Enhanced YOLOv5 for Efficien
Debris Detection
Shicheng Li, Xiaoxia Zhang, Ruiqing Shan
Abstract—To address the issue of large model parameter size
of the weight of biofoulir
d computational complexity in existing garbage Enhanced YOLOv5 for Efficient Marine
Debris Detection
Shicheng Li, Xiaoxia Zhang, Ruiqing Shan
With the weight of biofouling, can lose buoyancy and sink to Engineering Letters

YOLOV5 for Efficient Marine

Debris Detection

such a Kiaoxia Zhang, Ruiqing Shan

with the weight of biofouling, can lose buoyancy and sink to

odel parameter size

the seabed [2]. However, due to t Engineering Letters

1 YOLOv5 for Efficient Marine

Debris Detection

Shicheng Li, Xiaoxia Zhang, Ruiqing Shan

with the weight of biofouling, can lose buoyancy and sink to

re model parameter size the scabed [2]. However,

**Enhanced YOLOV5 for Efficial Debach of the Markon Complementary of the Shicheng Li, Xiaoxia Zhang, Ruiqing Sha
** *Abstract***—To address the issue of large model parameter size with the weight of biomand computational comple EXECTION**
 Shicheng Li, Xiaoxia Zhang, Ruiqing Shan
 Mbstract—To address the issue of large model parameter size

with the weight of biofouling
 Abstract—To address the issue of large model parameter size

the seabe **before the School DEUTIS DEICCUIOII**

Shicheng Li, Xiaoxia Zhang, Ruiqing Sl

with the weight of b

and computational complexity in existing garbage detection

by underwater operational complexity in existing garbage detection

by underwat Shicheng Li, Xiaoxia Zhang, Ruiqing Shan
 Abstract—To address the issue of large model parameter size

with the weight of biofoulin

and computational complexity in existing garbage detection

models deployed on underwat Shicheng Li, Xiaoxia Zhang, Ruiqing Shan

with the weight of biofs
 abstract—To address the issue of large model parameter size

and computational complexity in existing garbage detection

underwater original

models dep Shicheng Li, Xiaoxia Zhang, Ruiqing Sha
 Abstract—To address the issue of large model parameter size

with the weight of biot

and computational complexity in existing garbage detection

by underwater operat

models depl Shicheng L1, XiaoXia Zhang, Kuiqing Shan

Mostract—To address the issue of large model parameter size

with the weight of biofouling

and computational complexity in existing garbage detection

underwater operations, e

un *Abstract*—To address the issue of large model parameter size

and computational complexity in existing garbage detection

models deployed on underwater embedded devices or

underwater mobile devices, we propose an improve *Abstract*—To address the issue of large model parameter size

models deployed on underwater embedded evices or

underwater photodels deployed on underwater embedded evices or

underwater mobile devices, we propose an impr *is modified* **to** *EI* **and the section of the search of biofs and computational complexity in existing garbage detection by underwater operationolels deployed on underwater embedded devices or manual methods, which underwa** *Abstract***—To address the issue of large model parameter size the scabed [2]. However, due of convertions, models deployed on underwater embedded devices or underwater mobile devices, we propose an improved YOLOVS nettain Trash-ICRA19 dataset.** The results indicate that the mean specifical depiction of the properties of the seabled action and computational complexity in existing garbage detection manual methods, which in underwater mobile and computational computative in existing gaming centerion

and delivered on underwater embedded devices or

underwater mobile devices, we propose an improved YOLOv5

network based on lightweight mechanism. Firstly, lightw moutes upply on unterwater embueled uccess or

manual methods, which inevital

network based on lightweight mechanism. Firstly, lightweight

certain risks. Consequently, the

C3-Faster and Ghost conv with smaller parameter metrware mome everes, we propose an improved vDLOv's
 reduced on lightweight mechanism. Firstly, lightweight trash still faces signif

C3-Faster and Ghost conv with smaller parameters and trash still faces signif

comput **Species that the mattem is the real-time** extension. Firstly, ingit weight

