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Abstract—This paper considers the use of the Laplace
residual power series method to solve linear Volterra integro-
differential equations. It demonstrates how well the approach
holds up to both linear and nonlinear fractional starting
value situations. Important contributions are comparing the
Laplace residual power series approach with other numerical
methods and providing evidence of its reliability through recent
investigations.

Index Terms—Laplace residual power series, Integro differ-
ential equations, Volterra integral equations, nonlinear equa-
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I. INTRODUCTION

FUNDAMENTAL to mathematical modeling, integral-
differential equations lie at the heart of many scientific

and engineering domains [1]. These formulas are often
convertible into Volterra or Fredholm integral equations
and are especially useful in areas like potential theory and
mathematical physics [2]. As shown by [3], their complexity
derives from the need to model intricate systems with many
independent and dependent variables [4], [5], [6].

An important advancement in linear integro-differential
equations was presented by [7] through the use of the Homo-
topy Analysis Method (HAM). The feasibility of employing
more intricate techniques, such as the Laplace Residual
Power Series (LRPS) method, has been made possible by
this approach. The LRPS system exhibits resilience and
adaptability, as evidenced by many inquiries. Shafee [8],
Al-Ahmad [9] and Alaroud [10] utilized the application of
fractional systems and linear and nonlinear fractional initial
value problems to study partial differential equations. The
effectiveness and reliability of LRPS have been confirmed by
these investigations. Momani [11] devised a residual power
series technique to address the issue of solving nonlinear
Volterra integral equations in the context of initial value
problem systems. On the other hand [12], [13] utilized a
power series approach.

A wide variety of numerical techniques have also been put
forth in parallel, demonstrating the creativity and adaptability
of the area. An effective B-spline collocation and cubature
formula-based algorithm was presented by Cravero [14]. By
presenting a unique difference technique for linear first-
order Volterra delay integro-differential equations, Qazza
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and Hatamleh [15] made significant progress toward first-
order convergence. In Salah [16], the Nystrom approach
was used to solve nonlinear integro-differential equations of
the Volterra type, yielding information about the existence
and uniqueness of the solution. Additionally, Çelik [17]
solved a class of Volterra integral equation systems using
the differential transform method, and both linear and non-
linear systems had exact solutions [18], [19].

These advances bring to light the dynamic character of
integro-differential equation research. The many method-
ologies offer opportunities for cross-disciplinary applica-
tions and breakthroughs in addition to offering alternative
ways to solve these intricate equations. This wide range
of approaches highlights the continued development and
significance of mathematical modeling in solving practical
issues in various scientific and technical fields [20], [21],
[22], [23], [24].

II. PRELIMINARIES

In this section, we provide an overview of key infor-
mation about the Laplace transform [25], [26], [27], [28],
[29], power series, and integral equation, including some
properties essential for this article [30], [31], [32].

Definition 2.1: For a continuous function g(x) defined on
[0,∞) or G (s), the Laplace transform is L[g(x)].It has the
following definition:

G (s) = L[g(x)] =
∫ ∞

0

e−sxg (x) dx, s > 0. (1)

The existence of the Laplace transform of g(x) is determined
by whether the integral (1) converges for any value of s; if
it does, the Laplace transform exists; otherwise, it does not
exist.

The expression for the inverse Laplace transform is for-
mulated as follows:

L−1 [G (s)] = g (x) =
1

2πi

∫ c+i∞

c−i∞
esx G (s) ds, c ∈ R.

(2)
Theorem 2.1: If g(x) is a piecewise continuous function

within any finite interval 0 ≤ x ≤ β and has exponential
order δ for x > β, satisfying:

|g (x)| < ξexδ,

for some ξ > 0, then its Laplace transform G(s) exists for
all s > δ.

Theorem 2.2: Assume that g (x) and h (x) are two func-
tions of exponential order, with their Laplace transforms
G (s), H (s) respectively, µ1 and µ2 are two constants. After
that, we have the properties that are listed below:
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i. L [µ1g (x) + µ2h (x)] = µ1L[g (x)]+ = µ2L[h (x)]
= µ1G(s) + µ2H(s).

ii. L [xng(x)] = (−1)
n dn

dsnG (s) , n = 1, 2, . . . .
iii. lim

µ→∞
sG (s) = g (0) .

iv. L [ g(x) ∗ h(x)] = L [g (x)] L [h (x)] = G (s)H(s),
where
g (x) ∗ h (x) =

∫ x

0
g (x− τ)h (x) dx (Convolution).

v. L
[
g(n)(x)

]
= snL [g(x)]−

∑n−1
k=0 s

n−k−1g(k) (0).

