
 

  

Abstract—The K-Means clustering algorithm is widely 

employed in cluster analysis but is known for its sensitivity to 

initial center selection and its tendency to become trapped in 

local optima. These limitations have prompted researchers to 

explore optimization techniques. The genetic K-Means 

algorithm (GKA) leverages the optimization capabilities of 

genetic algorithms to enhance the clustering performance of 

K-Means. However, this improvement comes at the cost of 

increased computational complexity, rendering the algorithm 

less efficient for large-scale datasets. To address these issues, we 

propose a parallel genetic K-Means algorithm (PGKA) based 

on the island model. In PGKA, the overall population is 

partitioned into multiple sub-populations of equal size, each 

evolving independently on different nodes. The evolutionary 

process is divided into several generations, with 

sub-populations exchanging information between generations 

to preserve diversity. We employ multi-threaded computation 

to maximize the CPU utilization for the most computationally 

intensive part of the algorithm, the fitness computation. 

Additionally, we have modified certain evolutionary operators 

to better suit the optimization of the K-Means algorithm. 

Experimental results demonstrate that the proposed algorithm 

achieves superior clustering accuracy compared to other recent 

proposed GKA variants. It also significantly enhances 

computational efficiency relative to the serial GKA and the 

non-multi-threaded PGKA. Specifically, with a configuration of 

16 nodes, PGKA is 12.4 times faster than the serial version when 

tested on the largest dataset in our experiments. Furthermore, 

the speedup can be further improved with clusters having more 

CPU cores. 

 
Index Terms—Parallel Computing, MapReduce, Genetic 

K-Means Algorithm, Clustering 

 

I. INTRODUCTION 

he K-Means clustering algorithm [1] is widely used in 

cluster analysis, which adopts a partitioning method and 

can customize similarity methods for data features with 

unsupervised learning and fast execution. However, the 

K-Means algorithm has the disadvantage of being sensitive to 

the initial clustering center and the data input sequence, 

which makes it easy to fall into the local optimum [2]. 
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To enhance the clustering performance of the K-Means 

algorithm, researchers have proposed various modifications, 

such as the K-Means++ algorithm [3] and the kernel 

K-Means algorithm [4]. Despite these improvements, these 

algorithms still produce unstable clustering results and 

remain sensitive to noise. To address these issues, K. Krishna 

et al. introduced the Genetic Algorithm based K-Means 

Algorithm (GKA) [5], which offers more stable and accurate 

clustering outcomes [6]-[7]. GKA has found applications in 

numerous fields. For instance, Reza Ghezelbash et al. 

developed a GKA to detect multi-element geochemical 

anomalies [8], while Qingguo Liu et al. used GKA in an 

optimized non-dominated sorting genetic algorithm [9]. 

While GKA can significantly enhance the clustering 

accuracy of the K-Means algorithm, it also introduces a 

substantial computational burden.  This increased 

computational demand results in the algorithm's inefficiency 

when handling large-scale datasets, a notable drawback in the 

current era of big data. There are fewer recent studies on the 

parallel model of the GKA, and the recent studies mainly 

focus on applying the GKA in various fields [10]-[11]. 

However, the main body of the GKA is the evolutionary 

operation of the genetic algorithm, in which the K-Means 

algorithm is mainly used to evaluate chromosome fitness, so 

the research of parallel GKA can be based on the research of 

parallel genetic algorithms. Hao-Chun Lu et al. highly 

integrated the genetic algorithm into Hadoop, used the 

traveling salesman problem to test it, and achieved good 

optimization results [12]. Matheus F. Torquato et al. [13] 

proposed an FPGA algorithm to achieve the full parallel 

implementation of the genetic algorithm. Regarding the 

distributed parallel genetic algorithm, E Alba discussed 

applying parallel computing technology to meta-heuristic 

algorithms [14]. Carolina Salto et al. compared the efficiency 

of parallel genetic algorithms on distributed computing 

frameworks such as Hadoop and Spark [15]. Tomohiro 

Harada et al. fully summarized and prospected the research 

status of parallel genetic algorithms [16]. These studies have 

shown that implementing genetic algorithms in a distributed 

computation framework can effectively improve 

computational efficiency. In the study conducted by 

Filomena Ferrucci et al. [17], the computational efficiency of 

three different parallel model of genetic algorithms was 

compared: the global, grid, and island models. Among these 

models, the island model demonstrated the highest 

computational efficiency. 

Based on the above problems and research, we propose a 

Parallel Genetic K-Means Algorithm (PGKA), which 

improves the evolutionary operator to make it more suitable 

for optimizing K-Means, implements its parallel execution 

based on MapReduce and the island model, and parallelizes 
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its fitness computation part (which contains the K-Means 

operations) using a multithreaded approach. The PGKA 

shows high computational efficiency and scalability when 

facing large-scale datasets, offering a novel method for 

implementing the GKA to efficiently process large-scale 

datasets. 

