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Abstract—The Whale Optimization Algorithm (WOA) is a
novel algorithm that was motivated by the prey behavior of
humpback whales. WOA has attracted a lot of interest due to
its few parameters and easy implementation, but it also has
sluggish convergence speed, poor convergence accuracy, and is
is easy to get a local optima. In this paper, a multi-strategy WOA
called MSWOA is constructed to address these drawbacks. It
includes dimensional updating, nonlinear convergence factor,
global perturbation factor, firefly perturbation, and vertical
and horizontal crossover learning strategy. First, a strategy
was developed to update each dimension differently to avoid
MSWOA from reaching a local optima. Second, a nonlinear
convergence factor is devised to better balance the MSWOA’s
search ability. Third, a global perturbation factor is considered
during the exploration phase, to enrich the whale population.
Fourth, a firefly perturbation strategy is employed to increase
convergence accuracy. Fifth, a vertical and horizontal strategy
is applied to accelerate convergence. Finally, twelve CEC2022
benchmark functions and three engineering cases are adopted
to evaluate the performance of MSWOA. The results confirm
that MSWOA is superior and competitive.

Index Terms—Whale Optimization Algorithm, dimensional
updating, firefly perturbation, vertical and horizontal crossover
strategy, engineering applications

I. INTRODUCTION

IN real world, many complex problems are often op-
timization problems, such as continuous optimization

problems [1], [2], production scheduling problems [3], [4],
[5], path planning problems [6], [7], [8], assembly line
balancing problems [9], [10], neural network training [11],
power systems [12], feature selection [13], [14], site selection
[15], and wireless sensor network [16] etc. As you can
see, optimization is ubiquitous, optimization is our daily
life all the time to face a problem, we always want to
use the least cost, to achieve maximum economic benefits,
so optimization issues and we are closely related to and
is essential. Therefore, optimization problems are closely
related to us and are of vital importance. Only by establishing
efficient solution models according to the problems can
we better solve the various challenges in life and promote
the development of society. Generally speaking, they can
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be divided into these types: biologically inspired intelligent
optimization algorithms, like Coati Optimization Algorithm
(COA) [17] and Mountain Gazelle Optimizer (MGO) [18].
Socially inspired intelligent optimization algorithms, similar
to Cultural Algorithm (CA) [19]. Physics-inspired intelligent
optimization algorithms, as Gravity Search Algorithm (GSA)
[20] and Simulated Annealing (SA) [21]. Chemical-inspired
intelligent optimization algorithms, such as Chemical Reac-
tion Optimization (CRO) [22]. Mathematically-inspired intel-
ligent optimization algorithms, like Estimation of Distribu-
tion (ED) [23]. Of course, there may be more classifications,
and roughly speaking, intelligent algorithms can be divided
into the above categories. With a significant number of
evolutionary algorithms proposed, intelligent algorithms may
have more categories, but in any case, intelligent algorithms
also simulate various laws of nature in real life, and then
perform mathematical modeling. These algorithms tend to be
highly randomized, exhaustively enumerating the solutions
within a certain range of objectives, and then performing
greedy selection to eventually obtain a near-optimal solution.

WOA is proposed by Mirjalili and Lewis [24]. Since its
introduction, WOA has garnered significant attention from
scholars in various fields. The WOA is also an algorithm that
simulates biological evolution in nature and is proposed by
group intelligence. This type of algorithm is generally strong
in solving ability, better adaptability, and can adapt to a va-
riety of optimization problems. Hemasian-Etefagh and Safi-
Esfahani [25] came up with a new concept in whale grouping
to overcome the WOA convergence phenomenon that had
appeared earlier. Jiang et al. [26] constructed an improved
WOA with armed force program and strategic adjustment.
Kaveh and Ghazaan [27] developed a enhanced WOA called
EWOA, and it is applied to four optimization problems of
skeletal structure and proved to have better performance. Lee
and Zhuo [28] designed a hybrid version of WOA called
GWOA-TEO. This variant combines genetic algorithms and
thermal exchange optimization to enhance the global opti-
mization capability of WOA. Li et al. Akyol and Alatas [29]
applied WOA in conjunction with optimization based on so-
cial impact theory for sentiment classification in online social
media. Luo and Shi [30] employed a hybrid version of WOA
called MDE-WOA, which incorporates improved differential
evolution for addressing global optimization problems. Sun
and Chen [31] presented a multi-population improved WOA
called MIWOA, specifically designed for high-dimensional
optimization. Wu et al. [32] utilizes a non-linear control
based on arcsine function to optimize the WOA. Chakraborty
et al. [33] combined the hunger games search with WOA
and demonstrated the effectiveness of the newly designed
algorithm.

We are all familiar with the No Free Lunch (NFL) theorem
[34], this means that our algorithm is not suitable for
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everything and needs to be dynamically adapted to the char-
acteristics of each issue. We need to weigh the performance
of the algorithm, speed and other indicators when designing
the algorithm. An algorithm may be efficient in solving one
problem, but perform poorly in solving another. Therefore,
it is necessary to consider and adopt different algorithms
when facing different optimization problems, and efficient
and intelligent optimization algorithms should be constructed
based on the specific characteristics of each problem, which
is our goal.

Although WOA performs well in many areas, it is not
without its problems. One major issue is the improper bal-
ance of the convergence factor, this can result in difficulties in
escaping local optima. Additionally, in the end the iteration,
there is a lack of strategies to enhance population diversity.Of
course, each algorithm may have its own shortcomings and
strengths, we try to keep the advantages of the algorithm
and make up for the shortcomings of the algorithm when we
carry out the design of the algorithm, or we can combine the
two algorithms to complement each other’s advantages.