C3-Faster and Ghost conv with smaller parameters and this still faces signific

computational complexity are adopted to replace the original Sinc Co-raster and Goost Cour with smaller parameters and Googled to replace the original

computational complexity are adopted to replace the original

Since the construct

C3 module and some Conv modules in the YOLOv5s networ **Examplerational complexity are aboved to replace the original computer and some Conv modules in the YOLOv5s network.** Hinton in 2012 [3], Secondly, a squeeze-and-excitation (SE) attention mechanism is an era of rapid embe **Example and some Conv modules in the YOLOVS HEWITE.** Thin to the secondly, a squeeze-and-excitation (SE) attention mechanism is an era of rapid expandibilities. Finally, the bounding box regression loss function occurred **decoming a support of the control of the control of the control of the method of the bunding box regression loss function**
 dependent in 2016 when the network to enhance feature extraction

is modified to *EloU* loss fu **detection. INTRONISTION**
 INTRONISTER SET INTERVALUAT SERVIT ALLOWS and interact that the mean
 INSURGENT CRAIP dataset. The results indicate that the mean
 INSURGENT CRAIP dataset. The results indicate that the mean
 INSURGE EXECUTE: Attentional mechanism, *EIOU* Overage Precision of the original YOLOv5s, the optimized algorithm

reduced the parameter size by 35% and achieved a processing adaptability,

reduced the parameter size by 35% and The intervalse of the material and transform and the proposed can develop more efficient underwa d of over 40 frame/s, meeting the real-time detection

irefrective method for replicative method can develop more efficient underwater

internents. This research indicates that the proposed

internet of currently detection

mprovement method can develop more efficient underwater

autonomous underwater vehicle

devices, providing better support for real-time marine debris using autonomous intelligent

devices, providing better support for real gaing to the minimum state of embedded text and threat to end the significant in the significant in the significant threat to end of the minimum state of the minimum state of and reliable target information in completing g index **Example Society.** The state support of the tant due maint desires and policing the defection.

In a efficient method of the state of the *Index Terms*—Underwater garbage, Yolov5s, C3-Faster,

an efficient method for the existent detection of the excellent detection

(An excellent detection in completing garbage r

1. INTRODUCTION

1. INTRODUCTION

1. INTROD *Index Terms*—Underwater garbage, Yolov5s, C3-Faster,

An excellent detection

GhostNet, Attentional mechanism, *EIoU* loss function

in completing garbage rec

paper proposes optimize

I. INTRODUCTION

L. INTRODUCTION

L. *Index Terms*—Underwater garbage, Yolov5s, C3-Faster,

ChostNet, Attentional mechanism, *EloU* loss function

in completing garbage recogni

paper proposes optimization

I. INTRODUCTION

I. INTRODUCTION

I. INTRODUCTION
 GhostNet, Attentional mechanism, *EloU* loss function

in completing garbage recog

paper proposes optimizatic

I. INTRODUCTION

I. INTRODUCTION

I. INTRODUCTION

I. INTRODUCTION

I. INTRODUCTION

I. INTRODUCTION

I. IN THE entire world is currently grappling with a growing pare proposes optimization and serious problem: pollution caused by marine debris.
The presence of garbage in underwater environments not and through lightweight and o THE entire world is currently grappling with a growing
solve the limitations of hardue and serious problem: pollution caused by marine debris.
The presence of garbage in underwater environments not
original through lightw THE entire world is currently grappling with a growing

solve the limitations of

The presence of garbage in underwater environments not

only poses a significant therat to ecosystems but also has

indirect negative impact Manuscript received Sep 9, 2023; revised of Computer Science and Scitter September September 2.74 and the september of the waste of the Water of Irrect negative impacts on human society. Consequently,

s issue demands immediate attention and resolution.

research on underwate

chuding beaches, sea surfaces, seabeds, and marine life.

Ilghtweight networks, F-

ilght this issue demands immediate attention and resolution.

Software engines including beaches, sea surfaces, seabeds, and marine life.

Currently, mainstream approaches to studying marine debris

cleanup have focused on treat Marine debris is pervasive across various marine habit
including beaches, sea surfaces, seabeds, and marine 1
Currently, mainstream approaches to studying marine del
cleanup have focused on treating beaches and floating de Example the computer Science and Technology LiaoNing, Anshan, Box of School of Computer Science and Rotting Shan is a Potersponding author, phone:86-0412-5929812; e-mail:
Rainiya Shan is a Professor of School of Computer S Including beaches, sea surfaces, seabeds, and marine file.

Currently, mainstream approaches to studying marine debris

cleanup have focused on treating beaches and floating debris;

the reality is that nearly seventy perc Currently, mainstream approaches to studying marine debris

cleanup have focused on treating beaches and floating debris;

the reality is that nearly seventy percent of the waste sinks to

the seabed [1]. Even low-density

for Efficient Marine
etection
Zhang, Ruiqing Shan
with the weight of biofouling, can lose buoyancy and sink to
the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rel for Efficient Marine
etection
Zhang, Ruiqing Shan
with the weight of biofouling, can lose buoyancy and sink to
the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rel for Efficient Marine
etection
Zhang, Ruiqing Shan
with the weight of biofouling, can lose buoyancy and sink to
the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rel for Efficient Marine
etection
Zhang, Ruiqing Shan
with the weight of biofouling, can lose buoyancy and sink to
the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rel **CECTION**