Definition 2.2: An infinite series of the form:
∞∑

n=0

cn (x− x0)
n
= c0 + c1 (x− x0) + c2 (x− x0)

2
+ . . . ,

(3)
is called a power series about x = x0 where x is a variable
and c,ns are constants called the coefficients of the series.

Definition 2.3: A series that has the following representa-
tion

∞∑
n=−∞

cnx
n =

∞∑
n=1

c−n

xn
+

∞∑
n=0

cnx
n, (4)

is called Laurent series about x = 0, where the variable is x
and the series’ coefficients are c′ns. The series

∑∞
n=0 cnx

n

is referred to as the Laurent series’ analytic or regular
component, whereas the series

∑∞
n=1

c−n

xn is referred to as
its singular or primary part.

Theorem 2.3: If there exists a power series representation
(expansion) for function g(x) centered at x0 as follow,
g(x) =

∑∞
n=0 cn (x− x0)

n has radius of convergence R >
0, then g(x) is infinitely differentiable in |x− x0| < R, and
in this case, the formula provides the coefficients for the
series cn = g(n)(x0)

n! , then g (x) must have the following
structure:

g (x) =
∞∑

n=0

g(n) (x0)

n!
(x− x0)

n
. (5)

The series in Equation (5) is called the Taylor series of the
function g(x) at x0. For the special case x0 = 0, the Taylor
series becomes called the Maclaurin series.

Theorem 2.4: If G (s) = L [g(x)] has a Laurent series
representation about s = 0 as follows:

G (s) =
c0
s

+
∞∑

n=1

cn
sn+1

, s > 0, (6)

then cn = g(n) (0) , n = 0, 1, 2, · · · .
Definition 2.4: An integral equation is an equation where

the unknown function g(x) that needs to be determined
it appears within an integral. Integral equations are highly
valuable mathematical tools in both pure and applied math-
ematics.
A typical form of an integral equation in g(x) is of the form:

g (x) = f (x) + λ

∫ b(x)

a(x)

k (x, τ) g (τ) dτ, (7)

where k(x, τ) is called the kernel of the integral Equation
(7), and a(x), b(x) are the limits of the integration.

Definition 2.5: Volterra linear integral equations are com-
monly represented in the following standard form:

h(x)g (x) = f(x) + λ

∫ x

a

k (x, τ) g (τ) dτ, (8)

in this equation, the unknown function is g(x) it appears
linearly under the integral sign. If h(x) = 1, the equation is
simplified to:

g (x) = f(x) + λ

∫ x

a

k (x, τ) g (τ) dτ, (9)

this equation is referred to as the Volterra integral equation
of the second kind. Conversely, if h (x) = 0, the equation
becomes:

f(x) + λ

∫ x

a

k (x, τ) g (τ) dτ = 0, (10)

Remark 2.1: If k(x, τ) = k(x− τ), such that in (x− τ),
ex−τ ,...,then the Equation (8) is called the Volterra integral
equation of convolution type.

III. LRPS METHOD FOR SOLVING LINEAR VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS

This section is divided into two sections: in the first, we
walk through the processes of the LRPS approach for solving
integro differential equations, and in the second, we answer
a few sample problems to demonstrate how easy the method
is to use.

A. Steps of LRPS method

To perform the LRPS technique, for solving equation

g(n) (x) = f (x) + λ

∫ x

0

k (x− τ) g (τ) dτ, (11)

where f (x), g (x) and k (x) are analytic functions, with the
initial conditions:

g (0) = a1, g′ (0) = a2, g′′ (0) = a3, . . . , g
(n−1)(0) = an.

To get the solution, we can follow the steps.
Step 1. Starting with the application of the Laplace

transform to both sides of Equation (11), we obtain the
following result,

L
[
g(n) (x)

]
= L [f (x)] + L

[
λ

∫ x

0

k (x− τ) g (τ) dτ

]
.