To address these issues, five strategies were constructed for
improving WOA. Firstly, we design a strategy to update each
individual’s dimension in a different manner. In the original
WOA, individuals are updated in the same way for each
dimension, which leads to a single update of the solution, and
in evolutionary algorithms we generally want the solution
to move so that the diversity of the population is enriched.
So we design a different updating way for each dimension,
which will result in a greater diversity of solutions produced.
In the standard WOA, all dimensions of an individual are
updated in the same way, which makes the algorithm prone to
getting in local optima. Thus, in this paper, we recompute the
parameters when updating each dimension of each individ-
ual. Second, a non-linear convergence factor aiming to better
balance the MSWOA. At the beginning of the population
iteration, a bigger convergence factor can better enhance the
global search ability, a smaller convergence factor can be
better exploited. In evolutionary computation, we generally
expect the global optimization capability to be stronger in
the early stage. But in the later stage, this is not helpful for
the algorithm to converge, so we hope that in the later stage
of the algorithm, the local search ability is stronger, and the
nonlinear convergence factor solves this problem very well.
Third, a global perturbation factor is intended to enhance
the algorithm’s ability to explore. In the end of the iteration,
randomly selecting a search agent will cause the algorithm to
fall into local optima. Fourth, the firefly perturbation strategy
is used for enhancing the search agents learn from the
optimal individual. And through learning, other individuals
can move towards the best whale to increase the convergence
accuracy. Fifth, the vertical and horizontal crossover strategy
is used to accelerate convergence, the vertical crossover
allows individuals to learn independently, and use horizontal
crossover to ensure that different individuals learn from each
other in pairs, thereby improving the algorithm’s exploratory
capability.

There are five contributions in this paper, which are:
(1) A strategy was designed to update each individual

dimension in a different way. This results in richer and better
quality solutions being produced.

(2) A nonlinear convergence factor was constructed to

better balance the MSWOA.
(3) A global perturbation factor was added to the explo-

ration phase to enhance the variety of population .
(4) The firefly perturbation strategy was used to increase

the convergence accuracy.
(5) A novel vertical and horizontal crossover strategy was

developed to accelerate convergence.
In addition, the MSWOA algorithm was applied to solve

the CEC2022 test function as well as three real engineering
problems. The MSWOA was compared with 10 classical
algorithms, and the experimental results demonstrated that
MSWOA outperformed the others.

The paper is arranged so. The Section II is a short
description of WOA. The Section III is a statement of
MSWOA. Test functions and parameter settings are shown in
Section IV. Section V is experimental results. The conclusion
is discussed in Section VI.

II. STANDARD WOA

The WOA is proposed in 2016 [24]. The process of
WOA is roughly divided into three parts, search for prey,
encircling prey and bubble-net attacking and each process
will be described separately below.

A. Exploration

This phase is dominated by vector A⃗. When A⃗ exceeds 1
or falls below -1, a whale is randomly selected. The formulas
are defined as Eqs.(1) and (2).

−−−−→
Distan =

∣∣∣C⃗ ·
−−→
Xrnd − X⃗

∣∣∣ (1)

X⃗(iter + 1) =
−−→
Xrnd − A⃗ ·

−−−−→
Distan (2)

where iter indicates the current iteration, X⃗(iter + 1) is
the position of next generation of whales,

−−→
Xrnd is a random

position vector. A⃗ and C⃗ are coefficient vectors, X⃗ is the
position vector, | | is the absolute value.

−−−−→
Distan indicates

the distance vector of the i-th whale to the prey (a random
whale). A⃗ and C⃗ are two parameter vectors, and they are
calculated by Eqs.(3) and (4).

A⃗ = 2a⃗ · r⃗1 − a⃗ (3)

C⃗ = 2 · r⃗2 (4)

where a⃗ is linearly decreased from 2 to 0 and r⃗1 and r⃗2 are
uniformly distributed random vectors in [0,1].

B. Exploitation phase

The exploitation phase occurs when the humpback whale
identifies its prey and initiates an attack.

1) Encircling prey: In this stage, when a humpback whale
detects its prey, it initiates the prey encirclement phase. It
is assumed that the prey represents the optimal individual
within the existing whales. As a result, the other search
agents adjust their positions towards the current optimal
individual. This adjustment process can be described by
Eq.(5) and Eq.(6).

−−−−→
Distan =

∣∣∣C⃗ ·
−−−−−−−→
Globalbest− X⃗(iter)

∣∣∣ (5)
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X⃗(iter + 1) =
−−−−−−−→
Globalbest− A⃗ ·

−−−−→
Distan (6)

where
−−−−−−−→
Globalbest is the best solution at present, if there is a

better individual for the current iteration, it will be updated.
2) Bubble-net attacking: In this stage, the humpback

whale utilizes a technique of spitting out bubbles to attack
its prey. The mathematical models describing this stage are
expressed in Eqs.(7) and (8).

−−−−−→
Distan′ =

∣∣∣−−−−−−−→Globalbest− X⃗(iter)
∣∣∣ (7)

X⃗(iter + 1) =
−−−−−→
Distan′ · ebl · cos(2πl) +

−−−−−−−→
Globalbest (8)

where
−−−−−→
Distan′ represents the distance vector between the

existing whales and the best whale individual, l is in the
domain of [-1,1], b is a constant and is equal to 1.

When a whale captures its prey, the behaviors of bubble
netting to attack and encircle the prey occur simultaneously.
It can be defined as Eq.(9). where p is in [0,1].

The detailed information oft the WOA, one can refer to
reference [24].

III. MSWOA

For solving the drawbacks of WOA, five strategies are con-
structed in MSWOA, which are dimensional updating strat-
egy, non-linear convergence factor, global perturbation factor,
firefly perturbation, and vertical and horizontal crossover.
We propose all these strategies with the ultimate goal of
enabling the solution to move so that more ranges can be
found and how to improve the likelihood of finding an even
better solution. The detailed description will be shown in the
next sections.

