Shruti, Meenu Chawla, and Mohd Dilshad Ansari. "On K-means

data clustering algorithm with genetic algorithm." 2016 Fourth
International Conference on Parallel, Distributed and Grid Computing

(PDGC). IEEE, 2016.

[8] Ghezelbash, Reza, Abbas Maghsoudi, and Emmanuel John M.
Carranza. "Optimization of geochemical anomaly detection using a

novel genetic K-means clustering (GKMC) algorithm." Computers &
Geosciences 134 (2020): 104335.

[9] Liu, Qingguo, Liu Xinyue, Wu Jian and Li Yaxiong. "An improved

NSGA-III algorithm using genetic K-means clustering algorithm."
IEEE Access 7 (2019): 185239-185249.

[10] Sukumar, JV Anand, et al. "Network intrusion detection using
improved genetic k-means algorithm." 2018 international conference

on advances in computing, communications and informatics (ICACCI).

IEEE, 2018.
[11] Ghezelbash, Reza, Abbas Maghsoudi, and Emmanuel John M.

Carranza. "Optimization of geochemical anomaly detection using a

novel genetic K-means clustering (GKMC) algorithm." Computers &

Geosciences 134 (2020): 104335.

[12] Lu, Hao-Chun, F. J. Hwang, and Yao-Huei Huang. "Parallel and
distributed architecture of genetic algorithm on Apache Hadoop and

Spark." Applied Soft Computing 95 (2020): 106497.
[13] Torquato, Matheus F., and Marcelo AC Fernandes. "High-performance

parallel implementation of genetic algorithm on fpga." Circuits,

Systems, and Signal Processing 38.9 (2019): 4014-4039.
[14] Alba, Enrique. Parallel metaheuristics: a new class of algorithms. John

Wiley & Sons, 2005.
[15] Salto, Carolina, Gabriela Minetti, Enrique Alba and Gabriel Luque.

"Big optimization with genetic algorithms: Hadoop, Spark, and MPI."

Soft Computing (2023): 1-16.
[16] Harada, Tomohiro, and Enrique Alba. "Parallel genetic algorithms: a

useful survey." ACM Computing Surveys (CSUR) 53.4 (2020): 1-39.
[17] Ferrucci, Filomena, Pasquale Salza, and Federica Sarro. "Using

hadoop mapreduce for parallel genetic algorithms: A comparison of the

global, grid and island models." Evolutionary Computation 26.4 (2018):
535-567

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

[18] Lambora, Annu, Kunal Gupta, and Kriti Chopra. "Genetic algorithm-A
literature review." 2019 International Conference on Machine

Learning, Big Data, Cloud and Parallel Computing (COMITCon).

IEEE, 2019.

[19] Katoch, Sourabh, Sumit Singh Chauhan, and Vijay Kumar. "A review

on genetic algorithm: past, present, and future." Multimedia Tools and
Applications 80 (2021): 8091-8126.

[20] Mustafi, Debjani, and Gadadhar Sahoo. "A hybrid approach using
genetic algorithm and the differential evolution heuristic for enhanced

initialization of the k-means algorithm with applications in text

clustering." Soft Computing 23 (2019): 6361-6378.
[21] Roy, Dharmendra K., and Lokesh K. Sharma. "Genetic k-means

clustering algorithm for mixed numeric and categorical data sets."
International Journal of Artificial Intelligence & Applications 1.2

(2010): 23-28.

[22] Xiao, Jing, et al. "A quantum-inspired genetic algorithm for k-means
clustering." Expert Systems with Applications 37.7 (2010): 4966-4973.

[23] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data
processing on large clusters." Communications of the ACM 51.1

(2008): 107-113.

[24] Lea, Doug. "A java fork/join framework." Proceedings of the ACM
2000 conference on Java Grande. 2000.

[25] Beasley, David, David R. Bull, and Ralph Robert Martin. "An

overview of genetic algorithms: Part 2, research topics." University

computing 15.4 (1993): 170-181.

[26] Caliński, Tadeusz, and Jerzy Harabasz. "A dendrite method for cluster
analysis." Communications in Statistics-theory and Methods 3.1

(1974): 1-27.
[27] Sampson, Jeffrey R. "Adaptation in natural and artificial systems (John

H. Holland)." (1976): 529.

[28] Gong, Yue-Jiao, Wei-Neng Chen, Zhihui Zhan et al. "Distributed
evolutionary algorithms and their models: A survey of the

state-of-the-art." Applied Soft Computing 34 (2015): 286-300.
[29] Davies, David L., and Donald W. Bouldin. "A cluster separation

measure." IEEE Transactions on Pattern Analysis and Machine

Intelligence 2 (1979): 224-227.
[30] Rousseeuw, Peter J. "Silhouettes: a graphical aid to the interpretation

and validation of cluster analysis." Journal of Computational and
Applied Mathematics 20 (1987): 53-65.

[31] Wang, Bowen, Jun Yin, Qi Hua, Zhiang Wu, Jie Cao. "Parallelizing

k-means-based clustering on spark." 2016 International Conference on
Advanced Cloud and Big Data (CBD). IEEE, 2016.

[32] Khezr, Seyed Nima, and Nima Jafari Navimipour. "MapReduce and its
applications, challenges, and architecture: a comprehensive review and

directions for future research." Journal of Grid Computing 15 (2017):

295-321.
[33] Jiayin Wang, and Yukun Wang, "An Efficient Improved Whale

Optimization Algorithm for Optimization Tasks," Engineering Letters,
vol. 32, no. 2, pp392-411, 2024

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

__