Examples, Ruiqing Shan

Whang, Ruiqing Shan

White the weight of biofouling, can lose buoyancy and sink to

the seabed [2]. However, due to the unique challenges posed

by underwater operations, cleanup efforts **CECTION**

Zhang, Ruiqing Shan

with the weight of biofouling, can lose buoyancy and sink to

the seabed [2]. However, due to the unique challenges posed

by underwater operations, cleanup efforts often rely on

manual met **EXECT ALEXT ALEXN** Zhang, Ruiqing Shan

with the weight of biofouling, can lose buoyancy and sink to

the seabed [2]. However, due to the unique challenges posed

by underwater operations, cleanup efforts often rely on

manual methods, which

Zhang, Ruiqing Shan
with the weight of biofouling, can lose buoyancy and sink to
the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rely on
manual methods, which ine Zhang, Ruiqing Shan
with the weight of biofouling, can lose buoyancy and sink to
the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rely on
manual methods, which ine with the weight of biofouling, can lose buoyancy and sink to
the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rely on
manual methods, which inevitably result in hi with the weight of biofouling, can lose buoyancy and sink to
the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rely on
manual methods, which inevitably result in hi with the weight of biofouling, can lose buoyancy and sink to
the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rely on
manual methods, which inevitably result in hi the seabed [2]. However, due to the unique challenges posed
by underwater operations, cleanup efforts often rely on
manual methods, which inevitably result in higher costs and
certain risks. Consequently, the cleaning work by underwater operations, cleanup efforts often rely on
manual methods, which inevitably result in higher costs and
certain risks. Consequently, the cleaning work of underwater
trash still faces significant challenges.
Sin manual methods, which inevitably result in higher costs and
certain risks. Consequently, the cleaning work of underwater
trash still faces significant challenges.
Since the construction of the CNN network AlexNet by
Hinton certain risks. Consequently, the cleaning work of underwater
trash still faces significant challenges.
Since the construction of the CNN network AlexNet by
Hinton in 2012 [3], deep learning has made an entrance into
an era trash still faces significant challenges.

Since the construction of the CNN network AlexNet by

Hinton in 2012 [3], deep learning has made an entrance into

an era of rapid expansion. A highly influential event

occurred Since the construction of the CNN network AlexNet by
Hinton in 2012 [3], deep learning has made an entrance into
an era of rapid expansion. A highly influential event
occurred in 2016 when AlphaGo, utilizing deep learning
 Hinton in 2012 [3], deep learning has made an entrance into
an era of rapid expansion. A highly influential event
occurred in 2016 when AlphaGo, utilizing deep learning
techniques, defeated the world champion in the game o an era of rapid expansion. A highly influential event
occurred in 2016 when AlphaGo, utilizing deep learning
techniques, defeated the world champion in the game of Go
[4]. This brought artificial intelligence into the publ occurred in 2016 when AlphaGo, utilizing deep learning
techniques, defeated the world champion in the game of Go
[4]. This brought artificial intelligence into the public
spotlight and sparked global attention and extensiv thriques, defeated the world champion in the game of Go
|. This brought artificial intelligence into the public
otlight and sparked global attention and extensive
ccussions on deep learning. Due to its advantages in
aptabi [4]. This brought artificial intelligence into the public spotlight and sparked global attention and extensive discussions on deep learning. Due to its advantages in adaptability, data-driven nature, scalability, and high spotlight and sparked global attention and extensive discussions on deep learning. Due to its advantages in adaptability, data-driven nature, scalability, and high precision [5], deep learning has been proven to be a highl discussions on deep learning. Due to its advantages in
adaptability, data-driven nature, scalability, and high
precision [5], deep learning has been proven to be a highly
effective method for replacing traditional manual l

This research indicates that the proposed

inversume method can develop more efficient underwater were model

inversume method can develop more effection models for embedded devices or mobile

and an efficient method for u adaptability, data-driven nature, scalability, and high
precision [5], deep learning has been proven to be a highly
effective method for replacing traditional manual labor in
numerous fields. With the increasing maturity o precision [5], deep learning has been proven to be a highly
effective method for replacing traditional manual labor in
numerous fields. With the increasing maturity of
autonomous underwater vehicles in the hardware domain, effective method for replacing traditional manual labor in
numerous fields. With the increasing maturity of
autonomous underwater vehicles in the hardware domain,
using autonomous intelligent machines to replace manual
lab numerous fields. With the increasing maturity of autonomous underwater vehicles in the hardware domain, using autonomous intelligent machines to replace manual labor for marine debris detection and cleaning has become an e autonomous underwater vehicles in the hardware domain, using autonomous intelligent machines to replace manual labor for marine debris detection and cleaning has become an efficient method for underwater garbage removal. A using autonomous intelligent machines to replace manual
labor for marine debris detection and cleaning has become
an efficient method for underwater garbage removal.
An excellent detection algorithm can provide real-time
a labor for marine debris detection and cleaning has become
an efficient method for underwater garbage removal.
An excellent detection algorithm can provide real-time
and reliable target information to machines, assisting th an efficient method for underwater garbage removal.