A. Dimensional updating strategy

In the standard WOA algorithm, at each iteration, each
search agent is used with the same parameters p, r1 and
A, this leads to a single way of population renewal and a
reduction in population diversity. For solving this problem,
we designed the dimensional updating strategy in MSWOA.
As a more visual demonstration of it, the pseudo-code of the
dimensional updating is listed in Algorithm 1.

In the Algorithm 1, the selection probabilities p, r1 and
A are recalculated when updating each dimension of each
individual, which leads to a different update method when
updating different dimensions of each individual and improve
the diversity of the whales’ population. In previous algorithm
designs, different dimensions of each individual are often
updated in the same way, which tends to lead to a reduction
of the population diversity, which is one of the reasons why
the standard WOA population has low diversity and fall into
local optima.

B. Non-linear convergence factor

In standard WOA, the population iteration uses a uni-
formly varying linear convergence factor a from the begin-
ning to the end, which results in an algorithm that does not
balance the exploration ability and exploitation ability well.
We are familiar that in the early iterations, a convergence

parameter with a larger variation is more favorable for global
search, while in the end, a convergence parameter with a
smaller variation is more favorable for local exploitation.
For this reason, the nonlinear convergence factor can be
calculated using Eq.(10).

a = 2− 2 ·
√

iter

T
(10)

where T is the maximum number of runs of the MSWOA.
The Fig. 1 depicts the trend of the convergence factor a

follows iter. To show the trend of parameter a more intu-
itively, in our experiment, two different maximum iterations
are set. From the figure, we can see that the parameter a
gradually decreases from 2 to 0. The change of parameter a
is large in the early iterations, and the trend becomes smaller
as the iterations proceed, which is better for MSWOA.

C. Global perturbation factor

As can be seen from the exploration phase of the standard
WOA, the search agent randomly selects individuals for the
global search. At the beginning, this operation has little
impact on the algorithm due to the high population diversity.
However, as the iteration goes on, the population diver-
sity gradually lowers, and randomly choosing individuals
increases the probability of repeatedly selecting the same
individuals. To solve this problem, this paper introduces a
perturbation factor in the exploration phase of MSWOA.The
X⃗ is changed to Eq.(11).

X⃗(iter + 1) = G⃗ ·
−−→
Xrnd − A⃗ · ⃗Distan (11)

where G is in [0,1].
To better visualize the effect of the added perturbation

factors, Fig. 2 clearly demonstrate the change in population
diversity with and without the perturbation factors. The
population diversity is defined according to reference [35],
using Eq.(12) and Eq.(13).

diversity(NS) =
1

NS

NS∑
i=1

√√√√ D∑
j=1

(
Xj

i −Xj
)2

(12)

X =

(
1

NS

NS∑
i=1

X1
i ,

1

NS

NS∑
i=1

X2
i , · · ·

1

NS

NS∑
i=1

XD
i

)
(13)

where NS is the size of whales, and D is the dimensionality.
Xj

i is the variable on the j-th dimension of the search agent
i and Xj represents the average variable value on the j-th
dimension for all search agents in the population.

The lack of diversity tends to cause the algorithm to trap
into optima or appear premature convergence. The unimodal
function f1 was selected to check the difference in diversity
between with global perturbation factors and without global
perturbation factors. In this experiment, all experimental
parameters are the same except for the global perturbation
factor. From the Fig. 2, we can see that the population
diversity with the addition of the perturbation factor is
significantly better than that without the convergence factor,
which indicates that the addition of the perturbation factor
increases the population diversity. It is obvious in functions
f1 that the population diversity is significantly higher in the
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X⃗(iter + 1) =

{−−−−−−−→
Globalbest− A⃗ ·

−−−−→
Distan p < 0.5

−−−−−→
Distan′ · ebl · cos(2πl) +

−−−−−−−→
Globalbest p ≥ 0.5

(9)
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Fig. 1: Trend chart of a with different maximum iterations.
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Fig. 2: The population diversity changes with global perturbation factors and without global perturbation factors of f1

first period with the addition of the convergence factor, which
is more favorable to the MSWOA for global exploration.
Once again, it is shown that MSWOA is able to achieve a
better balance with the addition of a perturbation factor.

D. Firefly perturbation

The firefly perturbation strategy is proposed in firefly
algorithms [36]. In standard WOA, the location update is
done by the distance among the current whale and the best
whale in the encircling phase. As the iteration proceeds, the
whales’ diversity will diminish, which will cause a decrease
in the accuracy of the solution, so we introduce the firefly
perturbation and used in the MSWOA. The specific definition
is expressed as follows Eqs.(14) and (15).

rij = ∥Xi(iter)−Globalbest∥ =√√√√ D∑
j=1

(
Xj

i (iter)−Globalbestj
)2

(14)

Xi(iter + 1) = Xi(iter) + β0e
−γr2ij ·

(Xi(iter)−Globalbest) + α ·
(
rand− 1

2

)
(15)

where rij is the Cartesian distance, Globalbest is the best
individual at the moment, D is the dimension, rand is in [0,
1], β0 is equal to 2, γ is equal to 1, α is set to 0.2.