II. BACKGROUND 

A. K-Means Algorithm 

The K-Means algorithm iteratively assigns data points to 

the closest clusters and updates the cluster centroids until a 

stopping condition is reached, resulting in a dataset 

partitioned into K distinct clusters. 

The goal of the classical K-Means algorithm is to 

minimize the sum of squares of the distance between the data 

points in each cluster and the center point, that is, minimize 

(1): 

 
2

1 i j

k

i jj x C
x m

= 
−   (1) 

The process of the K-Means algorithm is shown in Fig. 1. 

B. Genetic Algorithm 

The genetic algorithm is an optimization method inspired 

by natural selection, where solutions evolve over generations 

to solve complex problems.  It utilizes techniques such as 

mutation, crossover, and selection to generate increasingly 

better solutions to a given problem [18].  Genetic algorithms 

are commonly used to address combinatorial optimization 

problems, such as the traveling salesman problem and 

function optimization [19]. 

The performance of genetic algorithms depends on 

parameter settings, such as population size, crossover 

probability, and mutation probability. The process of the 

genetic algorithm is shown in Fig. 2. 

C. Genetic K-Means Algorithms 

To address the sensitivity of the K-Means algorithm to 

initial centroids and its tendency to fall into local optima, 

researchers have developed various GKAs. D. Mustafi et al. 

applied a hybrid optimization method combining differential 

evolution and genetic algorithm for text clustering, 

optimizing both the number of clusters and the initial 

centroids [20]. Dharmendra K Roy et al. proposed a GKA 

that effectively handles mixed numeric and categorical data 

by redefining the cluster center [21]. Xiao et al. introduced 

KMQGA, a quantum-inspired genetic algorithm for 

K-Means clustering [22]. 

In the research on the GKAs, researchers have proposed 

various chromosome encoding forms, such as real-number 

encoding [7] and index encoding [6]. Each encoding form has 

its advantages and disadvantages in different scenarios. Due 

to the differences in chromosome encoding, their evolution 

methods also vary. However, the common goal of the GKAs 

is to find a set of optimal centroids for the K-Means 

algorithm in the solution space and use a clustering 

evaluation metric to assess the capability of the chromosomes 

in the GKAs to solve the problems. 

D. Hadoop MapReduce 

Hadoop MapReduce is a distributed computing framework 

within the Hadoop ecosystem, widely used for processing 

large-scale datasets. The core concept of this framework is to 

break down a task into smaller parts and execute these parts 

in parallel across different nodes. Inspired by Google's 

MapReduce research [23], the Hadoop MapReduce 

framework adopts Google's approach to processing 

large-scale datasets. 

The Hadoop MapReduce process is as follows: 

Splitting: The input data is divided into multiple 

equal-sized blocks (default size is 64 MB). Each 'Input Split' 

object represents a block. 

Map Tasks: Each input split is assigned to nodes in the 

cluster for processing. The map task reads data from the input 

split and transforms it into key-value pairs. Each key-value 

pair then executes a map function, producing a new 

key-value pair as output. 

Shuffle: Upon completion of all map tasks, the output data 

is sorted by key and directed to the corresponding reduce task 

for each key. 

Reduce Tasks: Reduce tasks receive key-value pairs from 

the map task outputs and execute the reduce function. This 

function aggregates each key with its associated values, 

generating an output key-value pair. The results from the 

reduce tasks are then written to the Hadoop Distributed File 

System (HDFS). 

In summary, Hadoop MapReduce decomposes a massive 

 

Fig. 2.  Process of the Genetic algorithm. 

 

Fig. 1.  Process of the K-Means algorithm. 
 

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

 
______________________________________________________________________________________ 



 

task into multiple smaller tasks, executing them in parallel 

across multiple nodes, thus making the processing of 

large-scale datasets efficient, fast, and reliable. 

E. Fork Join 

In modern computing, where multicore processors are 

prevalent and the demand for large-scale data processing is 

escalating, the significance of efficient parallel computing 

frameworks is paramount. Among these, the Fork/Join 

framework offers a powerful solution for tackling parallel 

computing challenges in Java programming. Conceived by 

Doug Lea and introduced in Java 7 [24], with subsequent 

enhancements in Java 8, this framework embodies a parallel 

model grounded on task decomposition and work-stealing 

principles. Such a model is adept at harnessing the 

computational might of multicore processors, thereby 

elevating both the performance and scalability of 

applications. 

At its core, the Fork/Join framework is inspired by the 

divide-and-conquer strategy. It commences by breaking 

down large tasks into manageable subtasks. These subtasks 

are then executed in parallel, following which their results are 

amalgamated to form the ultimate outcome. This method of 

breaking tasks down facilitates a more efficient use of 

multicore processors' computing resources and significantly 

boosts program execution speed. 