An excellent detection algorithm can provide real-time

and reliable target information to machines, assisting them

in completing garbage recognition and detection task An excellent detection algorithm can provide real-time
and reliable target information to machines, assisting them
in completing garbage recognition and detection tasks. This
paper proposes optimization and improvement re and reliable target information to machines, assisting them
in completing garbage recognition and detection tasks. This
paper proposes optimization and improvement research
based on YOLOv5s target detection algorithm, aim in completing garbage recognition and detection tasks. This
paper proposes optimization and improvement research
based on YOLOv5s target detection algorithm, aiming to
solve the limitations of hardware computing power and paper proposes optimization and improvement research
based on YOLOv5s target detection algorithm, aiming to
solve the limitations of hardware computing power and
real-time detection in actual mobile device applications.
Th based on YOLOv5s target detection algorithm, aiming to
solve the limitations of hardware computing power and
real-time detection in actual mobile device applications.
Through lightweight and high-precision optimization, it solve the limitations of hardware computing power and
real-time detection in actual mobile device applications.
Through lightweight and high-precision optimization, it
provides technical support for accurate and fast marin real-time detection in actual mobile device applications.
Through lightweight and high-precision optimization, it
provides technical support for accurate and fast marine
debris cleanup. This article's subsequent sections a support for accurate and fast marine

his article's subsequent sections are

ws: Section Two outlines the current

water target detection. Section Three

he YOLOv5s algorithm, focusing on its

ks, FasterNet and Ghost Convo bris cleanup. This article's subsequent sections are ganized as follows: Section Two outlines the current earerch on underwater target detection. Section Three effly introduces the YOLOv5s algorithm, focusing on its htweig organized as follows: Section Two outlines the current
research on underwater target detection. Section Three
briefly introduces the YOLOv5s algorithm, focusing on its
lightweight networks, FasterNet and Ghost Convolution. research on underwater target detection. Section Three
briefly introduces the YOLOv5s algorithm, focusing on its
lightweight networks, FasterNet and Ghost Convolution. It
also discusses improvements like SE attention and t THE entire world is currently grappling with a growing
and serious problem: pollution caused by marine debris.
The presence of garbage in underwater environments not
anticological current for presence of the factomeration,

briefly introduces the YOLOv5s algorithm, focusing on its
lightweight networks, FasterNet and Ghost Convolution. It
also discusses improvements like SE attention and the
modified *EloU* loss function. Section Four details lightweight networks, FasterNet and Ghost Convolution. It
also discusses improvements like SE attention and the
modified *EloU* loss function. Section Four details the
experimental results and provides an investigation of also discusses improvements like SE attention and the
modified *EloU* loss function. Section Four details the
experimental results and provides an investigation of the
enhanced algorithm. Lastly, Section Five draws conclus modified *EIoU* loss function. Section Four details the
experimental results and provides an investigation of the
enhanced algorithm. Lastly, Section Five draws conclusions
from the experiments and proposes future enhancem

aszhangxx@163.com).
Ruiqing Shan is a Postgraduate Student of School of Computer Science reality is that nearly seventy percent of the waste sinks to

experimental results

experimental results

experimental results

experimental results

Second [1]. Even low-density polymers, when combined

Second algorithm.
 if the scabed [1]. Even low-density petcent of the waste sinks to

the scabed [1]. Even low-density polymers, when combined

from the experimental

S. C. Li is a Postgraduate Sudent of School of Computer Science and

Softw the seabed [1]. Even low-density polymers, when combin
Manuscript received Sep 9, 2023; revised Jun 8, 2024.
S. C. Li is a Postgraduate Student of School of Computer Science
Software Engineering, University of Science and

