Engineering Letters

Estimation of Multicomponent Stress-Strength
Reliability with Exponentiated Generalized
Inverse Rayleigh Distribution

Neama Salah Youssef Temraz

Abstract— In this paper, an estimation of the
multicomponent stress-strength reliability is introduced subject
to the exponentiated generalized inverse Rayleigh distribution.
Different methods of estimation are introduced to estimate the
multicomponent stress-strength reliability. Simulation method
is introduced to illustrate the steps of finding the estimates of the
multicomponent stress-strength reliability. Asymptotic and
bootstrap confidence intervals are proposed in order to find
interval estimations for the multicomponent stress-strength
reliability. A Bayesian estimation method is introduced for the
multicomponent stress-strength reliability. A simulation study
is introduced to obtain the estimates of the multicomponent
stress-strength  reliability for the different methods of
estimation. A real data application is introduced to show how
the exponentiated generalized inverse Rayleigh distribution is
used to fit the real data sets.

Index Terms— Reliability, stress-strength, exponentiated
generalized inverse Rayleigh distribution (EGIR), maximum
likelihood estimation, least square estimation, Cramér-Von-
Mises estimation, Bayesian estimation.

I. INTRODUCTION

hattacharyya and Johnson [1] introduced an estimation

of reliability in a multicomponent stress-strength
model. Norman and Guttman [2] presented a Bayesian
analysis of reliability in multicomponent stress-strength
models. Rao and Kantam [3] presented an estimation of
reliability in multicomponent stress strength model subject to
log-logistic distribution. Rao [4] introduced an estimation of
reliability in multicomponent stress-strength based on
generalized exponential distribution. Rao et al. [5] proposed
an estimation of reliability in multicomponent stress—strength
based on two parameter exponentiated Weibull distribution.
Dey et al. [6] Estimation of reliability of multicomponent
stress strength for a Kumaraswamy distribution. Kizilaslan
and Nadar [7] presented an estimation of the reliability in a
multicomponent stress strength model based on a bivariate
Kumaraswamy distribution. Hassan and Alohali [8]
introduced an estimation of reliability in a multicomponent
stress- strength model based on generalized linear failure rate
distribution.

Kizilaslan [9] presented classical and Bayesian estimation
of reliability in a multicomponent stress—strength model
based on a general class of inverse exponentiated
distributions.
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Kohansal [10] proposed an estimation of reliability in a
multicomponent stress-strength model for a Kumaraswamy
distribution based on progressively censored sample.
Akgul [11] presented an estimation for the reliability in
multicomponent stress—strength model for Topp-Leone
distribution. Rao et al. [12] introduced an estimation of
reliability in a multicomponent stress—strength system for
the exponentiated moment-based exponential distribution.

Jha et al. [13] presented an estimation of the
multicomponent reliability by assuming the unit-Gompertz
distribution. Hassan et al. [14] introduced an estimation of
multicomponent  stress-strength  reliability  following
Weibull distribution based on upper record values. Alotaibi
et al. [15] introduced Bayesian and non-Bayesian reliability
estimation of multicomponent stress strength model for unit
Weibull distribution. Kotb and Ragab [16] presented an
estimation study of the reliability of multicomponent stress
strength model based on modified Weibull distribution. Jia
et al. [17] presented an inference on stress-strength
reliability from inverse Weibull distribution based on first-
failure progressively unified hybrid censored scheme. Jana
and Bera [18] considered an interval estimation of stress
strength reliability of k-out-of-n system when the stress and
strength components follow inverse Weibull distributions.
Ahmad et al. [19] presented a comparative inference on
reliability estimation for a multi-component stress-strength
model under power Lomax distribution with applications.
Lio et al. [20] introduced an inference of the
multicomponent stress strength reliability for Burr XII
distribution. Pasha-Zanoosi et al. [21] presented
multicomponent  stress  strength  reliability — with
Exponentiated Teissier distribution. Zhang et al. [22]
introduced a Bayesian inference of system reliability for
multicomponent stress strength model under Marshall-
Olkin Weibull distribution.