Central to the Fork/Join framework are the operations 

known as 'fork' and 'join.' The 'fork' operation splits a sizeable 

task into smaller, more manageable subtasks, dispatching 

these subtasks to a work queue for execution. Upon 

completing a task, a thread may engage in 'work-stealing' by 

appropriating tasks from the queues of other threads, thus 

maintaining load balance and maximizing the utilization of 

the processor's computing capabilities. 

Moreover, the Fork/Join framework extends various 

methods for task execution control and results in retrieval, 

such as 'invoke()' and 'join().' These provisions empower 

developers to swiftly craft parallel computing code while 

minimizing the intricacies associated with thread 

management and synchronization, thereby streamlining the 

development process. 

III. PROPOSED PGKA 

A. Evolutionary operators 

In the GKA proposed by Mahnaz Mardi et.al [6], a 

chromosome encodes each feature vector of the initial center 

as a single gene bit. That is, assume the dataset is 

1 2{ , ,..., }nD d d d=  where 1 2{ , ,..., }i md v v v= , m is the feature 

dimension, for the center point set 
1 2{ , ,..., }kC d d d= ,where 

k is the number of clusters, there is a chromosome 

1 2 *{ , ,..., }m kI v v v= . The GKA proposed by Shruti Kapil et al. 

[7] uses 1/0 to encode chromosomes; that is, for the dataset 

D  the encoding form of the chromosomes is 

1 2{ , ,..., }nI g g g=  , which represents a solution. The 

chromosome length is equal to the length of the dataset, 

where ig  has only two possible values: 0 or 1, and when ig  

is 1, 
id  in the dataset is one of the initial centers. Both 

genetic K-Means algorithms adopt single-point crossover. 

Considering the IO overhead on Hadoop MapReduce, our 

model draws on the chromosome coding method of the 

research by Shruti Kapil et al. [7] and improves some 

evolutionary operators based on it. The evolutionary 

operators in our PGKA are as follows. 

1. Initialization: For each chromosome 
1 2{ , ,..., }nI g g g= , 

randomly select K data points as the initial centers., 
ig  = 1 

indicates that 
id  in the dataset is one of the initial centers. 

2. Crossover: The proposed algorithm performs a 

double-point crossover. Compared with single-point 

crossover, double-point crossover can better retain the 

information of excellent individuals. Single-point crossover 

can only exchange chromosome fragments at one crossover 

point, which easily destroys excellent individuals' overall 

structure and information. In contrast, double-point crossover 

can exchange information at two points, which can retain the 

important information of excellent individuals and better 

avoid premature convergence [25]. The process involves 

selecting two parent chromosomes and determining whether 

to perform the crossover operation based on the crossover 

probability, if yes, the selected two parental chromosomes 

are divided into four fragments, and the four chromosome 

fragments are spliced according to the selected two points to 

form two new chromosomes, which are added to the next 

generation population as offspring chromosomes. 

The number of offspring chromosomes generated in the 

crossover stage is 50 % of the number of chromosomes in the 

parent generation. Moreover, because the number of ‘1' in the 

offspring chromosome generated after the crossover 

operation may be different from the parent chromosome, the 

mutation operation at the gene level is performed for those 

offspring chromosomes where the number of ‘1’ is not the 

same as the parent chromosomes. That is, if the number of ‘1’ 

is less than the parent chromosome. In these single/multiple 

genes, the value is ‘0’ are randomly selected for inversion to 

‘1’, and vice versa, until the number of ‘1’ is the same as the 

parent chromosome. The crossover operator is as shown in 

Fig. 3. 

3. Mutation: Unlike the gene-level mutation in crossover, 

the proposed algorithm uses a chromosome-level mutation 

operator. The traditional mutation method described by 

Shruti Kapil et al. [7] relies on the mutation probability of 

each gene, where the operation flips the gene's value. 

However, in this encoding form, the number of '1's 

corresponds to the K value in the K-Means algorithm. If the 

mutation operation is performed separately for each gene, the 

number of ‘1’ needs to be kept unchanged, which increases 

the complexity of the algorithm and causes additional 

 

 
Fig. 3.  Crossover operator in the proposed PGKA 
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inversion operations that do not follow the mutation 

probability: flip some positions to keep the K value 

unchanged just like the mutation operation in Crossover. 

Therefore, in the proposed GKA, the chromosome selected 

according to the mutation probability will be randomly reset 

to a new chromosome. The chromosomes from parents and 

offspring are all involve in mutation. The mutation operator 

is as shown in Fig. 4. 

4.Fitness evaluation: a small amount of K-Means 

operation is performed after decoding the chromosome, and 

compute the Calinski-Harabasz Index (CHI) [26] for the 

clustering result, using it as the chromosome's fitness. The 

formula is shown in (2). 

 
( )

*
( ) 1

Tr B N k
CHI

Tr W k

−
=

−
 (2) 

Among them, ( )Tr B is the covariance matrix between the 

clusters, ( )Tr W is the covariance matrix within the cluster, 

N  is the number of instances in the dataset, k  is the number 

of the clusters, the larger the CHI, the better the result. 