Engineering Letters
environments. Still, deep learning has become a hot topic in real-time demands of useful app
object detection due to its excellent robustness and effective adoption of big models is l
representation o **Engineering Letters**
environments. Still, deep learning has become a hot topic in real-time demands of use
object detection due to its excellent robustness and effective adoption of big model
representation of image detec **Engineering Letters**

environments. Still, deep learning has become a hot topic in

object detection due to its excellent robustness and effective

adoption of big mod

representation of image detection features. DL algor **Engineering Letters**

environments. Still, deep learning has become a hot topic in

object detection due to its excellent robustness and effective

representation of image detection features. DL algorithms

exhibit strong **Engineering Letters**

environments. Still, deep learning has become a hot topic in real-time demands of useful app

object detection due to its excellent robustness and effective adoption of big models is l

representatio **Engine**

environments. Still, deep learning has become a hot topic

object detection due to its excellent robustness and effecti

representation of image detection features. DL algorithi

exhibit strong capabilities in ha **Engineering Letters**

vironments. Still, deep learning has become a hot topic in real-time demands

ject detection due to its excellent robustness and effective adoption of big

oresentation of image detection features. D **Engineering Letters**

environments. Still, deep learning has become a hot topic in eal-time demands of useful abject detection due to its excellent robustness and effective adoption of big models is representation of imag

Engineering Letters

environments. Still, deep learning has become a hot topic in real-time demands of use

object detection due to its excellent robustness and effective adoption of big model

representation of image de **Engineering Letters**
 Engineering Letters
 Engineering Letters
 Engineering Letters
 Engineering divergent also become a hot topic in
 Engineering divergent also become the set of the method of the method set of environments. Still, deep learning has become a hot topic in real-time demands of useft
object detection due to its excellent robustness and effective adoption of big models
representation of image detection features. DL a environments. Still, deep learning has become a hot topic in real-time demands of use
object detection due to its excellent robustness and effective adoption of big mode
representation of image detection features. DL algor environments. Still, deep learning has become a hot topic in real-time demands of u
object detection due to its excellent robustness and effective adoption of big mod
erpresentation of image detection features. DL algorith object detection due to its excellent robustness and effective adoption of big models is lepresentation of image detection features. DL algorithms processing and storage pove exhibit strong capabilities in handling complex representation of image detection features. DL algorithms processing and storage pove exhibit strong capabilities in handling complex underwater Lightweight networks were es scenes and have the potential to overcome the li exhibit strong capabilities in handling complex underwater

scenes and have the potential to overcome the limitations of

issues. In traditional methods [6].

In order to identify underwater debris, Valdenegro-Toro

ighter enes and have the potential to overcome the limitations of issues. In this study, the ditional methods [6]. YOLOv5 backbone network
In order to identify underwater debris, Valdenegro-Toro lighter network. Taking adve
Jused Traditional methods [6]. YOLOv5 backbone ne

In order to identify underwater debris, Valdenegro-Toro lighter network. Takir

[7] used a convolutional neural network that had been and computational redeveloped on proactive In order to identify underwater debris, Valdenegro-Toro lighter network. Taking a

[7] used a convolutional neural network that had been and computational requir

developed on proactive sonar imagery, yielding an accuracy [7] used a convolutional neural network that had been and computational requirem
developed on proactive sonar imagery, yielding an accuracy lightweightization. Second, in
of approximately 80%. However, this approach relied

developed on proactive sonar imagery, yielding an accuracy

of approximately 80%. However, this approach relied on a

use the Ghost module from

simulated dataset created by introducing typical objects

module. Similar fea of approximately 80%. However, this approach relied on a use the Ghost module from Gh

simulated dataset created by introducing typical objects module. Similar feature maps

encountered in marine debris into a water tank a simulated dataset created by introducing typical objects module. Similar feature mencountered in marine debris into a water tank and capturing Ghost module using less ex forward-looking sonar images. While this study showc encountered in marine debris into a water tank and capturing Chost module using less
forward-looking sonar images. While this study showcased achieving lightweightizat
the effectiveness of CNN and other deep models in SE a forward-looking sonar images. While this study showcased

achieving lightweightization of

the effectiveness of CNN and other deep models in SE attention module with

identifying small-scale marine debris, their suitabilit the effectiveness of CNN and other deep models in SE attention module videntifying small-scale marine debris, their suitability in computational requirements randural marine environments remains uncertain. In 2019, Lin et identifying small-scale marine debris, their suitability in computational required natural marine environments remains uncertain.

In 2019, Lin et al. proposed the ROIMIX image function has replaced are already or occluded natural marine environments remains uncertain.

In 2019, Lin et al. proposed the ROIMIX image

inhance detection accuracy.