In this paper, the multicomponent stress-strength
reliability model with the exponentiated generalized inverse
Rayleigh distribution is introduced. Different methods of
estimation for the multicomponent stress-strength reliability
are discussed. The asymptotic, parametric bootstrap
sampling and student s t bootstrap sampling confidence
intervals for the multicomponent stress-strength reliability
are introduced. Bayesian estimation method and the credible
interval for the multicomponent stress-strength reliability
function in case of known and unknown parameters are
presented. A simulation study is introduced to show the
results for the different methods of estimation for the
multicomponent stress-strength reliability. A real data
application is introduced to show the results for the
multicomponent stress-strength model.
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Il. EXPONENTIATED GENERALIZED INVERSE RAYLEIGH likelihood function of these unknown parameters can be
DISTRIBUTION written as:

Fatima et al. [23] introduced the exponentiated Lea.d _
generalized inverse Rayleigh distribution with cumulative (a;l Y1Y2i%Y)
distribution function and probability density function — _ - ‘
defined as follows: [1[ Hf(x”) 90
n k
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Let X and Y are two independent random variables [1 —(1—e~@W7) ] }
follow the exponentiated generalized inverse Rayleigh
distribution, then the stress-strength reliability function will  The log-likelihood function is obtained as follows:
be given by:
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Rsy = ZZ (]) (l) (1) ay, f (1 = ¢ Urk-Dtrgy respect to a, A, ¥, and y, are obtained as follows:
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IV. DIFFERENT METHODS OF ESTIMATION

Different methods of estimation will be discussed in —(y — 1)2(
order to find the estimators of the parameters of the
exponentiated generalized inverse Rayleigh distribution and

hence find the estimator of the multicomponent stress ol L PR k e
strength reliability function. The methods of estimation that 0L _ 1 +Zzlog [1 — (1 = e~(xi)) ) ]
will be discussed are the maximum likelihood, the least 72} ==

squares and Cramér-Von-Mises methods.

A. Maximum Likelihood Estimation Method 6logL

. . . log|1—(1—e @7
Let n system be put on a life testing experiment. Further ay, yz Z g [ ( ) ]
assume that X;;, X;5, ..., Xj and Y;,i = 1,2, ..., n denote the

n k n
observed data obtained using EGIR(a,4,y,) and 9logL _ _2"(" D, z z i+ Z v,
EGIR(a,A,y,) distributions respectively. Thus, the oA T4

i=1j=1 i=1
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Equating the partial derivatives to zero as follows:

e~ (xy)”

dlogL 0 dlogL

dlogL dlogL
da dy1

"oy, oA

And then solving the equations numerically yields the
maximum likelihood estimators for the parameters
(al ]/11 Y2, /‘{) denOted by ’ ?{Wl ]'/\él'l and /‘I{M'

The maximum likelihood estimators for the parameters
y, and y, are obtained as:

~M —nk
Y1 = —
?:1 Z;F:l log [1 — (1 — e‘(’lxij) ) ]
—-n
7 =

L log[t— (1 =07

The maximum likelihood estimator of the multicomponent
stress-strength reliability will be given by:

SM
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B. Least Squares Estimation Method

The least squares estimators of the multicomponent stress
strength parameters which dented by @, 7£, 7% and A* can be
obtained by minimizing the following function:
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Or, equivalently solving the following differential equation
after equating them to zero.
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The least squares estimator of the multicomponent stress-
strength reliability can be obtained by:

L
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C. Cramér-Von-Mises Estimation Method

The  Cramér-Von-Mises  estimators of  the
multicomponent stress strength parameters which denoted
by &¢,7¢,7¢ and A° can be obtained by minimizing the
following function
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Or, equivalently solving the following differential
equation after equating them to zero.

LR (R
[1 _ (1 _ —(Axij)_z)a]yl_l (1 _ —(/lxij)_z)a log(l — e—(lxij)_z)

—ZyZZ{[l—(l—e‘(’U’) ) ]

2n+1}

Volume 32, Issue 8, August 2024, Pages 1623-1631



Engineering Letters

(1 = @) Jog(1 — e=@0™)

[1 -(1- e—uyi)-Z)“]

2> {1 (-0 ) - ]