5.Selection: All chromosomes, including parents and 

children, are involved in the selection. The elitism operator 

[27] is performed in the selection. A small number of 

excellent individuals in the population are retained and 

directly entered into the next generation, and the remaining 

individuals are selected using the roulette selection. The 

process of the selection is as follows: First, calculate the 

probability of each chromosome entering the next generation 

as (3). 

 

1

( )
( )

( )

i

i N

jj

f x
P x

x
=

=


 (3) 

Among them, ( )if x  is the fitness of the chromosome 
ix , 

N  is the current population size. Then, calculate the 

cumulative probability sequence 
1 2{ , ,..., }NQ q q q= , where 

iq  is as (4). 

 
1

( )
i

i jj
q P x

=
=   (4) 

Then, generate a random number [0,1]r  . traverse 

sequence Q , until 
iq  is found that fits 

1i iq r q−   . The 

selection restores the population size that becomes larger 

after the crossover to the initial population size to keep the 

number of populations in each iteration unchanged. 

The process of the serial version of the proposed 

PGKA(SGKA) is as Fig. 5.  

 

 
Fig. 4.  Mutation operator in the proposed PGKA. 

 

 

Fig. 5.  Process of the SGKA. 

 

 
Fig. 6.  A generation in the PGKA, the number of generations depends on the parameter. 
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B. PGKA on Hadoop MapReduce 

In the study by Filomena Ferrucci et al. [17], various 

parallel Genetic Algorithm models are compared using 

Hadoop MapReduce. Among these models, the Genetic 

Algorithm based on the island model demonstrates clear 

advantages in computational efficiency compared to global 

and grid models. Building upon this insight, we propose a 

Parallel Genetic Algorithm (PGKA) implemented on Hadoop 

MapReduce, leveraging the island model as its foundation. 

In the island model, each subpopulation evolves 

independently within its own environment, thereby ensuring 

diversity within the overall population. This autonomy 

allows each subpopulation to potentially explore different 

evolutionary paths [28]. However, to prevent subpopulations 

from becoming trapped in local optima, it is crucial to 

facilitate information exchange between them. In the island 

model, evolutionary tasks are organized into multiple 

generations, during which subpopulations exchange 

information at regular intervals. 

To maximize the computational resources of the clusters, 

the Fork/Join framework is employed in fitness evaluation. 

This framework optimizes CPU utilization across nodes, 

thereby enhancing computational efficiency. 

The process of a generation in PGKA is shown in Fig. 6. 

1) Driver 

The Driver begins by configuring the parameters and 

initializing the population, then submitting MapReduce tasks 

to the processing framework.  In scenarios involving multiple 

generations, the Driver adopts an iterative approach, 

submitting multiple MapReduce tasks. Process of the Driver 

is illustrated in Fig. 7. 

To optimize clustering operations within the Map phase, 

the dataset file is pre-loaded into the distributed cache to 

leverage data locality, thereby enhancing efficiency.  Upon 

the completion of all MapReduce jobs, the global best 

chromosome is selected from the best chromosomes of 

various subpopulations.  This selected chromosome is then 

decoded into a series of initial center points for the K-Means 

algorithm, which is subsequently executed using these points.  

2) Map 

In the Maps, evolutionary operators are applied to each 

subpopulation. Following the division of the population by 

the Driver, each Map processes a sub-population, executing 

the evolutionary operators on its designated subpopulation. 

The process of the Maps is as shown in Fig. 8. 

After completing the evolutionary task for a generation, if 

F  equals false, this indicates that additional generations 

require processing. Each Map then duplicates and dispatches 

migrants to other subpopulations, subsequently removing the 

chromosomes of the lowest fitness to make room for 

incoming migrants from other subpopulations before finally 

outputting the survivors. Conversely, if F  equals true, 

signaling the final generation, each subpopulation outputs 

solely the best chromosome and its fitness. Consequently, 

2K  is set to a fixed value, ensuring a singular reducer in the 

subsequent reduce phase to minimize overhead.  

The fitness evaluation is the most computationally 

intensive part of the algorithm; we use a multi-thread 

framework to improve the computational efficiency. The 

method is similar to MapReduce. Both of them split large 

computing tasks into multiple small computing tasks for 

processing, which can efficiently use the computing power of 

the CPUs in the distributed clusters, the process of fitness 

evaluation in PGKA is as shown in Fig. 9. 

3) Reduce 

Reduce receives V2 values with the same K2 value as an 

 

Fig. 7.  The process of the Driver of the PGKA 

 

 

Fig. 8.  The process of the Map of the PGKA, the variables here are the same 

as those in Driver 
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iterator. There are multiple Reducers processing tasks in the 

MapReduce job in the non-last generation, and only one in 

the last generation. Reducer’s task is to write the V2 as the 

input format of the Map to HDFS for the next generation, or 

output the global best chromosome for the Driver, the process 

is as shown in Fig. 10.  