(12)
Step 2. Depending on Laplace transform and convolution
theorem, the Equation (12), can be rewritten as follows:

snG (s) = sn−1g (0) + sn−2g′ (0) + . . .+ g(n−1) (0)

+ F (s) + λ K (s) G (s) ,
(13)

where G (s) = L [g (x)], F (s) = L [f (x)], K(s) =
L[k (x)].
Step 3. Multiplying Equation (13) by 1

sn , and utilizing
the initial conditions, to simplifying Equation (13) into the
following form:

G (s) =
n−1∑
i=0

ai+1

si+1
+

F (s)

sn
+

1

sn
λ K (s) G (s) . (14)

Step 4. Examining the solution to Equation (14) which takes
on the following structure:

G (s) =
∞∑
i=0

ci
si+1

, s > 0. (15)
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Step 5. Applying the initial condition by credit Theorem 2.4,
we can determine the first n- coefficients of the previous
structure, so the Equation (15) can be written as follows:

G (s) =
n−1∑
i=0

ai+1

si+1
+

∞∑
i=n

ci
si+1

, s > 0, (16)

and the µ-th truncated series of (16) is given by:

Gµ (s) =
n−1∑
i=0

ai+1

si+1
+

µ∑
i=n

ci
si+1

, s > 0, (17)

where µ = n, n+ 1, . . ..
Step 6. Evaluating the Laplace residual function from Equa-
tion (14) and the µth-truncated Laplace residual function
independently,

LRes (s) = G (s)

−

(
n−1∑
i=0

ai+1

si+1
+

F (s)

sn
+

1

sn
λ K (s)G (s)

)
,

(18)

LResµ (s) = Gµ (s)

−

(
n−1∑
i=0

ai+1

si+1
+

F (s)

sn
+

1

sn
λ K (s)Gµ (s)

)
.

(19)

Step 7. Substituting the sum of Gµ(s) into (17) in place of
the term (19) to get:

LResµ (s) =
n−1∑
i=0

ai+1

si+1
+

µ∑
i=n

ci
si+1

−

(
n−1∑
i=0

ai+1

si+1
+

F (s)

sn
+

1

sn
λK (s)(

n−1∑
i=0

ai+1

si+1
+

µ∑
i=n

ci
si+1

))
.

(20)

Step 8. Multiplying both sides of Equation (20) by sµ+1 and
then take the limit as s approaches infinity, here in we need
the following facts that can be found in [30]:

i. lim
µ→∞

LResµ (s) = LRes (s) , LRes (s) = 0,

for all s > 0,
ii. lim

s→∞
(s LRes (s)) = 0, which implies

lim
s→∞

(sLResµ (s)) = 0,

iii. lim
s→∞

(
sµ+1LRes (s)

)
= lim

s→∞

(
sµ+1LResµ (s)

)
= 0,

µ = 1, 2, 3, · · · ,
to obtain:

lim
s→∞

sµ+1LResµ (s)︸ ︷︷ ︸
=0

= lim
s→∞

sµ+1
n−1∑
i=0

ai+1

si+1

+ lim
s→∞

sµ+1

µ∑
i=n

ci
si+1

− lim
s→∞

sµ+1

(
n−1∑
i=0

ai+1

si+1

+
F (s)

sn
+

1

sn
λK (s)

(
n−1∑
i=0

ai+1

si+1
+

µ∑
i=n

ci
si+1

))
.

(21)

Step 9. Determining the values of the coefficient ci
,s in

Equation (21) by solving the system in Equation (21) for
µ = 1, 2, 3, · · · , recursively.

Step 10. In order to determine the approximate solution, the
estimated values of ci

,s are substituted into the truncated
series of G(s).
Step 11. Applying the inverse Laplace transform to G(s) in
order to obtain the approximate solution of g (x), which is
the solution of Equation (11).

B. Applications

Example 3.1. Consider the integro-differential equation of
the form:

g′′ (x) = 1 +

∫ x

0

(x− τ) g (τ) dτ, (22)

with the initial conditions g (0) = −1, g′ (0) = 0.
Solution. Utilizing the Laplace transform to both aspects

of Equation (22)

L [g′′ (x)] = L [1] + L
[∫ x

0

(x− τ)g (τ) dτ

]
. (23)

Running Laplace transform and using convolution theory of
Laplace transform to get:

s2G (s)− s g (0)− g′ (0) =
1

s
+

1

s2
G (s) . (24)

Multiplying Equation (24) by 1
s2 , and utilizing the initial

conditions to simplify Equation (24) into the following form:

G (s) =
1

s
+

1

s3
+

1

s4
G (s) . (25)