E. Vertical and horizontal crossover strategy

In standard WOA, each individual whale is updated ac-
cording to the search formula, as the iteration goes on,
the population diversity gradually drops and the lack of
information exchange between populations leads to slow
convergence. To address the drawback, a novel vertical
and horizontal crossover learning strategy inspired by Meng
et al. [37] is proposed, which is divided into horizontal
crossover learning and vertical crossover learning. Cross-
learning between populations is useful for improving the
MSWOA, and it promotes mutual learning between different
individuals.
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Horizontal crossover learning refers to the two-by-two
exchange learning of different individuals in a population,
with a probability p for the same dimension of two different
individuals. It is defined as Eqs.(16) and (17), where Xn1

and
Xn2

are two different individuals randomly choosen from
the existing whales, c1 and c2 are in [0,1], XNewn1 and
XNewn2 are newly created individuals through Xn1 and
Xn2

.
Vertical crossover learning refers to the Globalbest self-

learning of the current population. In the end of itera-
tion, the population tends to get trapped in local optima.
By performing vertical crossover with a certain probability
on two different dimensions of Globalbest, the population
can escape local optima and accelerate convergence. The
newGbestj1 can be obtained using Eq.(18).

newGbestj1 = q ·Globalbestj1 + (1− q) ·
(Globalbestj1 +Globalbestj2) (18)

where j1 and j2 are two different dimensions, q is in [0,1].

F. Framework of MSWOA algorithm

In summary, the MSWOA incorporates five strategies:
dimensional updating strategy, non-linear convergence factor,
global perturbation factor, firefly perturbation, and vertical
and horizontal crossover learning strategy. To provide a
clearer understanding of the flow and implementation of
the proposed MSWOA, Algorithm 1 presents the pseudo-
code of MSWOA, and Fig. 3 visualizes the flowchart of
MSWOA. The pseudocodes and flowchart can visually help
to understand the program framework of MSWOA.

IV. BENCHMARK TEST FUNCTIONS AND PARAMETER
SETTINGS

A. Benchmark test functions

The CEC2022 benchmark test set is used to verify the
performance of the MSWOA, and detailed information about
the CEC2022 test set can be referred to [38]. The CEC2022
test functions consist of four types of functions, which can
provide strong evidence of the algorithm’s effectiveness and
its ability to avoid local optima.

B. Parameter settings

Table I lists the comparison algorithms and their parameter
settings, which are taken from the relevant references.

The population size is 30, the maximum number of func-
tion evaluations is 200000, and the number of running times
for each algorithm is 30.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We qualitatively analyze the results of MSWOA in com-
parison with other algorithms on various test functions. Addi-
tionally, three practical engineering problems were employed
to further validate the performance of MSWOA. Qualitative
analysis can help us further analyze the operation mechanism
of the algorithm and the reasons for achieving such excellent
performance as it is currently. It helps us to visualize how
the algorithm works, which is crucial for us to design the
algorithm. Verifying the performance of MSWOA in real

Algorithm 1: Algorithm description of the proposed
MSWOA

1 Initialize: Whales’ Population NS, Dimensionality
D, Max function evaluations maxFEs,
location boundary [Xmin, Xmax]
Output: Best Solution

2 %=== Initialize Population ===
3 X = (X1, X2, · · · , XNS);
4 Evaluate the fitnesses of X;
5 Set Globalbest and gbestvalue;
6 Update FEs;% FEs: function evaluations
7 %=== Iteration ===
8 T = maxFEs/NS;
9 iter = 0;

10 while FEs <= maxFEs && iter <= T do
11 iter = iter + 1;
12 Update a by Eq.(10);
13 for i = 1 to NS do
14 for j = 1 to D do
15 Update r1, p and A;
16 if p < 0.5 then
17 if |A| >= 1 then
18 Eq.(11);
19 end
20 if |A| < 1 then
21 Eq.(15);
22 end
23 else
24 Update Xj

i by Eq.(9);
25 end
26 end
27 Check boundaries and evaluate fitnesses of

Xi;
28 FEs = FEs+ 1;
29 Update Globalbest and gbestvalue;
30 end
31 %=== Vertical and Horizontal Crossover

Learning Strategy Process ===
32 Update X by Eq.(16) and Eq.(17);
33 for i=1 to N do
34 Check boundaries and evaluate fitnesses of

Xi;
35 Update Globalbest, gbestvalue and FEs;
36 end
37 Evaluate Globalbest by Eq.(18);
38 Check boundaries and evaluate fitnesses of

Globalbest;
39 Update Globalbest, gbestvalue and FEs;
40 end
41 Return Globalbest
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XNewn1
(iter + 1) = Xn1

(iter) + c1 · (Xn1
(iter)−Xn2

(iter)) + (1− c1) · (Xn1
(iter)−Xn2

(iter)) (16)

XNewn2
(iter + 1) = Xn2

(iter) + c2 · (Xn1
(iter)−Xn2

(iter)) + (1− c2) · (Xn1
(iter)−Xn2

(iter)) (17)

TABLE I: Comparison algorithm parameter settings.

Algorithm Reference Year Parameters settings

PSO [39] 1995 c1 = 2,c2 = 2, ω = 0.4 ∼ 0.9
DE [40] 1995 Crossover=0.9, Scale factor (F )=0.5
GWO [41] 2014 a=2 ∼ 0, A=2 ∼ 0, C=2·rand(0,1)
SCA [42] 2016 a=2 ∼ 0, r1=r2=r3=r4=rand(0,1)
WOA [24] 2016 a=2 ∼ 0, A=2 ∼ 0, C=2·rand(0,1), l=-1 ∼ 1, b=1
ASO [43] 2018 Multiplier weight=0.2,Depth weight=50
SOA [44] 2019 Control Parameter (A)=2 ∼ 0, fc=2
BOA [45] 2019 Modality=0.01, Probability=0.8
WOASCALF [46] 2021 p=0 ∼ 1, β=0 ∼ 2, σv=1
SCSO [47] 2022 rG=2 ∼ 0, R=-2·rG ∼ 2·rG
MSWOA present present

FEs<=maxFEs && t<=T

Yes

p<0.5

|A|>=1

Yes

No
Yes

No

No

Check boundaries and evaluate fitnesses of      

Globalbest,update Globalbest, gbestvalue and FEs

Fig. 3: Flowchart of MSWOA.

problems can be more relevant to our real life, because the
test function is often not comprehensive enough, and we can
understand the performance characteristics of MSWOA more
deeply through the solution of real problems.