1- (1 _ e—(axu)_z)a]h log [1 — (1 _ e—(lxu')_z)a]

aLs _anal¥a 2i
(1 — e~ @y)7? _
6}/2 ZZ{[l (1 e ) ] 2n+ 1}

" [1 -(1- e—uyi)*)“]“ log [1 -(1- e—uyi)*)“]

aLS
aVl

ﬁeMs

[y

oLS & a2l
9L _ — (1= e-0xp) ] __}
aa 4”1“;{[1 (1-e”) nk + 1
_ 1—1 _ —
[1- (1™ (1 o™
e‘(/lxt])_z(ﬂxij)_gxij
n .
_ -2 al¥z _ 20 }
+4y2aZ{[1 (1—e~@™) ] 1
i=
[1-(- e—uya*)“]“_l (1- e~
e= M7 Ay By,

The Cramér-Von-Mises estimator of the multicomponent
stress- strength rellablllty can be obtained by:

=3 () g

i=s j=0

(4

V. MONTE CARLO SIMULATION ALGORITHM

Step 1: Set initial values of the parameters (a, 4, y1,v2)-
Step 2: Choose (s, k) and sample size n.

Step 3: Using the inversion method to generate random
samples from random variables X; and Y; at the initial values
of the parameters (a,A,yq,v2)by applying the inversion

method as follows:
1

1 1\"\] 2
Xij =z[—log<1—(1—u”h) )] ,

0<ul-]- <1,l= 1,2,...,

1 IOV
Y'L-=I[—log(1—(1—si1’2) )] ,

0<s;<1,i=12,..,n

nj=12 .k

Step 4: Using the method of Newton-Raphson to obtain the
estimates of the parameters according to the different
methods of estimation.
Step 5: The estimates of the multicomponent stress-strength
reliability can be obtained by substituting in Equations (2),
(3) and (4).
Step 6: Repeat steps from 3 to 5, L times. The mean squared
error (MSE) is given by
2
Rs,k)

%‘=1 (ﬁs,k,i -

MSE =
L

VI.

The observed Fisher information matrix of the parameters
a, A, v1, Y2 is given by:

ASYMPTOTIC CONFIDENCE INTERVAL

2logl.  d%logl  d%logL  d*logL
/ da®  0ady,  Oady,  0adld \
| _ d%loglL _azlogL _azlogL _leogL |
106) = ‘ dy,0a ay,* Y10y, dy,04 l
d%logl.  0%loglL  d%logL  9d%loglL
00 0y0, 01t 0y,0h
\ d%logl.  0%logL.  d%logL 6zlogL)
0lda  0Ady,  0Ady, 012
where
d%logL d%logL
0y,0y1 9y10v-

The asymptotic variance of an estimate R, will be given by:
R a2logL\ ™" (0Rs;\" a2logL\ " (0R,\”
V(Rsi) = (———= =) - >
071 071 a7, 07,
2
P2 +k—1)
71G +k —1) +7,]?
Kk 2
IS (gt
n |&ala\i (721G + k=D +7.)°

An asymptotic 100(1 — §)% confidence interval of R

will be given by:
|:§S,k i Zl—é V(ﬁs,k)]
2

BOOTSTRAP CONFIDENCE INTERVAL FOR Rs,k

VII.

A. Parametric Bootstrap Sampling
Stepl: From given samples (x;q, ..., x;) and (y, ...
compute the estimates (&, 71, 72, 1) of (@, v, 72, 2).
Step 2: Generate a bootstrap sample of size nk
(x}1, o, X}),i = 1,...,n from EGIR(&, 4,7,) and generate a
bootstrap sample (y;, ..., y;) of size n from EGIR(&, 4,7,)
Step 3: Compute the estimates (@*, 71,73, 4°) of (@, 71,72, 2)
and then compute the bootstrap estimates R sx OF Ry
Step 4: Repeat Step 2 and 3, B times to obtain a set of
bootstrap samples of R, say {R (”, j=1,. B}

p*(B)

Step 5: Order ., j = 1, ..., B, such that Rs‘(kl) < <R
a 100(1 — 8)% bootstrap confidence interval will be given
by:

2 Yn)s

[R;,k,B(a/Z)' R;,k,B(l—a/Z)]

B. Student’s t Bootstrap Sampling

Stepl: From given samples (x;q,..., %) and (yq, ..., ¥n),
compute the estimates (&,7;,72,4) of (a,¥1,72,4) and
compute the estimate R;

Step 2: Generate a bootstrap sample of size nk
(x}1, o, Xp),i = 1,...,n from EGIR(&, 4,7,) and generate a
bootstrap sample (y;, ..., ¥;) of size n from EGIR(&, 4,7,)
Step 3: Compute the estimates (&%, 71,73, 1) of (@, 71,72, 1)
and then compute the bootstrap estimates R}, of R;

Step 4: Repeat Step 2 and 3, B times to obtain a set of

., B, such that R;_(kl) <

bootstrap samples of R, say { J=1,.