Assume that

G (s) =

∞∑
i=0

ci
si+1

, s > 0, (26)

applying the initial condition, based on the Theorem 2.4, so
the Equation (26) can be written as follows:

G (s) =
1

s
+

∞∑
i=2

ci
si+1

, s > 0, (27)

and the µth-truncated series of (27) is given by:

Gµ (s) =
1

s
+

µ∑
i=2

ci
si+1

, s > 0, (28)

we define the Laplace residual function of Equation (25) as
follows:

LRes (s) = G (s)− 1

s
− 1

s3
− 1

s4
G (s) , (29)

and

LResµ (s) = Gµ (s)−
1

s
− 1

s3
− 1

s4
Gµ (s) , (30)

to find the second coefficient c2, we define the second
truncated series G2 (s) as: G2 (s) = 1

s + c2
s3 , substituting

G2 (s) in the second Laplace residual function LRes2(s), to
get:

LRes2 (s) =
1

s
+

c2
s3

− 1

s
− 1

s3
− 1

s4

(
1

s
+

c2
s3

)
. (31)

Multiplying both sides by s3, then we get:

s3LRes2 (s) = c2 − 1− s3

s4

(
1

s
+

c2
s3

)
. (32)
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By taking the limit to both sides as s → ∞, we get the value
of c2 : c2 = 1.

Thus, the second approximation of the solution of Equa-
tion (25) is:

G2 (s) =
1

s
+

1

s3
.

Following the same steps to calculate c3, we define the third
truncated series G3 (s) as:

G3 (s) =
1

s
+

1

s3
+

c3
s4

,

substituting G3 (s) in the third Laplace residual function
LRes3 (s), to get:

LRes3 (s) =
1

s
+

1

s3
+

c3
s4

− 1

s
− 1

s3
− 1

s4

(
1

s
+

1

s3
+

c3
s4

)
.

(33)
Multiplying both sides by s4, and taking the limit to both
sides as s → ∞, we get the value of c3: c3 = 0, then the
third approximation of Equation (25) is:

G3 (s) =
1

s
+

1

s3
.

The values of the coefficients can be determined by using
the same procedures:

c4 = c6 = c2n . . . = 1,where n = 1, 2, 3, . . . ,

c5 = c7 = c2n+1 . . . = 0,where n = 1, 2, 3, · · · .

To find the solution g(x), of Equation (22), we operate the
inverse Laplace transform to G(s), to get:

g (x) = L−1 [G (s)] = L−1

[
1

s
+

1

s3
+

1

s5
+

1

s7
+ . . .

]
= 1 +

x2

2!
+

x4

4!
+ . . .+

x2n

2n!
+ . . . = coshx.

Example 3.2. Consider the integro-differential equation of the
form:

g′′ (x) = x+

∫ x

0

(x− τ) g (τ) dτ, (34)

with the initial conditions

g (0) = 0, g′ (0) = 1 (35)

Solution. Utilizing the Laplace transform to both aspects
of Equation (34) Running Laplace transform and using
convolution theory of Laplace transform to get:

L [g′′ (x)] = L [x] + L
[∫ x

0

(x− τ)g (τ) dτ

]
. (36)

Running Laplace transform and using convolution theory of
Laplace transform to get:

s2G (s)− s g (0)− g′ (0) =
1

s2
+

1

s2
G (s) . (37)

Multiplying previous equation by 1
s2 , and utilizing the initial

conditions to simplify Equation (37) into the following form:

G (s) =
1

s2
+

1

s4
+

1

s4
G (s) . (38)

Assume that:

G (s) =
∞∑
i=0

ci
si+1

, s > 0. (39)

Applying the initial condition, based on the Theorem 2.4 so
the Equation (39) can be written as follows:

G (s) =
1

s2
+

∞∑
i=2

ci
si+1

, s > 0, (40)

and the µ th-truncated series of (40) is given by:

Gµ (s) =
1

s2
+

µ∑
i=2

ci
si+1

, s > 0. (41)

We define the Laplace residual function of Equation (38) as
follows:

LRes (s) = G (s)− 1

s2
− 1

s4
− 1

s4
G (s) , (42)

and

LResµ(s) = Gµ (s) − 1

s2
− 1

s4
− 1

s4
Gµ (s) . (43)

To find the second coefficient c2, we define the second
truncated series G2 (s) as:

G2 (s) =
1

s2
+

c2
s3

,

substituting G2 (s) in the second Laplace residual function
LRes2(s), to get:

LRes2 (s) =
1

s2
+

c2
s3

− 1

s2
− 1

s4
− 1

s4

(
1

s2
+

c2
s3

)
. (44)

Multiplying both sides by s3, then we get:

s3LRes2 (s) = c2 −
s3

s4
− s3

s4

(
1

s2
+

c2
s3

)
. (45)

By taking the limit to both sides as s → ∞, we get the
value of c2 : c2 = 0. Thus, the second approximation of the
solution of Equation (38) is:

G2 (s) =
1

s2
.