A. The qualitative results of MSWOA

This section utilizes the function f1 to verify the perfor-
mance of MSWOA. The dimension is equal to 2, whales’
population number is equal to 4, and algorithm’s iteration is
100. In order to characterize the performance of MSWOA,

We plotted the history of individual searches in the algorithm,
the variation of the population fitness values ground and the
trajectory curve. The result is shown in Fig. 4.

The graph provides a visual representation of the individ-
uals’s position transformation. In the beginning of the itera-
tion, the individuals are more scattered, indicating a strong
exploration ability. It is obvious from the search history
graph, all the individuals gradually converge towards the best
solution as the iteration proceeds. From the graph, we can see
that the distribution of individuals is relatively wide, again
indicating that the MSWOA’s global search ability is very
good. From the change in the curve of the average fitness
of the population, we can see thar MSWOA fluctuates in
the beginning stage, showing that MSWOA is performing
global optimization, then converges near the optimal solution.
From the trajectory graph of x1, it can be seen that the
four individuals fluctuate more at the beginning, but then
gradually converge, indicating that the four individuals are
approaching the optimal solution.

B. Comparison on CEC2022 test set

In this section, the performance of MSWOA is compared
with PSO, GWO,SCA, SCSO, SOA, DE, ASO, BOA and
variants of WOA. The results are listed in Table II. The
convergence curves are depicted in Fig. 5. Analyzing the
10-dimensional problem from Table II, we observe that
MSWOA outperforms the other 10 algorithms, like f1, f2,
f3, f5, f7, f8 and f9, in terms of overall performance.
However, it has a bad performance on f4, f6, f10, f11 and
f12. Nevertheless, when considering the average performance
across all functions, MSWOA still emerges as the top per-
former.

The boxplots are presented in Fig. 6. In the boxplots, red
plus signs are outliers. From the figures, it is evident that the
boxplots of MSWOA demonstrate competitive performance
across the majority of the tested functions. This suggests that
MSWOA exhibits excellent stability.
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TABLE II: Results for 10D of different algorithms.

f(x) Index PSO GWO SCA SCSO WOA WOASCALF SOA DE ASO BOA MSWOA

f1 Mean 1.6079E+03 8.1961E+02 6.5449E+02 8.6529E+02 4.8110E+03 4.0658E+03 5.7445E+02 8.9413E+03 2.4345E+04 1.0414E+04 3.0007E+02

Std 3.3367E+03 1.0810E+03 1.2262E+02 8.9937E+02 2.2545E+03 1.4465E+03 5.0809E+02 2.1449E+03 9.9409E+03 3.0460E+03 3.3768E-02

Best 3.0000E+02 3.0021E+02 4.2869E+02 3.1730E+02 9.9871E+02 1.4038E+03 3.3995E+02 2.0964E+03 3.5540E+03 4.8555E+03 3.0002E+02

Rank 6 4 3 5 8 7 2 9 11 10 1

f2 Mean 4.6568E+02 4.1524E+02 4.4748E+02 4.2366E+02 4.1721E+02 4.9446E+02 4.2756E+02 5.9770E+02 6.5045E+02 3.0871E+03 4.1092E+02

Std 7.2263E+01 1.7392E+01 2.0573E+01 2.6288E+01 2.4381E+01 1.9380E+01 5.7651E+01 4.9686E+01 1.6594E+02 1.3760E+03 1.7394E+01

Best 4.0824E+02 4.0012E+02 4.1849E+02 4.0016E+02 4.0004E+02 4.4795E+02 4.0022E+02 4.7091E+02 4.6574E+02 8.3076E+02 4.0000E+02

Rank 7 2 6 4 3 8 5 9 10 11 1

f3 Mean 6.0350E+02 6.0066E+02 6.1438E+02 6.1203E+02 6.2996E+02 6.3366E+02 6.0586E+02 6.4419E+02 6.4098E+02 6.5907E+02 6.0011E+02

Std 5.2663E+00 1.2637E+00 2.6240E+00 7.3299E+00 1.3736E+01 3.7674E+00 3.7514E+00 5.0389E+00 1.7250E+01 7.3301E+00 3.3186E-02

Best 6.0000E+02 6.0001E+02 6.0746E+02 6.0215E+02 6.0827E+02 6.2506E+02 6.0018E+02 6.3036E+02 6.0560E+02 6.4505E+02 6.0003E+02

Rank 3 2 6 5 7 8 4 10 9 11 1

f4 Mean 8.2073E+02 8.1370E+02 8.3261E+02 8.2613E+02 8.4017E+02 8.4755E+02 8.1976E+02 8.6424E+02 8.4814E+02 8.6427E+02 8.2405E+02

Std 7.2958E+00 6.5228E+00 4.2736E+00 8.2447E+00 1.4017E+01 6.0287E+00 6.0325E+00 7.0982E+00 1.7794E+01 9.3396E+00 9.8407E+00

Best 8.0696E+02 8.0310E+02 8.2512E+02 8.1257E+02 8.1805E+02 8.3715E+02 8.0722E+02 8.4334E+02 8.0895E+02 8.3680E+02 8.0995E+02

Rank 3 1 6 5 7 8 2 10 9 11 4

f5 Mean 9.2274E+02 9.1020E+02 9.4938E+02 1.0096E+03 1.2111E+03 1.1910E+03 9.6246E+02 1.7447E+03 1.7793E+03 1.6179E+03 9.0109E+02

Std 6.9043E+01 1.5396E+01 2.3672E+01 1.2448E+02 2.0888E+02 7.2792E+01 5.3592E+01 1.7999E+02 7.0845E+02 1.6547E+02 5.3446E+00

Best 9.0000E+02 9.0001E+02 9.1939E+02 9.0135E+02 9.3924E+02 1.0532E+03 9.0026E+02 1.4398E+03 9.0000E+02 1.3732E+03 9.0000E+02