D R
Step 5: Order R.}’,j = 1,. < Rg}
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Step 6: Compute the sample standard deviation of
{R,j =1,..., B} such that

sd(Rix) = [V(R:x)

Z(ﬁ*“ )

And compute the t* statistic such that:

R*(]) ﬁsk
Sd(R )

A 100(1 — §)% bootstrap confidence interval will be
given by:

t*() =

Ry £t B@/Dsd(R;,)

VIIl. BAYESIAN ESTIMATION METHOD

A. Unknown Parameters

The Bayesian estimator for the stress-strength reliability
will be obtained assuming that the parameters
a,Y1,Y, and A are independent random variables with
priors follow gamma distribution as follows:

a~Gamma(aq, by)
yi~Gamma(a,, b,)
y,~Gamma(as, b3)
A~Gamma(ay, b,)

The joint prior density function of the parameters
a,Y1,Y2 and A is given by:

— a,-1_az—1 -1 - — — —
T[(a’,]/l,)/z,ﬂ.) x a™ 1)/12 yzs a1, bya—byy,—b3y,—byA

The joint posterior density function of a,y;,v, and A
given the data (x, y) is given by:

T[((X, Y1, V2 Alx' )’) x T[((X, Y1 Y2, A)L(a, Y1, V2, /1|X, J’)

T[(a'yll)/Z'Aley)
-1, nk+a;—-1_n+az—1,— -
< an(k+1)+a1 1 2 Y 371y 2n(k+1)+az—1

"1
e~ P1E=P2YV1=@P3Y2—b4A—4

where
n k
@1 =Dby — ZZ log (1 — e~ ()” Zlog(l — e~ (" )
i=17j=1
n k

in1 j=1
@3 = by — Z log [1 — (1 — e~ Wy~ 2) ]
n k =t n k
Py = ZZ(AJC”) + ZZlog (1 —e (Axij) )
i=1j=1 i=1j=1

[N
—.
1l

[N

+ Z(/lyl) Z4 Z log(1 — e~ ™)

i=1
n

+ Z log [1 -(1- e‘uyl’)_z) ]

i=1

The marginal posterior distributions of a,y,,y, and A can
be deduced as:

i (A, x,y) « Gamma(n(k + 1) + ay, ;)
m; (1114, @, x) « Gamma(nk + a;, ;)
5 (y2 |4 @, y) « Gamma(n + as, @3)

T[Z (/1|a, X, y) < /1—2n(k+1)+a4—1e—b4l—qo4

The posterior distributions of the parameters a, y, and y, are
gamma distributions and the posterior distribution of A is
unknown. Metropolis-Hastings (MH) algorithm can be
applied to simulate random samples from the posterior density
of A. The Markov Chain Monte Carlo (MCMC) simulation
method will be applied to obtain the Bayesian estimation of
the multicomponent stress-strength reliability.

Stepl: Choose initial values a®,y?,y?, 1°

Step 2: Seti =1

Step 3: Generate a @from Gamma(n(k + 1) + ay, ¢;)

Step 4: Generate yl(i)from Gamma(nk + a,, @)

Step 5: Generate yz(i)from Gamma(n + as, @3)

Step 6: Generate A9 from m;(A|a, x, ¥) using MH algorithm
with proposals generated from the normal distribution

-1
N2V, v AG-Dy) where V(1) = (— az;:fL)

Step 7: Compute RS; from Equation (1)

Step8: Seti=i+1

Step 9: Repeat steps from 3t0 9, T times. The Bayes estimator
of the multicomponent stress-strength reliability under the
squared error loss will be given as

t
sk Z_ZR()

To construct the credible mterval for R, Firstly, reorder R®
such that R(l) < <R{). Then a 100(1 —£)% credible

interval of RZ, becomes [R(TE/ 2, RIGE/2,

B. known Parameters

The parameters a and A are assumed to be known and the
parameters y; and y, are assumed to have prior distributions
follow gamma distribution. The joint prior distribution of
y:1 and y, will be given by:

V1a2 1]/2a3 1
I'(a)T(az)

y1>0,7,>0,a, >0,a;>0,b, >0,b; >0

(Y, V2) = —(bzl’1+b31’2)’

The joint posterior distribution of y, and y, will be given
by:
(Y1, Yalx, ¥) = vy, v2)L(x, yla, v1, v2, D)

(1, v2)L(@, v, V2, Alx, y)
Iy 1 v L@, va vz, Alx, y) dyady,

iy, v2lx,y) =

az+nk

(1, v2l%y) = {bz

j=
a,+nk-1
V1

I'(a, + nk) ¢
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{b3 - i log [1 -(1- e—(Ayi)Z)“]}as ’
_(1_8—(@0‘2)“]}

as+n-1
Y, 3 —yz{bg -3 log|1

I'(as +n)

The Bayes estimator of the multicomponent stress-strength
reliability under the squared error loss will be given by:

ﬁﬁk szRs,k (Y v2lx,y)dy dy,
0

0

ki a+nk

(}l) (]L() -1/ F(a:V:- nk)l“za3 +n)

az+n

V2 axtnk-1_az+n-1 __y w, —y,w,
—_—— dy,d
f.fh(i —D+7, " V2 e e Y1ay2
0 0

<53 Y1 (s

~(x) )"
1= 1)

Wy, = b; — Z log [1 -(1- e—(ﬂyi)‘z)a]

i=1

~.
=||

1’2. 'ZZ=YI(j+k_

Letz = Y1 +k=)+72

i) +y, where

z(1-241)

kD) and the

0<z <1,z >0.Andhencey, = z,2,,y; =

Jacobian is

(+k i)

i, k a2+nkwa3+n

- Z (j) <l>( v G+k— i)azfnkr(a22+ niT(az + n)

1 o0

az+n _az+az+n(k+1)—1 _
fle z, ¢!
00

wq(1-2z
(+k— l)

Zl)az +nk-1

+W221

]d z,dz,

koi _ Naz+n
RSy = Z (Jl) (’:‘) (-1 ﬁ(a(21+ n[l)c) az +n)

1
f Zf3+n (1
0

— 2,)%2(1 — pzy)TTdz,

Where

G+k—-iDw,

T=a,+az+nk+1),p=1- ”
1

The Bayes estimator of the multicomponent stress strength
reliability is given by:

ZZ (L)<k)( 1)]%%% a;+n+1,T+1p), if lpl <1

>y
i=s j=0
i Zk: l (;)(Iz'()(_w%i:zﬂ(f a, +nk,7+1, pL), ifp<-1

In order to find the credible interval for the
multicomponent stress strength reliability, the following

steps will be applied. It can be shown that from the posterior
distributions of the parameters y;, y, and the relations
between gamma and chi-square distributions, the following
relation are held:

2(p2)/1~X22(nk+a2)
and
2032~ X3 (n+az)
Then posterior distribution of R can be written as:
1
(n +az)e,
L Gk T a)os F(2(n+ a3), 2(nk + ay))

And therefore a 100(1 — €)% credible interval for R will be
given by:

[{1 L (n+adg,

-1
(nk+a2)(p3 %,2(n+a3),2(nk+uz)} ’

L4 (1 ade, -
(nk + az)‘P3 1—%,2(n+a3),2(nk+az)
The Markov Chain Monte Carlo (MCMC) simulation method
can also be applied in order to obtain a Bayesian estimator of
the multicomponent stress-strength reliability as follows:

Stepl: Choose initial values a®,y?,y?, 2°

Step 2: Seti =1

Step 3: Generate yl(i)from Gamma(nk + a,, ¢,)
Step 4: Generate yzi)from Gamma(n + as, @3)
Step 5: Compute R(l) from Equation ()

Step 6: Set i —z+1
Step 7: Repeat steps from 3 to 9, T times. The Bayes
estimator of the multicomponent stress-strength reliability
under the squared error loss will be given as:

T

5 1 (t
ng = FZ Rs,lz

t=1

IX. SIMULATION RESULTS

Monte Carlo simulation is performed in two cases: (s, k)
= (1, 3) and (2, 4) with (L = 1000). The samples are generated
using initial values of the parameters from the exponentiated
generalized inverse Rayleigh distribution. The samples are
taken of different sizes: (10, 10), (30, 30), (50, 50) and (100,
100). The results for the estimates the multicomponent
strength-stress reliability of different methods of estimation
with the mean squared error are obtained in Table I. The 95%
asymptotic, parametric bootstrap sampling and student s t
bootstrap sampling confidence intervals are obtained in Table
I1. The results for the Bayesian estimates and 95% credible
intervals for the multicomponent strength-stress reliability
for the two priors: prior-1 (§; = 0.5,n; = 0.5,i = 1, ...4) and
prior-1l (§ = 2,n; = 3,i = 1, ...4) when the parameters are
unknown and known are obtained in Tables 11l and IV.
From the results obtained in Tables I — 1V, it can be observed
that:

1. The mean squared errors decrease as the sample size

increases in all methods of estimation.

2. The lengths of the asymptotic, parametric bootstrap

sampling and student s t bootstrap sampling
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confidence intervals decrease as the sample size Lawless [24]. The failure times have been ordered and the
increases. results are:

3. The lengths of the credible intervals decrease as the
sample size increases.

4. The lengths of the asymptotic confidence intervals
are smaller than the lengths of the parametric
bootstrap sampling confidence intervals.

5. The lengths of the parametric bootstrap sampling
confidence intervals are smaller than the lengths of
the students t bootstrap sampling confidence
intervals.

6. The lengths of the credible intervals when the
parameters are unknown is wider than other
intervals.

7. The lengths of the credible intervals when the
parameters are known is smaller than other
intervals.

X. REAL DATA APPLICATION

The data below show the number of cycles to failure
for a group of 60 electrical appliances in a life test
reported by

14,34, 59,61, 69, 80, 123, 142, 165, 210, 381, 464, 479
556, 574,839, 917, 969, 991, 1064, 1088, 1091, 1174,
1270, 1275, 1355, 1397, 1477, 1578, 1649, 1702, 1893
1932, 2001, 2161, 2292, 2326, 2337, 2628, 2785, 2811,
2886, 2993, 3122, 3248, 3715, 3790, 3857, 3912, 4100
4106, 4116, 4315, 4510, 4584, 5267, 5299, 5583
6065, 9701

This data can be divided as follows:

1. The first element in the data set is Y,

2. The second element in the data set to 10" element
represent X;;,j = 1,...,9,

3. The 11" element represents Y5,
4. The elements from 12" to 20" represent X,;,j = 1, ..., 9,
5. And so on to obtain the data for Y and X as follows:

14

381

11088 |

Y'=14%702 |
2811
4106

TABLE |
Results of estimates of different methods at « = 0.5,y, = 0.5,y, = 0.5 and 2 = 0.5
(s, k) n True Ry MLE LSE CVME
RY, MSE RL, MSE RS, MSE
10 0.7149 0.0060 0.7544 0.0001 0.7339 0.0001
1,3) 30 0.75 0.7319 0.0014 0.7476 2.9666e-05 0.7836 2.8015e-05
50 0.7895 0.0009 0.7459 2.0222¢-05 0.7484 2.4131e-05
100 0.7514 0.0004 0.7479 1.4292e-05 0.7503 1.9599e-05
10 0.6219 0.0110 0.6020 0.0001 0.5981 0.0001
2,4 30 0.60 0.4456 0.0031 0.5957 5.6311e-05 0.5984 6.3994e-05
50 0.6276 0.0018 0.5987 5.0709e-05 0.5987 4.7424e-05
100 0.6245 0.0008 0.6087 2.8043e-05 0.6087 3.1091e-05

TABLE Il

Results for the 95% asymptotic, parametric bootstrap sampling and student’s t bootstrap sampling confidence intervals
(with lengths) at « = 0.5,y; = 0.5,y, = 0.5and 2 = 0.5

(s, k) n Maximum Likelihood

Least Squares Cramér-Von-Mises

A.C.I p-Boot t-Boot AC.I

p-Boot t-Boot AC. p-Boot t-Boot

10 | [0.5691, | [0.3636, | [0.3635, | [0.6218,
0.8608] | 0.7438] | 0.8392] | 0.8870]
(0.2917) | (0.3802) | (0.4757) | (0.2652)