For series (41), we can identify more coefficients by fol-
lowing the previously described technique. These include
c3 = 1, c4 = c6 = c2n . . . = 0, and others. . . . = 1 for
c5 = c7 = c2n+1. Thus, the following is the form of the
series solution to Equation (38):

G (s) =
1

s2
+

1

s4
+

1

s6
+

1

s8
+ · · · . (46)

There for, the solution of Equation (34) can be expressed in
the following series form:

g (x) = x+
x3

3!
+

x5

5!
+ . . .+

x2n+1

(2n+ 1)!
+ . . . ,

which is the expansion of the exact solution g (x) = sinhx.

IV. LRPS METHOD FOR SOLVING NONLINEAR
VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

This section consists of two parts, the first one includes
the steps of the LRPS method for solving nonlinear Volterra
integro differential equations, and in the other section we
solve some illustrative examples to show the simplicity of
the method.
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A. Steps of LRPS method

To perform the LRPS technique, for solving equation

g(n) (x) = f (x) + λ

∫ x

0

k (x− τ) h (g (τ)) dτ, (47)

where f (x), g (x) and k (x) are analytic functions, with the
initial conditions:

g (0) = a1, g′ (0) = a2, g′′ (0) = a3, . . . , g
(n−1)(0) = an.

(48)
To solve this equation, applying the LRPS technique we
follow the steps.

Step 1. Starting with the application of the Laplace
transform to both sides of Equation (48), we obtain the
following result,

L
[
g(n) (x)

]
= L [f (x)] + L

[
λ

∫ x

0

k (x− τ)h (g (τ)) dτ

]
.

(49)
Step 2. Depending on Laplace transform and convolution
theorem, the Equation (49), can be rewritten as follows:

snG (s) = sn−1g (0) + sn−2g′ (0) + . . .+ g(n−1) (0)

+ F (s) + λ K (s) L
[
h
([
L−1 [G (s)]

])]
,

(50)

where G (s) = L [g (x)], F (s) = L [f (x)], K(s) =
L[k (x)].
Step 3. Multiplying Equation (50) by 1

sn , and utilizing
the initial conditions, to simplifying Equation (50) into the
following form:

G (s) =
n−1∑
i=0

ai+1

si+1
+

F (s)

sn

+
1

sn
λ K (s) L

[
h
([
L−1 [G (s)]

])]
.

(51)

Step 4. Examining the solution to Equation (51) which takes
on the following structure:

G (s) =
∞∑
i=0

ci
si+1

, s > 0. (52)

Step 5. Applying the initial condition by credit Theorem 2.4,
we can determine the first n- coefficients of the previous
structure, so the Equation (52) can be written as follows:

G (s) =

n−1∑
i=0

ai+1

si+1
+

∞∑
i=n

ci
si+1

, s > 0, (53)

and the µ-th truncated series of (53) is given by:

Gµ (s) =
n−1∑
i=0

ai+1

si+1
+

µ∑
i=n

ci
si+1

, s > 0, (54)

where µ = n, n+ 1, . . ..
Step 6. Evaluating the Laplace residual function from Equa-
tion (51) and the µth-truncated Laplace residual function
independently,

LRes (s) = G (s)

−

(
n−1∑
i=0

ai+1

si+1
+

F (s)

sn

+
1

sn
λ K (s)L

[
h
(
L−1 [G (s)]

)])
,

(55)

LResµ (s) =Gµ (s)

−

(
n−1∑
i=0

ai+1

si+1
+

F (s)

sn

+
1

sn
λ K (s)L

[
h
(
L−1 [Gµ (s)]

)])
.

(56)

Step 7. Substituting the sum of Gµ(s) into (54) in place of
the term (56) to get:

LResµ (s) =
n−1∑
i=0

ai+1

si+1
+

µ∑
i=n

ci
si+1

−

(
n−1∑
i=0

ai+1

si+1
+

F (s)

sn
+

1

sn
λK (s)

L

[
h

(
L−1

[
n−1∑
i=0

ai+1

si+1
+

µ∑
i=n

ci
si+1

])])
.