Rank 3 2 4 6 8 7 5 10 11 9 1

f6 Mean 5.9479E+03 5.6457E+03 7.5226E+05 3.9687E+03 3.2089E+03 5.0222E+06 6.2690E+03 6.1307E+06 1.0018E+08 1.2290E+09 4.8927E+03

Std 2.0519E+03 2.4817E+03 7.3061E+05 1.6443E+03 1.6157E+03 3.7676E+06 2.3574E+03 4.7999E+06 2.5975E+08 1.1465E+09 2.3479E+03

Best 1.9621E+03 1.9363E+03 6.9803E+04 1.8559E+03 1.8547E+03 4.5371E+04 2.0308E+03 4.3460E+05 3.5328E+03 2.6309E+07 1.8283E+03

Rank 5 4 7 2 1 8 6 9 10 11 3

f7 Mean 2.0281E+03 2.0246E+03 2.0464E+03 2.0403E+03 2.0475E+03 2.0740E+03 2.0292E+03 2.0752E+03 2.0971E+03 2.1217E+03 2.0163E+03

Std 2.5105E+01 1.0556E+01 6.6204E+00 1.6490E+01 1.3525E+01 6.6326E+00 7.4434E+00 1.0471E+01 4.5124E+01 1.9330E+01 8.2934E+00

Best 2.0010E+03 2.0000E+03 2.0355E+03 2.0144E+03 2.0247E+03 2.0596E+03 2.0203E+03 2.0538E+03 2.0351E+03 2.0904E+03 2.0002E+03

Rank 3 2 6 5 7 8 4 9 10 11 1

f8 Mean 2.2213E+03 2.2205E+03 2.2283E+03 2.2239E+03 2.2293E+03 2.2371E+03 2.2230E+03 2.2381E+03 2.2388E+03 2.9773E+03 2.2197E+03

Std 1.0126E+01 8.3172E+00 3.2820E+00 5.8197E+00 4.5281E+00 3.5221E+00 3.7622E+00 3.5172E+00 1.1048E+01 2.4851E+03 4.9883E+00

Best 2.2009E+03 2.2003E+03 2.2217E+03 2.2027E+03 2.2240E+03 2.2288E+03 2.2045E+03 2.2329E+03 2.2237E+03 2.2577E+03 2.2013E+03

Rank 3 2 6 5 7 8 4 9 10 11 1

f9 Mean 2.5685E+03 2.5616E+03 2.5519E+03 2.5635E+03 2.5381E+03 2.5911E+03 2.5411E+03 2.6259E+03 2.6514E+03 2.8967E+03 2.5342E+03

Std 6.2132E+01 3.3369E+01 1.5224E+01 3.3941E+01 2.9769E+01 2.0748E+01 2.4430E+01 2.2246E+01 9.0816E+01 1.1200E+02 2.6826E+01

Best 2.5293E+03 2.5293E+03 2.5322E+03 2.5293E+03 2.5293E+03 2.5492E+03 2.5293E+03 2.5765E+03 2.5293E+03 2.7187E+03 2.5293E+03

Rank 7 5 4 6 2 8 3 9 10 11 1

f10 Mean 2.5779E+03 2.5623E+03 2.5014E+03 2.5508E+03 2.5614E+03 2.5090E+03 2.5005E+03 2.5193E+03 2.7150E+03 3.1139E+03 2.5049E+03

Std 6.0747E+01 5.5312E+01 3.7102E-01 6.0686E+01 1.0830E+02 2.2446E+00 9.8384E-02 4.0788E+00 3.6911E+02 3.8088E+02 2.5429E+01

Best 2.5004E+03 2.5002E+03 2.5007E+03 2.5002E+03 2.5003E+03 2.5038E+03 2.5003E+03 2.5101E+03 2.5114E+03 2.7314E+03 2.5002E+03

Rank 9 8 2 6 7 4 1 5 10 11 3

f11 Mean 2.9289E+03 2.7781E+03 2.7622E+03 2.7347E+03 2.7975E+03 2.8166E+03 2.7328E+03 2.9143E+03 3.0738E+03 4.3162E+03 2.7387E+03

Std 2.5708E+02 1.6447E+02 5.7004E+00 1.6705E+02 1.6178E+02 1.9077E+01 8.2918E+01 5.3038E+01 3.5111E+02 4.0934E+02 1.4721E+02

Best 2.7668E+03 2.6001E+03 2.7449E+03 2.6003E+03 2.6002E+03 2.7696E+03 2.6028E+03 2.8215E+03 2.7914E+03 3.4543E+03 2.6006E+03

Rank 9 5 4 2 6 7 1 8 10 11 3

f12 Mean 2.8727E+03 2.8651E+03 2.8676E+03 2.8682E+03 2.8809E+03 2.8715E+03 2.8626E+03 2.8799E+03 2.8678E+03 3.2814E+03 2.8629E+03

Std 2.4037E+01 5.4443E+00 1.3124E+00 7.3139E+00 2.3251E+01 1.7437E+00 1.6879E+00 5.4315E+00 2.5741E+00 1.7642E+02 1.8438E+00

Best 2.8624E+03 2.8587E+03 2.8656E+03 2.8629E+03 2.8626E+03 2.8681E+03 2.8596E+03 2.8707E+03 2.8624E+03 2.9750E+03 2.8586E+03

Rank 8 3 4 6 10 7 1 9 5 11 2

Total Rank 66 40 58 57 73 88 38 106 115 129 22

Final Rank 6 3 5 4 7 8 2 9 10 11 1
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Fig. 4: Qualitative results
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Fig. 5: Convergence curves
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Fig. 6: Boxplots.