[0.5379, | [0.5379, | [0.5941, | [0.5149, | [0.5149,
0.9104] | 0.9709] | 0.8736] | 0.9328] | 0.9528]
(0.3725) | (0.4330) | (0.2795) | (0.4179) | (0.4379)

30 | [0.6508, | [0.6104, | [0.6103, | [0.6697,
0.8130] | 0.7968] | 0.8281] | 0.8256]
1,3 (0.1622) | (0.1864) | (0.2178) | (0.1559)

[0.6276, | [0.6276, | [0.7135, | [0.6266, | [0.6266,
0.8435] | 0.8650] | 0.8536] | 0.8410] | 0.9405]
(0.2159) | (0.2374) | (0.1401) | (0.2144) | (0.3139)

50 | [0.7363, | [0.6708, | [0.6707, | [0.6852,
0.8427] | 0.7922] | 0.8117] | 0.8065]
(0.1064) | (0.1214) | (0.1410) | (0.1213)

[0.6731, | [0.6731, | [0.6881, | [0.6657, | [0.6657,
0.8099] | 0.8186] | 0.8086] | 0.8160] | 0.8310]
(0.1368) | (0.1455) | (0.1205) | (0.1503) | (0.1653)

100 | [0.7092, | [0.7041, | [0.7040, | [0.7052,
0.7937] | 0.7888] | 0.7987] | 0.7905]
(0.0845) | (0.0847) | (0.0947) | (0.0853)

[0.6985, | [0.6986, | [0.7079, | [0.7020, | [0.7019,
079771 | 0.8102] | 0.7927] | 0.7970] | 0.7987]
(0.0992) | (0.1116) | (0.0848) | (0.0950) | (0.0968)

10 | [0.4400, | [0.3794, | [0.3794, | [0.4154,
0.8038] | 0.7769] | 0.8644] | 0.7886]
(0.3638) | (0.3975) | (0.4850) | (0.3732)

[0.2786, | [0.2786, | [0.4106, | [0.2481, | [0.2480,
0.8478] | 0.9254] | 0.7856] | 0.8743] | 0.9481]
(0.5692) | (0.6468) | (0.3750) | (0.6262) | (0.7001)

30 | [0.3273, | [0.3204, | [0.3204, | [0.4871,
0.5639] | 0.5582] | 0.5708] | 0.7043]
2, 4) (0.2366) | (0.2378) | (0.2504) | (0.2172)

[0.4980, | [0.4981, | [0.4902, | [0.4647 | [0.4646,
0.7116] | 0.9983] | 0.7067] | 0.7264] | 0.7322]
(0.2136) | (0.5002) | (0.2165) | (0.2617) | (0.2676)

50 | [0.5469, | [0.5306, | [0.5306, | [0.5150,
0.7082] | 0.7014] | 0.7246] | 0.6825]
(0.1613) | (0.1708) | (0.1940) | (0.1675)

[0.5090, | [0.5090, | [0.5150, | [0.4942, | [0.4941,
0.6824] | 0.7083] | 0.6825] | 0.6942] | 0.7033]
(0.1734) | (0.1993) | (0.1675) | (0.2000) | (0.2092)

100 | [0.5672, | [0.5583, | [0.5582, | [0.5501,
0.6818] | 0.6760] | 0.6907] | 0.6672]
(0.1146) | (0.1177) | (0.1325) | (0.1171)

[0.5119, | [0.5118, | [0.5501, | [0.4966, | [0.4966,
0.6800] | 0.7055] | 0.6672] | 0.6791] | 0.7208]
(0.1681) | (0.1937) | (0.1171) | (0.1825) | (0.2242)
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464 479 556 574 839 917 969 991 1064

34 59 61 69 80 123 142 165 210
X:(1091 1174 1270 1275 1355 1397 1477 1578 1649\‘

1893 1932 2001 2161 2292 2326 2337 2628 2785
\2886 2993 3122 3248 3715 3790 3857 3912 4100/
4116 4315 4510 4584 2567 5299 5583 6065 9701

The results for the maximum likelihood, least squares,

Cramér-Von-Mises and Bayesian estimates are obtained in

Table V when k = 5.