(57)

Step 8. Multiplying both sides of Equation (57) by sµ+1 and
then take the limit as s approaches infinity, here in we need
the following facts that can be found in [30]:

i. lim
µ→∞

LResµ (s) = LRes (s) , LRes (s) = 0,

for all s > 0,
ii. lim

s→∞
(s LRes (s)) = 0, which implies

lim
s→∞

(sLResµ (s)) = 0,

iii. lim
s→∞

(
sµ+1LRes (s)

)
= lim

s→∞

(
sµ+1LResµ (s)

)
= 0,

µ = 1, 2, 3, · · · ,
to obtain:

lim
s→∞

sµ+1LResµ (s)︸ ︷︷ ︸
=0

= lim
s→∞

sµ+1
n−1∑
i=0

ai+1

si+1

+ lim
s→∞

sµ+1

µ∑
i=n

ci
si+1

− lim
s→∞

sµ+1

(
n−1∑
i=0

ai+1

si+1

+
F (s)

sn

+
1

sn
λK (s)L

[
h

(
L−1

[
n−1∑
i=0

ai+1

si+1
+

µ∑
i=n

ci
si+1

])])
.

(58)

Step 9. Determining the values of the coefficient ci
,s in

Equation (58) by solving the system in Equation (58) for
µ = 1, 2, 3, · · · , recursively.
Step 10. In order to determine the approximate solution, the
estimated values of ci

,s are substituted into the truncated
series of G(s).
Step 11. Applying the inverse Laplace transform to G(s) in
order to obtain the approximate solution of g (x), which is
the solution of Equation (47).

B. Applications

Example 3.3. Examine the nonlinear Volterra integro-
differential equation in the given form:

g′ (x) =
3

2
ex − 1

2
e3x +

∫ x

0

e(x−τ)g3 (τ) dτ, (59)

with the initial conditions g (0) = 1.
Solution. Utilizing the Laplace transform to both aspects of
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Equation (59)

L [g′ (x)] = L
[
3

2
ex
]
−L

[
1

2
e3x
]
+L

[∫ x

0

e(x−τ)g3 (τ) dτ

]
.

(60)
Running Laplace transform and using convolution theory of
Laplace transform to get:

sG (s)− g (0) =
3

2 (s− 1)
− 1

2 (s− 3)

+
1

s− 1
L
[(
L−1 [G (s)]

)3]
.

(61)

Multiplying previous Equation by 1
s , and utilizing the initial

conditions to simplifying Equation (61) into the following
form:

G (s) =
1

s
+

3

2s (s− 1)
− 1

2s (s− 3)

+
1

s (s− 1)
L
[(
L−1 [G (s)]

)3]
.

(62)

Assume that:

G (s) =
∞∑
i=0

ci
si+1

, s > 0. (63)

Applying the initial condition as stated in Theorem 2.4, so
the Equation (63) can be written as follows:

G (s) =
1

s
+

∞∑
i=1

ci
si+1

, s > 0, (64)

and the µth-truncated series of (64) is given by:

Gµ (s) =
1

s
+

µ∑
i=1

ci
si+1

, s > 0, (65)

We define the Laplace residual function of Equation (62) as
follows:

LRes (s) = G (s)− 1

s
− 3

2s (s− 1)
+

1

2s (s− 3)

− 1

s (s− 1)
L
[(
L−1 [G (s)]

)3]
,

(66)

and

LResµ (s) = Gµ (s)−
1

s
− 3

2s (s− 1)
+

1

2s (s− 3)

− 1

s (s− 1)
L
[(
L−1 [Gµ (s)]

)3]
.

(67)

To find the first coefficient c1, we define the first truncated
series G1 (s) as: G1 (s) =

1
s +

c1
s2 , substituting G1 (s) in the

first Laplace residual function LRes1(s), to get:

LRes1 (s) =
1

s
+

c1
s2

− 1

s
− 3

2s (s− 1)

+
1

2s (s− 3)

− 1

s (s− 1)
L

[(
L−1

[
1

s
+

c1
s2

])3
]
.