C. Non-parametric statistics

In this section, the experimental results of nonparametric
statistics are presented, all of which were obtained within the
given space. The statistical analysis in this paper includes the
Friedman test and Wilcoxon signed rank test.

The Friedman test is used to determine if there are
significant differences among multiple overall distributions
[48]. In this paper, it was employed to examine whether
MSWOA exhibits significant differences compared to other
algorithms. In Table III, which demonstrate that MSWOA
outperforms the other algorithms, indicating a significant
difference among the 11 algorithms.

To further visualize whether MSWOA is better than other
algorithms, the Wilcoxon signed rank test are examined [49].
In tables IV and V, the results are listed. R+ denotes the total
ranking of our algorithm over the comparison algorithms,
and R− means the sum of ranks where our algorithm
underperforms. ‘+’ indicates that MSWOA was superior to
the comparison algorithm. ‘=’ shows no obvious difierences
among the two algorithms, and ‘−’ signifies the MSWOA is
inferior to the comparison algorithm at the 0.05 significance
level [50]. The last row shows the sum of counts in the (+/
= /−) format. From Tables IV and V, it can be observed

that the MSWOA has a notable preference over the other
algorithms for most of the tested functions.

TABLE III: Friedman-test.

Algorithms MeanRank Ranking

PSO 5.5000 6

GWO 3.3333 3

SCA 4.8333 5

SCSO 4.7500 4

WOA 6.0833 7

WOASCALF 7.3333 8

SOA 3.1667 2

DE 8.8333 9

ASO 9.5833 10

BOA 10.7500 11

MSWOA 1.8333 1

p-value 1.1941E-14
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TABLE IV: Statistical comparisons of WSRT for MSWOA vs. PSO, GWO, SCA, SCSO and WOA on the 10D.

fun
MSWOA vs. PSO MSWOA vs. GWO MSWOA vs. SCA MSWOA vs. SCSO MSWOA vs. WOA

p-Value R+ R− +/=/− p-Value R+ R− +/=/− p-Value R+ R− +/=/− p-Value R+ R− +/=/− p-Value R+ R− +/=/−

f1 0.67328 253 212 = 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 +
f2 6.34E-06 13 452 + 0.027029 125 340 + 6.34E-06 13 452 + 0.020671 120 345 + 0.89364 226 239 =
f3 1.64E-05 23 442 + 0.54401 203 262 = 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 +
f4 0.20589 294 171 = 4.07E-05 432 33 − 0.00057064 65 400 + 0.41653 193 272 = 0.00041955 61 404 +
f5 0.82901 222 243 = 3.41E-05 31 434 + 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 +
f6 0.025637 124 341 + 0.20589 171 294 = 1.73E-06 0 465 + 0.13059 306 159 = 0.0064242 365 100 −
f7 0.0011138 74 391 + 0.00045336 62 403 + 1.73E-06 0 465 + 2.60E-06 4 461 + 1.73E-06 0 465 +
f8 0.093676 151 314 = 0.097772 152 313 = 1.73E-06 0 465 + 0.0007157 68 397 + 1.73E-06 0 465 +
f9 4.07E-05 33 432 + 2.84E-05 29 436 + 3.11E-05 30 435 + 2.84E-05 29 436 + 1.92E-06 1 464 +
f10 5.22E-06 11 454 + 0.00017423 50 415 + 3.11E-05 30 435 + 7.51E-05 40 425 + 1.24E-05 20 445 +
f11 1.13E-05 19 446 + 0.57165 205 260 = 3.33E-02 129 336 + 7.34E-01 249 216 = 1.66E-02 116 349 +
f12 1.80E-05 24 441 + 7.73E-03 103 362 + 1.73E-06 0 465 + 5.31E-05 36 429 + 4.29E-06 9 456 +

Total 8/4/0 7/4/1 12/0/0 9/3/0 11/0/1

TABLE V: Statistical comparisons of WSRT for MSWOA vs. WOASCALF, SOA, DE, ASO and BOA on the 10D.

fun
MSWOA vs. WOASCALF MSWOA vs. SOA MSWOA vs. DE MSWOA vs. ASO MSWOA vs. BOA

p-Value R+ R− +/=/− p-Value R+ R− +/=/− p-Value R+ R− +/=/− p-Value R+ R− +/=/− p-Value R+ R− +/=/−

f1 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 +
f2 1.73E-06 0 465 + 0.082206 148 317 = 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 +
f3 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 +
f4 2.35E-06 3 462 + 0.093676 314 151 = 1.73E-06 0 465 + 2.88E-06 5 460 + 1.73E-06 0 465 +
f5 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 + 4.73E-06 10 455 + 1.73E-06 0 465 +
f6 1.73E-06 0 465 + 0.027029 125 340 + 1.73E-06 0 465 + 0.00077122 69 396 + 1.73E-06 0 465 +
f7 1.73E-06 0 465 + 2.13E-06 2 463 + 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 +
f8 1.73E-06 0 465 + 3.41E-05 31 434 + 1.73E-06 0 465 + 1.73E-06 0 465 + 1.73E-06 0 465 +
f9 1.97E-05 25 440 + 3.11E-05 30 435 + 1.92E-06 1 464 + 6.34E-06 13 452 + 1.73E-06 0 465 +
f10 3.11E-05 30 435 + 6.32E-05 38 427 + 3.11E-05 30 435 + 9.32E-06 17 448 + 1.73E-06 0 465 +
f11 0.0087297 105 360 + 0.61431 257 208 = 2.60E-05 28 437 + 1.49E-05 22 443 + 1.73E-06 0 465 +
f12 1.73E-06 0 465 + 0.39333 274 191 = 1.73E-06 0 465 + 3.88E-06 8 457 + 1.73E-06 0 465 +

Total 12/0/0 8/4/0 12/0/0 12/0/0 12/0/0

TABLE VI: The results of welded beam design problem.