IV. EXPERIMENTS 

A. Datasets 

 The datasets utilized in this study are obtained from the 

UCI Machine Learning Repository, with different datasets 

chosen for two separate experiments: one focusing on 

clustering accuracy and the other on computational efficiency.  

This differentiation is based on the premise that smaller 

datasets facilitate numerous executions, yielding more 

precise outcomes.  Conversely, larger datasets, which require 

more processing time, are better suited for assessing the 

computational efficiency of the algorithms. 

As shown in Table I, the Seeds, Wine, and Wholesale 

customers datasets are employed for the clustering accuracy 

experiment, while the remaining datasets are reserved for 

evaluating computational efficiency. Additionally, two 

datasets from the experiments are chosen to examine the 

sensitivity of the algorithms to parameter changes. 

B. Distributed clusters 

The experiment is conducted on a distributed cluster 

comprising up to 16 nodes, with the specifics of the software 

and hardware detailed in Table II.  

To clarify the identification of cluster configurations 

varying by node count within the experiment, the naming 

conventions for these configurations, corresponding to the 

different numbers of nodes, are shown in Table III. 

C. Clustering accuracy 

1) Evaluation metrics 

The results are evaluated using four different clustering 

evaluation indices: Davies-Bouldin Index (DBI) [29], 

Silhouette Coefficient (SC) [30], Calinski-Harabasz Index 

(CHI), and SSE. 

The formula for DBI is shown in (5). 

 
Fig. 9.  The fitness evaluation in the PGKA 

 

 

Fig. 10.  The process of the Reduce of the PGKA 

 

 
TABLE I 

DATASETS USED IN THE EXPERIMENTS 

Name Instances Features 

Seeds 345 6 
Wine 440 8 

Wholesale customers 178 13 

Toxicity 171 1203 
Har70 2259597 6 

Cover type 581010 54 

 

 

TABLE II 
SOFTWARE AND HARDWARE OF THE DISTRIBUTED CLUSTERS 

Architecture 64bit 

CPU cores 4 
Ram 4GB 

Storage 20GB 

Network LAN 1Gbps 
OS CentOS 7 

Java 1.8.0 
Hadoop 3.1.3 

 

 

TABLE III 
CONFIGURATIONS OF DISTRIBUTED CLUSTERS WITH VARYING NUMBERS OF 

COMPUTER NODES 

Configurations Master Worker(s) Total 

C1 1 0 1 

C2 1 1 2 

C4 1 3 4 

C8 1 7 8 

C16 1 15 16 
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1

1
max ( )

k i j

j ii

ij

S S
DBI

k M
=

+
=   (5) 

Among them, k  is the K value in K-Means algorithm, 
iS  

is the average distance between the data points in the cluster 

and the center of the cluster, ijM is the distance between the 

two cluster centers, a smaller DBI indicates a better result.. 

The formula for SC is shown as (6) and (7). 

 
1

1 N

ii
SC s

N =
=   (6) 

 
max{ , }

i i

i

i i

b a
s

a b

−
=  (7) 

Among them, 
ia  represents the average distance of a data 

point to other data points within the cluster, while 
ib  

represents the average distance from the data point to the 

nearest other cluster. A larger SC indicates a better result. 

The formula for SSE is as (8). 

 
2

1 1

1
( ( ) )

k n

ij i
SSE x x

n

−

= =
= −   (8) 

Among them, n  is the number of datapoints in the cluster, 

x  is the center of the cluster, k  is the number of clusters. 

The smaller the SSE, the better the result. 

2) Clustering accuracy 

This experiment compares the clustering accuracy of 

K-Means, KGA [7], GBKM [6], and PGKA. The 

 
(a) The results on wine dataset 

 

 
(b) The results on seeds dataset 

 

 
(c) The results on wholesale customers dataset 

 
Fig. 11.  Clustering metrics of the algorithms on different datasets 
 

 
TABLE IV 

PARAMETERS OF THE ALGORITHMS USED IN THE CLUSTERING ACCURACY 

EXPERIMENT 

Algorithms K-Means KGA GBKM PGKA 

K 30 30 30 30 

Iterations 100 100 100 100 
Population \ 200 200 200 

Crossover prob. \ 0.5 0.5 0.5 

Mutation prob. \ 0.05 0.05 0.05 
Elite rate \ \ \ 0.05 

Number of migrations \ \ \ 0 

 

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

 
______________________________________________________________________________________ 



 

experimental parameters are shown in Table IV. Given that 

population splitting can influence clustering accuracy, the 

PGKA algorithm was executed on a single node to ensure the 

reliability of the experimental results. Additionally, the 

parameters for PGKA are aligned with those of KGA and 

GBKM in terms of the common parameters. 