(68)

Simplifying the right side of previous equation, then multi-
plying both sides by s2 we obtain:

s2LRes1(s) =
3s2

s2(s− 1)(s− 3)
+ c1

− s2

s (s− 1)
L

[(
L−1

[
1

s
+

c1
s2

])3
]
.

(69)

By taking the limit to both sides as s → ∞, we get the value
of c1, c1 = 1. Thus, the first approximation of the solution
of Equation (62) is:

G1 (s) =
1

s
+

1

s2
.

Following the same steps to calculate c2, we define the
second truncated series G2 (s) as: G2 (s) = 1

s + 1
s2 + c2

s3 ,
substituting G2 (s) in the second Laplace residual function
LRes2(s), to get:

LRes2 (s) =
1

s
+

1

s2
+

c2
s3

− 1

s
− 3

2s (s− 1)
+

1

2s (s− 3)

− 1

s (s− 1)
L

[(
L−1

[
1

s
+

1

s2
+

c2
s3

])3
]
.

(70)

Simplifying the right side of previous equation, then multi-
plying both sides by s3, then taking the limit to both sides
as s → ∞, we get the value of c2 = 1. Thus, the solution
of Equation (62), in its second approximation, is:

G2 (s) =
1

s
+

1

s2
+

1

s3
.

Repeating the same steps, the values of the coefficient can
be found in the manner described below.:

c3 = c4 = . . . = 1.

To find the solution g(x), of Equation (59), we operate the
inverse Laplace transform to G(s), to get:

g (x) = L−1 [G (s)] = L−1

[
1

s
+

1

s2
+

1

s3
+

1

s4
+ . . .

]
= x+

x2

2!
+

x3

3!
+ . . .+

xn

n!
+ . . . = ex.

Example 3.4. Examine the integro-differential equation in the
given form:

g′ (x) = −1 +

∫ x

0

g2 (τ) dτ, (71)

with the initial conditions g (0) = 0.
Solution. Utilizing the Laplace transform to both aspects of
Equation (71)

L [g′ (x)] = L [−1] + L
[∫ x

0

g2 (τ) dτ

]
. (72)

sG (s)− g (0) =
−1

s
+

1

s
L
[(
L−1 [G (s)]

)2]
. (73)

Running Laplace transform and using convolution theory of
Laplace transform to get: Multiplying previous equation by
1
s , and utilizing the initial conditions to simplify Equation
(73) into the following form:

G (s) =
−1

s2
+

1

s2
L
[(
L−1 [G (s)]

)2]
. (74)

Assume that:

G (s) =
∞∑
i=0

ci
si+1

, s > 0. (75)
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Applying the initial condition, as stated in Theorem 2.4, so
the Equation (75) can be written as follows:

G (s) =
∞∑
i=1

ci
si+1

, s > 0, (76)

and the µth-truncated series of (76) is given by:

Gµ (s) =

µ∑
i=1

ci
si+1

, s > 0. (77)

We define the Laplace residual function of Equation (74) as
follows:

LRes (s) = G (s) +
1

s2
− 1

s2
L
[(
L−1 [G (s)]

)2]
, (78)

and

LResµ (s) = Gµ (s)+
1

s2
− 1

s2
L
[(
L−1 [Gµ (s)]

)2]
. (79)

To find the first coefficient c1, we define the first truncated
series G1 (s) as:

G1 (s) =
c1
s2

,

substituting G1 (s) in the first Laplace residual function
LRes1 (s), to get:

LRes1 (s) =
c1
s2

+
1

s2
− 1

s2
L
[(

L−1
[ c1
s2

])2]
. (80)

Simplifying the right side of previous equation, then multi-
plying both sides by s2, we obtain:

s2LRes1 (s) = c1 + 1− L
[(

L−1
[ c1
s2

])2]
. (81)

By taking the limit to both sides as s → ∞, we get the value
of c1: c1 = −1. Thus, the first approximation of the solution
of Equation (74) is:

G1 (s) = − 1

s2
.

It can easily be calculated c2 = c3 = c5 = c6 = 0. Following
the same steps to calculate c4 , c4 = 2. Thus, the fourth
approximation of the solution of Equation (74) is:

G4 (s) = − 1

s2
+

2

s5
. (82)

Repeating the same steps, we can find the value of c7 = −20.
To find the solution g(x), of Equation (71), we operate the
inverse Laplace transform to G(s), to get:

g (x) = L−1 [G (s)] = L−1

[
− 1

s2
+

2

s5
− 20

s8
+ . . .