Algorithms Mean Std Best

PSO 2.067303886 0.022490667 2.063119357
GWO 2.063563866 0.001859404 2.063129649
SCA 2.159383501 0.029624906 2.091213674
SCSO 2.063839457 0.002578851 2.063130534
WOA 2.931558806 1.020613137 2.080573141
WOASCALF 2.260926583 0.086858961 2.089275094
SOA 2.071467719 0.009486322 2.063349216
DE 2.684349581 0.268320409 2.20411344
ASO 3.102896539 0.597234512 2.213858995
BOA 3.011462187 0.776869775 2.292081596
MSWOA 2.085982605 0.022996344 2.063180561

TABLE VII: The results of tension/compression spring
design problem.

Algorithms Mean Std Best

PSO 0.014664715 0.002568925 0.012719054
GWO 0.013233665 0.001610042 0.012668234
SCA 0.012841261 9.41744E-05 0.012709034
SCSO 0.013297956 0.001593893 0.012666827
WOA 0.014000501 0.001820726 0.012665451
WOASCALF 0.013054561 0.00012049 0.01282136
SOA 0.012729666 2.22504E-05 0.012694641
DE 0.013102269 0.000163336 0.012771281
ASO 0.017522186 0.001404218 0.013328927
BOA 0.01653001 0.001627999 0.013601317
MSWOA 0.013399058 0.00161601 0.012676888

l

L
b

t

h Pc

Fig. 7: Welded beam design problem.

d

D
N

Fig. 8: Tension/compression spring design problem.

D. MSWOA in classical engineering problems

1) Welded beam design problem: In this case, a welded
beam is designed with minimum cost under the constraint of
shear stress (τ ), bendding stress (σ) in the beam, buckling
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Fig. 9: Speed reducer design problem.

load on the bar (Pc), end deflection of the beam (δ), and
side constraints [51]. Regarding the welded beam design
problem, the corresponding results are given in Table VI. As
observed from the table, most of the comparison algorithms
in this paper struggle to effectively solve the problem.
Additionally, the optimal values obtained by MSWOA are
not in close proximity to the theoretical optimal values.
However, MSWOA still achieves high rankings among all
the comparison algorithms. It is important to note that not
all algorithms can successfully solve every optimization
problem, and there is still a need to explore and develop
better algorithms for addressing this problem.

2) Tension/compression spring design problem: Arora
[52] presented the design problem of a tension/compression
spring with the aim of minimizing the weight of the ex-
tension/compression spring (f(x)) under the constraints of
minimum deformation, shear stress, impact frequency, outer
diameter limitation, and design variables. The results for the
tension/compression spring design problem are presented in
Table VII. From the table, it is evident that MSWOA is
capable of finding solutions closer to the optimal solution.
This indicates that MSWOA exhibits a relatively strong
capability for tension/compression spring design problems.

3) Speed reducer design problem: The speed reducer
design problem [53] is a classical problem, the weight of
speed reducer is to be minimized subject to constraintson
bending stress of the gear teeth, surface stress, transverse
deflections of the shafts, and stresses in the shafts. The results
for the speed reducer design problems are presented in Table
VIII. From the table, it is evident that both MSWOA and PSO
achieve optimal solutions that are very close to the theoretical
optimum in solving the reducer design problem. However,
when comparing the mean and variance, MSWOA outper-
forms PSO significantly, indicating the proposed algorithm’s
high stability.

TABLE VIII: The results of speed reducer design problem.

Algorithms Mean Std Best

PSO 103010.4262 305103.2303 2996.24304
GWO 3003.781232 3.673188731 2998.767315
SCA 3093.081023 30.63197038 3052.148065
SCSO 3003.530872 4.17133293 2997.108144
WOA 3269.985992 466.5589827 3006.329475
WOASCALF 3162.051397 41.23944616 3059.582591
SOA 3027.48693 14.00818364 3003.502511
DE 3077.220081 22.36541239 3024.583057
ASO 3176.003645 64.13939119 3051.591945
BOA 936938.2841 253619.1064 3362.31196
MSWOA 3000.549197 2.785161664 2996.733089

VI. CONCLUSION

In this paper, a multi-strategy Whale Optimization Al-
gorithm (MSWOA) is proposed. This enhanced version

incorporates several improvements, including dimensional
updating, nonlinear convergence factor, global perturbation
factor, firefly perturbation strategy, and vertical and horizon-
tal crossover strategies. These enhancements are aimed at
improving the performance of MSWOA. First, a strategy
was devised to update each individual dimension differ-
ently. Second, a nonlinear convergence factor was intro-
duced. Third, a global perturbation factor was incorporated
into MSWOA, enhancing the diversity of populations dur-
ing exploration. Fourth, a firefly perturbation strategy was
employed to improve convergence accuracy. Finally, the
vertical and horizontal crossover strategy was utilized to
expedite convergence.The three qualitative indicators demon-
strate that MSWOA excels in achieving a balance between
exploration and exploitation. When compared to other al-
gorithms, MSWOA exhibits superior performance. Addi-
tionally, the boxplots indicate that our algorithm’s solution
average and volatility are competitive with other algorithms.
The Wilcoxon signed-rank test reveals that MSWOA out-
performs at least 7 test functions. Moreover, the results of
the Friedman’s test indicate that our algorithm significantly
outperforms other algorithms. In all three engineering design
problems, our algorithm demonstrates favorable rankings,
particularly in the speed reducer design problem where it
significantly outperforms the compared algorithms. While no
algorithm can solve all optimization problems, our algorithm
exhibits greater competitiveness in addressing these engineer-
ing design problems.

In future work, it would be valuable to investigate whether
the strategies are useful to other algorithms. Additionally, it is
important to conduct more in-depth research. Furthermore,
our algorithm requires further enhancements to effectively
address a wider range of practical optimization problems.
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