In anymentation technique to address the issue of overlapping in faster converger

or occluded un In 2019, Lin et al. proposed the ROIMIX image function has replaced the
augmentation technique to address the issue of overlapping resulting in faster contractives the fusion of candidate bounding boxes and the ROI
module augmentation technique to address the issue of overlapping resulting in faster converge
or occluded underwater biological targets [8]. This method accuracy.
utilizes the fusion of candidate bounding boxes and the ROI
undle or occluded underwater biological targets [8]. This method
utilizes the fusion of candidate bounding boxes and the ROI
module to improve the model's detection capabilities. There
has been a slight improvement in detection lizes the fusion of candidate bounding boxes and the ROI

olde to improve the model's detection capabilities. There

Soen a slight improvement in detection accuracy for

The soen a slight improvement in detection accuracy module to improve the model's detection capabilities. There

has been a slight improvement in detection accuracy for

different data. However, when it comes to underwater debris

targets, they are typically distributed in has been a slight improvement in detection accuracy for
different data. However, when it comes to underwater debris
algorithm in 2020, preser
targets, they are typically distributed in a more scattered
both speed and accur different data. However, when it comes to underwater debris

algorithm in 2020, presenting

targets, they are typically distributed in a more scattered

both speed and accuracy wher

sugnificantly affect the detection of u

targets, they are typically distributed in a more scattered

in the spanificantly affect the detection of underwater debris

significantly affect the detection of underwater debris

significantly percomented the detection manner. Even if some debris targets overlap, it does not

significantly affect the detection of underwater debris.

Moreover, there are already existing data augmentation

incluses that can simulate target overlap. Theref significantly affect the detection of underwater debris.

algorithm is to immediate

Moreover, there are already existing data augmentation

methods that can simulate target overlap. Therefore, in the

context of detection Moreover, there are already existing data augmentation

methods that can simulate target overlap. Therefore, in the

context of detection algorithms, enhancing the detection

for pre-generated candidate

capabilities of ga methods that can simulate target overlap. Therefore, in the network using deep learning
context of detection algorithms, enhancing the detection
capabilities of garbage targets is more crucial than
methods. Specifically, t context of detection algorithms, enhancing the detection for pre-generated candidate leapabilities of garbage targets is more crucial than methods. Specifically, the in addressing the issue of overlap. In 2021, Shi et al. capabilities of garbage targets is more crucial than methods. Specifically, the didressing the issue of overlap.

In 2021, Shi et al. [9] introduced a method that employed with their class probale R-CNN. By implementing a addressing the issue of overlap.

In 2021, Shi et al. [9] introduced a method that emplo

ResNet as the backbone for feature extraction in Fa

R-CNN. By implementing a bidirectional feature pyra

network, they achieved sub In 2021, Shi et al. [9] introduced a method that employed

SNet as the backbone for feature extraction in Faster

CNN. By implementing a bidirectional feature pyramid

using non-maximum sup

twork, they achieved substanti ResNet as the backbone for feature extraction in Faster

R-CNN. By implementing a bidirectional feature pyramid

metwork, they achieved substantial advancements in both

feature extraction and multi-scale feature fusion a R-CNN. By implementing a bidirectional feature pyramid

metwork, they achieved substantial advancements in both

feature extraction and multi-scale feature fusin, leading to a

motable improvement in underwater object det network, they achieved substantial advancements in both
feature extraction and multi-scale feature fusin, leading to a
motable improvement in underwater object detection and class
achieved was only 4.3, which falls short o

feature extraction and multi-scale feature fusin, leading to a

motable improvement in underwater object detection

accuracy to 88.94%. However, the frame per second

up the YOLOV55 network:

achieved was only 4.3, which notable improvement in underwater object detection garbage detection and class
accuracy to 88.94%. However, the frame per second
achieved was only 4.3, which falls short of meeting the YOLOv5s networ
cal-time detection re accuracy to 88.94%. However, the frame per second

accuracy to as only 4.3, which falls short of meeting

real-time detection requirements. Therefore, there is a need

for further exploration of lightweight networks and m achieved was only 4.3, which falls short of meeting
real-time detection requirements. Therefore, there is a need
for further exploration of lightweight networks and model
compression techniques to achieve faster and more real-time detection requirements. Therefore, there is a need

for further exploration of lightweight networks and model

compression techniques to achieve faster and more efficient

underwater object detection.

In 2022, for further exploration of lightweight networks and model

compression techniques to achieve faster and more efficient

underwater object detection.

In 2022, Wei et al. [10] introduced an enhanced

architecture based on compression techniques to achieve faster and more efficient

underwater object detection.

In 2022, Wei et al. [10] introduced an enhanced

segmentation. They employed deeper contraction and

expansion pathways to achieve underwater object detection.