]
= −x+

x4

12
− x7

252
+ . . . .

(83)

Example 3.5. Examine the integro-differential equation in the
given form:

g′ (x) = −2 sinx− 1

3
cosx− 2

3
cos 2x

+

∫ x

0

cos (x− τ)g
2
(τ) dτ,

(84)

with the initial conditions g (0) = 1.
Solution. Utilizing the Laplace transform to both aspects of
Equation (84)

L [g′ (x)] = L[−2 sinx] + L
[∫ x

0

cos (x− τ)g2 (τ) dτ

]
.

(85)
Running Laplace transform and using convolution theory of
Laplace transform to get:

sG (s)− g (0) =
−2

s2 + 1
− s

3(s
2
+ 1)

− 2s

3 (s2 + 4)

+
s

s2 + 1
L
[(
L−1 [G (s)]

)2]
.

(86)

Multiplying previous Equation by 1
s , and utilizing the initial

conditions to simplify Equation (86) into the following form:

G (s) =
1

s
− 2

s(s
2
+ 1)

− 1

3(s
2
+ 1)

− 2

3 (s2 + 4)

+
1

s2 + 1
L
[(
L−1 [G (s)]

)2]
.

(87)

Assume that:

G (s) =
∞∑
i=0

ci
si+1

, s > 0. (88)

Applying the initial condition, as stated in Theorem 2.4 so
the Equation (88) can be written as follows:

G (s) =
1

s
+

∞∑
i=1

ci
si+1

, s > 0, (89)

and the µth-truncated series of (89) is given by:

Gµ (s) =
1

s
+

µ∑
i=1

ci
si+1

, s > 0. (90)

We define the Laplace residual function of Equation (87) as
follows:

LRes (s) = G (s)− 1

s
+

2

s(s
2
+ 1)

+
1

3(s
2
+ 1)

+
2

3 (s2 + 4)
− 1

s2 + 1
L
[(
L−1 [G (s)]

)2]
,

(91)

LResµ (s) = Gµ (s)−
1

s
+

2

s(s
2
+ 1)

+
1

3(s
2
+ 1)

+
2

3 (s2 + 4)
− 1

s2 + 1
L
[(
L−1 [Gµ (s)]

)2]
.

(92)

The first truncated series G1 (s) is defined as follows in order
to determine the first coefficient c1:

G1 (s) =
1

s
+

c1
s2

,

substituting G1 (s) in the first Laplace residual function
LRes1(s), to get:

LRes1 (s) =
1

s
+

c1
s2

− 1

s
+

2

s(s
2
+ 1)

+
1

3(s
2
+ 1)

+
2

3 (s2 + 4)
− 1

s2 + 1
L

[(
L−1

[
1

s
+

c1
s2

])2
]
.

(93)
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By taking the limit to both sides as s → ∞, we get the value
of c1: c1 = −1. Thus, the first approximation of the solution
of Equation (87) is:

G1 (s) =
1

s
− 1

s2
.

By using the previously described method, we can identify
additional coefficients for series. (90). Some of them are c2 =
−1, c3 = 1, c4 = 1, c5 = −1,. . ..
To find the solution g(x) , of Equation (84), we operate the
inverse Laplace transform to G(s), to get:

g (x) = L−1 [G (s)]

= L−1

[
1

s
− 1

s2
− 1

s3
+

1

s4
+ ...

]
= L−1

[
1

s
− 1

s3
+

1

s5
− . . .

]
+ L−1

[
− 1

s2
+

1

s4
− 1

s6
+ . . .

]
=

L−1

[
1

s
− 1

s3
+

1

s5
− . . .

]
− L−1

[
1

s2
− 1

s4
+

1

s6
− . . .

]
=

(
1− x2

2!
+

x4

4!
− . . .

)
−
(
x− x3

3!
+

x5

5!
− . . .

)
= cosx− sinx.

(94)

V. CONCLUSION

this article comprehensively explores the efficacy of the
LRPS method in solving Volterra integro-differential equa-
tions. Through a critical examination of various studies and
methods, it highlights the versatility and reliability of LRPS
in tackling both linear and nonlinear problems. The article
underscores the importance of innovative numerical methods
in mathematical modeling, demonstrating the continuous
evolution in this field [33], [34], [35]. These insights not only
contribute to the academic discourse but also offer practical
solutions for complex equations in scientific and engineering
applications [36], [37], [38], [39].
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