Employing a larger K value in the clustering accuracy 

experiment serves to broaden the search space and elevate the 

optimization challenge, thereby more effectively highlighting 

the performance disparities between the algorithms. 

All algorithms were executed 30 times under each 

configuration, and the value of each metric is recorded as the 

outcome and takes average as the result.  

The results, shown in Fig. 11, reveal that PGKA surpasses 

both KGA and GBKM across all metrics and datasets. 

Additionally, all GKAs outperform K-Means on every 

evaluated metric.  

D. Computational efficiency 

In this experiment, we compare the execution times of 

SGKA (the serial version of PGKA), nm-PGKA (the PGKA 

algorithm without the multi-threaded framework), and 

PGKA. The parameters used in the computational efficiency 

experiment are shown in Table V.  

PGKA, which is built upon the MapReduce framework, 

follows the same procedure for executing evolutionary 

operators on a single node as SGKA. However, the 

implementation of the MapReduce framework introduces 

additional overheads. Therefore, to ensure a more accurate 

and fair comparison, the SGKA algorithm is utilized in place 

of PGKA with a single node for the experiment. 

1) Execution time 

The nm-PGKA and PGKA algorithms were executed 10 

times across all datasets and configurations. SGKA was also 

executed 10 times on all datasets using the master node, with 

averages computed for the results. These results are presented 

in Fig. 12. 

The results show that nm-PGKA's execution time exceeds 

that of SGKA on the Toxicity dataset under the C2 

configuration. In contrast, for other scenarios, the execution 

times for the MapReduce algorithms (nm-PGKA and PGKA) 

are shorter than that of SGKA, with PGKA consistently 

outperforming nm-PGKA across all cases. 

The results indicate that multi-thread computing 

significantly enhances PGKA's performance. The execution 

time of nm-PGKA is longer than that of SGKA on the 

Toxicity dataset and C2 configuration because the overhead 

of the MapReduce framework negates the computational 

advantage of parallel computing on the two nodes. On larger 

data sets, time is mainly consumed in computing; multi-node 

parallel computing brings more advantages in computing, so 

the execution time of nm-PGKA is less than that of the 

SGKA. The speedup rate of the two MapReduce algorithms 

on the SGKA algorithm is shown in the Fig. 13. 

With the increase in the number of nodes, the speedup rate 

of the two MapReduce algorithms increases, showing good 

scalability. The speedup rate is as (9). 

 
TABLE V 

PARAMETERS OF THE ALGORITHMS USED IN THE COMPUTATIONAL 

EFFICIENCY EXPERIMENT 

Algorithm K-Means KGA GBKM PGKA 

K value 5 5 5 5 

Iterations 100 100 100 100 
Population size \ 200 200 200 

Crossover prob. \ 0.5 0.5 0.5 

Mutation prob. \ 0.05 0.05 0.05 

Elite rate \ \ \ 0.05 

Number of migrations \ \ \ 3 

 

 
(a) The speedup rate on Toxicity dataset                    (b) The speedup rate on Har70 dataset                   (c) The speedup rate on Cover type dataset 

 
Fig. 13.  Speedup rate of the 2 MapReduce algorithms on the SGKA 

 

 
Fig. 12.  Execution time of the algorithms on different datasets 
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p

T
Speedup

T
=  (9) 

Among them, 
sT  represents the execution time of the 

serial algorithm, while pT  denotes the execution time of the 

parallel algorithms. 

2) Efficiency under different CPU cores 

In this experiment, we compare the execution times of 

SGKA, nm-PGKA, and PGKA across various CPU 

configurations within same clusters. This comparison aims to 

determine the sensitivity of each algorithm to CPU 

configuration variations. 

 The experiment was conducted on virtual machines 

hosted by VMware Workstation, which allowing easy 

modification of the number of CPU cores.   Despite the 

difference in CPU models compared to the previous 

experiments, all other configurations remained consistent 

with those shown in Table II. The different CPU core 

configurations are shown in Table VI, with the Toxicity 

dataset selected for this evaluation.  

Each algorithm was executed 10 times under all 

configurations, with the average results presented in Fig. 14. 

The results indicate that both SGKA and nm-PGKA 

exhibit low sensitivity to changes in the number of CPU cores. 

Conversely, the execution time of PGKA decreases as the 

number of CPU cores increases, demonstrating PGKA's 

robust scalability across both distributed clusters and CPU 

configurations. This shows PGKA's ability to leverage 

additional computational resources to enhance performance 

effectively. 

E. Parameter sensitivity 

In this experiment, we examine how PGKA's performance 

is influenced by specific parameters, notably the impact of 

population splitting on clustering accuracy and the effect of 

migration numbers on both clustering accuracy and 

computational efficiency. 

1) Number of subpopulations 

In PGKA, the number of subpopulations matches the 

number of nodes in the cluster.  Therefore, PGKA was 

executed on clusters with varying node counts to assess the 

impact of population division on clustering accuracy. 