In 2022, Wei et al. [10] introduced an enhanced

architecture based on U-Net for underwater image semantic

expendition, resulting in improved detection accuracy and

speed. However, it shoul In 2022, Wei et al. [10] introduced an enhanced

architecture based on U-Net for underwater image semantic

expansion pathways to achieve end-to-end image semantic

expansion pathways to achieve end-to-end image semantic
 architecture based on U-Net for underwater image semantic
segmentation. They employed deeper contraction and
expansion pathways to achieve end-to-end image semantic
segmentation, resulting in improved detection accuracy an EXERCT THE SURFALL THE SURFALL THE SURFALL THE SURFALL THE SURFACT ON THE SURFACT SURFACT IS SURFACT THE SURFACT THE SURFACT THE SURFACT ON THE SURFACT ON THE SURFACT ON THE DETERMIND THE SURFACT ON THE SURFACT ON THE SUR expansion pathways to achieve end-to-end image semantic

segmentation, resulting in improved detection accuracy and

for underwater debris semantic segmentation in their parameter debris semantic segmentation in their exp Example the model action active algorithms the distantice algorithms typically produce a

the median of the state of the state of only 410

training image enhancement, along with over 50 images after undergoing

ting the speed. However, it should be noted that the dataset created
for underwater debris semantic segmentation in their
experiments was relatively small. It consisted of only 410
image enhancement, along with over 50 images afte

Example 18 Exercise 2018
The demands of useful applications. Additionally, the
adoption of big models is hampered by the limited
processing and storage power of mobile devices.
Lightweight networks were established to re **Example 18 Exercise 15 Separation**
 Example 18 Separation
 Example 1 g Letters

real-time demands of useful applications. Additionally, the

adoption of big models is hampered by the limited

processing and storage power of mobile devices.

Lightweight networks were established to resolve **Exercise 15 Exercise 15 Exercise 15 Exercise 15 Exercise 16 Exercise 16 Exercise 16 Exercise 2016 Consider the state of mobile devices.**
Lightweight networks were established to resolve these issues. In this study, the fi **Example 18 Exercise 15 and Solution** and sof useful applications. Additionally, the adoption of big models is hampered by the limited processing and storage power of mobile devices. Lightweight networks were established t **g Letters**
real-time demands of useful applications. Additionally, the
adoption of big models is hampered by the limited
processing and storage power of mobile devices.
Lightweight networks were established to resolve the **g Letters**

real-time demands of useful applications. Additionally, the

adoption of big models is hampered by the limited

processing and storage power of mobile devices.

Lightweight networks were established to resolve **g Letters**

real-time demands of useful applications. Additionally, the

adoption of big models is hampered by the limited

processing and storage power of mobile devices.

Lightweight networks were established to resolve **real-time demands of useful applications.** Additionally, the adoption of big models is hampered by the limited processing and storage power of mobile devices. Lightweight networks were established to resolve these issues. real-time demands of useful applications. Additionally, the
adoption of big models is hampered by the limited
processing and storage power of mobile devices.
Lightweight networks were established to resolve these
issues. I real-time demands of useful applications. Additionally, the adoption of big models is hampered by the limited processing and storage power of mobile devices. Lightweight networks were established to resolve these issues. I real-time demands of useful applications. Additionally, the adoption of big models is hampered by the limited processing and storage power of mobile devices. Lightweight networks were established to resolve these issues. I real-time demands of useful applications. Additionally, the adoption of big models is hampered by the limited processing and storage power of mobile devices. Lightweight networks were established to resolve these issues. I adoption of big models is hampered by the limited
processing and storage power of mobile devices.
Lightweight networks were established to resolve these
issues. In this study, the first step is to switch out the
YOLOv5 bac processing and storage power of mobile devices.
Lightweight networks were established to resolve these
issues. In this study, the first step is to switch out the
YOLOv5 backbone network's C3 module with FasterNet, a
lighte Lightweight networks were established to resolve these issues. In this study, the first step is to switch out the YOLOv5 backbone network's C3 module with FasterNet, a lighter network. Taking advantage of its lower paramet issues. In this study, the first step is to switch out the YOLOv5 backbone network's C3 module with FasterNet, a lighter network. Taking advantage of its lower parameter and computational requirements to achieve preliminar YOLOv5 backbone network's C3 module with FasterNet, a
lighter network. Taking advantage of its lower parameter
and computational requirements to achieve preliminary
lightweightization. Second, in the feature fusion section accuracy. tion. Second, in the feature fusion section, we
module from GhostNet in place of the Conv
lar feature maps may be produced with the
tweightization of YOLOv5s. We embed the
module with fewer parameters and
requirements in t e the Ghost module from GhostNet in place of the Conv
dule. Similar feature maps may be produced with the
nost module using less expensive linear methods, further
hieving lightweightization of YOLOv5s. We embed the
latenti module. Similar feature maps may be produced with the
Ghost module using less expensive linear methods, further
achieving lightweightization of YOLOv5s. We embed the
SE attention module with fewer parameters and
computatio Ghost module using less expensive linear methods, further achieving lightweightization of YOLOv5s. We embed the SE attention module with fewer parameters and computational requirements in the improved network to enhance de