TABLE Il

Results for Bayesian estimates and the credible intervals with lengths at
a = 0.5y, = 0.5,y, = 0.5 and A = 0.5 when the parameters are unknown

(s, k) n Prior-I Prior-11
Ry MSE C.l Ry MSE C.l.
10 | 0.7285 | 0.0659 | [0.1528, | 0.7380 | 0.0366 | [0.2526,
0.9996] 0.9772]
(0.8468) (0.7245)
30 | 0.7331 | 0.0462 | [0.2184, | 0.7419 | 0.0309 | [0.3153,
0.9973] 0.9722]
1,3) (0.7789) (0.6568)
50 | 0.7373 | 0.0357 | [0.2815, | 0.7472 | 0.0278 | [0.3363,
0.9919] 0.9714]
(0.7103) (0.6350)
100 | 0.7362 | 0.0280 | [0.3618, | 0.7484 | 0.0213 | [0.4152,
0.9823] 0.9572]
(0.6204) (0.5420)
10 | 0.6296 | 0.1109 | [0.0264, | 0.6181 | 0.0835 | [0.0829,
0.9992] 0.9524]
(0.9728) (0.8695)
(2,4 30 | 0.6328 | 0.0893 | [0.0844, | 0.6247 | 0.0717 | [0.1185,
0.9974] 0.9594]
(0.9130) (0.8408)
50 | 0.6335 | 0.0754 | [0.1150, | 0.6294 | 0.0616 | [0.1625,
0.9924] 0.9523]
(0.8773) (0.7898)
100 | 0.6349 | 0.0610 | [0.1921, | 0.6348 | 0.0526 | [0.2071,
0.9835] 0.9483]
(0.7914) (0.7412)

TABLE IV

Results for Bayesian estimates and the credible intervals with lengths at
a = 0.5y, =0.5,y, = 0.5 and A = 0.5 when the parameters are known

(s, k) n Prior-I Prior-11
Ry MSE C.l. Rp MSE C.l.
10 | 0.8942 | 0.0225 | [0.8061, | 0.8899 | 0.0222 | [0.7883,
0.9630] 0.9552]
(0.1568) (0.1669)
30 | 0.8977 | 0.0224 | [0.8454, | 0.8975 | 0.0222 | [0.8523,
0.9374] 0.9334]
1,3) (0.0919) (0.0811)
50 | 0.8983 | 0.0223 | [0.8609, | 0.8980 | 0.0222 | [0.8616,
0.9299] 0.9295]
(0.0689) (0.0679)
100 | 0.8987 | 0.0222 | [0.8716, | 0.8984 | 0.0222 | [0.8708,
0.9238] 0.9225]
(0.0521) (0.0516)
10 | 0.8679 | 0.0743 | [0.7566, | 0.8557 | 0.0700 | [0.7480,
0.9508] 0.9369]
(0.1942) (0.1889)
2,4 30 | 0.8677 | 0.0724 | [0.8059, | 0.8623 | 0.0697 | [0.7958,
0.9186] 0.9162]
(0.1126) (0.1204)
50 | 0.8676 | 0.0721 | [0.8174, | 0.8649 | 0.0697 | [0.8177,
0.9096] 0.9061]
(0.0921) (0.0883)
100 | 0.8675 | 0.0718 | [0.8327, | 0.8670 | 0.0697 | [0.8308,
0.8963] 0.8976]
(0.0635) (0.0667)

TABLE V

The results for the estimates for the different methods of estimation,
confidence and credible intervals for the real data

MLE LSE CVME Bayesian
Prior | Prior 1l
0.6450 0.8138 0.6315 0.5285 0.4983
[0.4171, | [0.6754, | [0.3981, | [4.7088x10%, | [0.0732,
0.8730] | 0.8846] | 0.8650] 0.9979] 0.8846]

XI. CONCLUSION

The multicomponent stress-strength reliability model
with the exponentiated generalized inverse Rayleigh
distribution was introduced. The estimators for the
multicomponent stress-strength reliability function using
different methods of estimation were discussed. The
asymptotic, parametric bootstrap sampling and student's t
bootstrap  sampling confidence intervals for the
multicomponent  stress-strength reliability ~ were
introduced. Bayesian estimation method and the credible
interval for the multicomponent stress-strength reliability
function in case of known and unknown parameters were
presented. A simulation study was introduced to show the
results for the different methods of estimation for the
multicomponent stress-strength reliability. A real data
application was introduced to show the results for the
multicomponent stress-strength model.
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