The parameters used in this experiment are the same as 

those in Table IV. The environment is consistent with Table 

II and Table III, and the seeds dataset was used.  PGKA was 

executed 30 times under all configurations, with the average 

CHI taken as the result.  The results are shown in Fig. 15. 

The results show that clustering accuracy gradually 

decreases as the number of nodes increases.  This indicates 

that to achieve better clustering results with more nodes, the 

population size or the number of migrations should be 

appropriately increased. 

2) Number of migrations 

 
TABLE VI 

CONFIGURATIONS WITH DIFFERENT NUMBER OF CPU CORES 

Configuration CPU cores Total nodes 

V1 1 4 

V2 2 4 

V3 3 4 

V4 4 4 

 

 

 
Fig. 14.  Execution time on the configurations with different CPU cores of 
the algorithms 

 

 

 
Fig. 15.  The clustering accuracy of the PGKA on different number of nodes 

on the seeds dataset 
 

 
(a) The execution time of the PGKA with different number of migrations 

 

 
(b) The CHI of the PGKA with different number of migrations 

 
Fig. 16.  The CHI and the execution time of the PGKA with different number 

of migrations 
 

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1632-1643

 
______________________________________________________________________________________ 



 

The number of migrations affects both clustering accuracy 

and computational efficiency.  In this part of the experiment, 

PGKA is tested on the C4 configuration and the Toxicity 

dataset.  Except for the number of migrations, all other 

parameters are the same as those in Table IV. PGKA with all 

parameters is executed 10 times, and the average is taken as 

the result.  The results are shown in Fig. 16. 

The results indicate that as the number of migrations 

increases, both the execution time and clustering accuracy of 

PGKA increase, suggesting that this parameter needs to be 

adjusted according to different situations. 

F. Further analysis on the PGKA 

1) Wilcoxon test 

To ensure the reliability of the experimental results, a 

Wilcoxon test was conducted on the outcomes of the 

computational efficiency experiment. The Wilcoxon test 

results are detailed in Table VII. 

A Wilcoxon statistic of 0 implies that all observed 

differences consistently favor one algorithm over another, 

indicating that one algorithm invariably executes faster.       

The p-value, on the other hand, measures the likelihood of 

observing the current or more extreme results under the 

assumption that the null hypothesis is true. In this context, the 

null hypothesis posits that there is no significant difference in 

the efficiency of the two algorithms being compared. 

Most of the p-values obtained were 0.0019, which is well 

below the commonly accepted significance thresholds of 

0.05 or 0.01 in research. This strongly suggests rejecting the 

null hypothesis in most cases, providing substantial statistical 

evidence of a significant efficiency difference between the 

algorithms. 

Analyzing the execution times from the results of 

computational efficiency experiments, it is evident that 

PGKA consistently outperforms both SGKA and nm-PGKA 

in terms of computational efficiency. However, the results for 

the C16 configuration with the Har70 dataset do not show a 

significant difference between nm-PGKA and PGKA.       

This lack of significant difference is likely due to the 

diminishing returns of multithreaded computation when the 

number of nodes is sufficiently large or the dataset size is 

relatively small. Conversely, the benefits of multithreaded 

computation were evident in experiments with larger datasets, 

such as those involving the cover type dataset. 

2) Analysis on MRPGKA 

A Wilcoxon statistic of 0 suggests that one algorithm 

consistently outperforms another in execution time. The 

p-value, in contrast, measures the likelihood of obtaining the 

observed results under the assumption that the null 

hypothesis is true. Here, the null hypothesis states that there 

is no efficiency difference between the two algorithms. 

 

To gain a more comprehensive understanding of PGKA's 

computational performance, we apply Gustafson's Law to its 

execution steps. This principle helps evaluate the algorithm's 

scalability and efficiency in parallel computing contexts, 

offering broader insights into its performance. 

 

The formula for Gustafson's Law is as follows: 

 *(1 )s

p

t
P

t
 = + −  (10) 

In this context, 
st  represents the execution time of the 

serial algorithm, pt  denotes the execution time of the 

parallel algorithm, a  is the proportion of the 

non-parallelizable part of the program, and P  is the number 

of units involved in parallel computation. 

The execution process of SGKA, nm-PGKA, and PGKA 

can be broken down into multiple steps, as detailed in Table 

VIII. 

Assuming the distributed cluster has n  nodes, and each 

with c  cores,the number of migrations is m . 

For the SGKA, the execution time is: 

 SGKA i c m sl eT T T T T T= + + + +  (11) 

The execution time of nm-PGKA can be calculated as 

follows: 

 
TABLE VIII 

NOTATIONS OF THE STEPS IN THE DIFFERENT ALGORITHMS 

Notation Description 

iT  Execution time of initialization. 

cT  Execution time of crossover operator. 

mT  Execution time of mutation operator. 

slT  Execution time of selection operator. 

eT  Execution time of evaluating the chromosomes 

mrT  
Time overhead introduced by the MapReduce 

framework. 

fjT  Time overhead caused by the Fork/Join framework. 

imT  
Time consumption in migrating and resubmitting 

MapReduce task once. 

 

 
TABLE VII 

RESULTS OF THE WILCOXON TESTS 

Dataset Conf. SGKA & nm-PGKA nm-PGKA & PGKA SGKA & PGKA 

Statistic P Statistic P Statistic P 

Toxicity C2 0 0.0019 0 0.0019 0 0.0019 

C4 0 0.0019 0 0.0019 0 0.0019 

C8 0 0.0019 0 0.0019 0 0.0019 
C16 0 0.0019 0 0.0019 0 0.0019 

Har70 C2 0 0.0019 0 0.0019 0 0.0019 
C4 0 0.0019 0 0.0019 0 0.0019 

C8 0 0.0019 0 0.0019 0 0.0019 

C16 0 0.0019 0 0.0019 11.0 0.1054 
Cover type C2 9.0 0.0644 0 0.0019 0 0.0019 

C4 0 0.0019 0 0.0019 0 0.0019 
C8 0 0.0019 0 0.0019 0 0.0019 

C16 0 0.0019 0 0.0019 0 0.0019 
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The execution time of nm-PGKA can be calculated as 

follows: 

 

*

*( )
* *

i c m sl e

PGKA mr im

e
i c m sl fj

e

T T T T T
T T m T

T
T n T T T T

n c T

+ + + +
= + +

+ + + + +

(13) 

Ideally, the computational efficiency of PGKA increases 

significantly as the n  and c  increase. However, real-world 

applications must take other factors into account, especially 

since the execution time of a MapReduce task often depends 

on the performance of the least computationally efficient 

node in the cluster. 

These analyses establish that PGKA's computational 

efficiency substantially surpasses that of both SGKA and 

nm-PGKA, offering a theoretical foundation for its 

application in various settings. 

V. CONCLUSION 

In this research, we proposed the PGKA, which 

implements distributed parallel computing based on the 

MapReduce framework. It uses the multi-threaded 

computing framework Fork/Join to improve its 

computational efficiency further. The distributed model of 

the PGKA is based on the island model. In the most 

time-consuming fitness evaluation part in the PGKA, 

multi-threaded computing is used to fully use the computing 

power of multi-core CPU in the distributed clusters. 

We conducted multiple experiments on PGKA, focusing 

on clustering accuracy, computational efficiency, and 

parameter sensitivity. All datasets were sourced from the UCI 

Machine Learning Repository. 

In the clustering accuracy experiment, PGKA 

demonstrated superior clustering accuracy compared to the 

two GKA algorithms proposed in other studies and the 

K-Means algorithm across four clustering evaluation indices. 

In the computational efficiency experiment, we compared 

the execution time of PGKA with its serial version, SGKA, 

and the nm-PGKA algorithm, which does not use 

multi-threaded computing. PGKA consistently had shorter 

execution times than both SGKA and nm-PGKA across all 

datasets and configurations. Notably, nm-PGKA also 

outperformed SGKA except in a few specific cases. For the 

largest dataset and given parameters, PGKA's speedup rates 

compared to SGKA were 1.3, 4.6, 10.7, and 12.4 times faster 

on 2, 4, 8, and 16 nodes, respectively. 

We also tested the algorithms on different CPU 

configurations. The results showed that SGKA and 

nm-PGKA were not sensitive to the number of CPU cores, 

while PGKA's execution time decreased as the number of 

CPU cores increased. 

In the parameter sensitivity experiment, we examined the 

effects of the number of subpopulations and the number of 

migrations on PGKA's performance. The results indicated 

that as the number of subpopulations increased, PGKA's 

clustering accuracy decreased, suggesting the need to 

increase the population size or the number of migrations 

appropriately. Additionally, while an increase in the number 

of migrations improved clustering accuracy, it also resulted 

in longer execution times. It shows that the parameters must 

be adjusted in different situations to achieve better results. 

Finally, we examined the experimental results on 

computational efficiency using the Wilcoxon test, verified 

the conclusion that PGKA is more computationally efficient, 

and analyzed PGKA using Gustafson's law. 

There are also some other problems. For example, Hadoop 

MapReduce does not support saving intermediate results but 

reading and writing in HDFS. Therefore, iterative algorithms 

such as the PGKA have a large IO overhead. The PGKA's 

computational efficiency on Spark will be better [31]. 

Compared with Hadoop MapReduce, iterative algorithms 

there are more suitable platforms [32] to implement 

distributed parallel computing. 

In the future, we will test the performance of the PGKA on 

different platforms or investigate distributed computing 

solutions to the problem of optimizing K-Means with more 

advanced optimization algorithms [33]. 
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