achieving lightweightization of YOLOv5s. We embed the
SE attention module with fewer parameters and
computational requirements in the improved network to
enhance detection accuracy. Ultimately, the *EloU* loss
function has SE attention module with tewer parameters and
computational requirements in the improved network to
enhance detection accuracy. Ultimately, the *EloU* loss
function has replaced the bounding box regression loss,
resulting computational requirements in the improved network to
enhance detection accuracy. Ultimately, the *EloU* loss
function has replaced the bounding box regression loss,
resulting in faster convergence and higher regression
ac enhance detection accuracy. Ultimately, the *EloU* loss
function has replaced the bounding box regression loss,
resulting in faster convergence and higher regression loss,
resulting in faster convergence and higher regress function has replaced the bounding box regression loss,
resulting in faster convergence and higher regression
accuracy.
III. NETWORK ARCHITECTURE
Glenn Jocher introduced the YOLOv5 object detection
algorithm in 2020, prese resulting in faster convergence and higher regression
accuracy.

III. NETWORK ARCHITECTURE

Glenn Jocher introduced the YOLOv5 object detection

algorithm in 2020, presenting significant improvements in

both speed and acc accuracy.

III. NETWORK ARCHITECTURE

Glenn Jocher introduced the YOLOv5 object detection

algorithm in 2020, presenting significant improvements in

both speed and accuracy when compared to its predecessors

within the YO III. NETWORK ARCHITECTURE

Glenn Jocher introduced the YOLOv5 object detection

algorithm in 2020, presenting significant improvements in

both speed and accuracy when compared to its predecessors

within the YOLO series. III. NETWORK ARCHITECTURE

Glenn Jocher introduced the YOLOv5 object detection

algorithm in 2020, presenting significant improvements in

both speed and accuracy when compared to its predecessors

within the YOLO series. Glenn Jocher introduced the YOLOv5 object detection
algorithm in 2020, presenting significant improvements in
both speed and accuracy when compared to its predecessors
within the YOLO series. The main idea behind the
algor algorithm in 2020, presenting significant improvement
both speed and accuracy when compared to its predece
within the YOLO series. The main idea behind
algorithm is to immediately perform item detection
classification on a th speed and accuracy when compared to its predecessors
thin the YOLO series. The main idea behind the
gorithm is to immediately perform item detection and
ssification on an image by feeding it into a neural
twork using de within the YOLO series. The main idea behind the algorithm is to immediately perform item detection and classification on an image by feeding it into a neural network using deep learning techniques, without the need for pr algorithm is to immediately perform item detection and
classification on an image by feeding it into a neural
network using deep learning techniques, without the need
for pre-generated candidate bounding boxes as in tradit classification on an image by feeding it into a neural
network using deep learning techniques, without the need
for pre-generated candidate bounding boxes as in traditional
methods. Specifically, the input image is divided

1.

Volume 32, Issue 8, August 2024, Pages 1585-1593

Engineering Letters
In the first part, input techniques such as mosaic data This modification seeks to in
gmentation, adaptive image scaling, and automatic by maintaining the network
leulation of optimal anchor box value **Engineering Letters**

In the first part, input techniques such as mosaic data This modification seeks

augmentation, adaptive image scaling, and automatic by maintaining the net

calculation of optimal anchor box values a **Engineering Letters**

In the first part, input techniques such as mosaic data This modification seeks to imp

augmentation, adaptive image scaling, and automatic by maintaining the network's

calculation of optimal anchor **Engineering Letters**

In the first part, input techniques such as mosaic data This modification seeks to

augmentation, adaptive image scaling, and automatic by maintaining the netwo

calculation of optimal anchor box val **Engineering Letters**

In the first part, input techniques such as mosaic data This modification seeks to im

augmentation, adaptive image scaling, and automatic by maintaining the network's

calculation of optimal anchor **Engineering Letters**

In the first part, input techniques such as mosaic data This modification seeks to

augmentation, adaptive image scaling, and automatic by maintaining the netw

calculation of optimal anchor box valu **Engineering Letters**

In the first part, input techniques such as mosaic data This modification seeks to

augmentation, adaptive image scaling, and automatic by maintaining the networ

calculation of optimal anchor box va **Engineering Letters**

In the first part, input techniques such as mosaic data This modification seeks to imp

augmentation, adaptive image scaling, and automatic by maintaining the network's

calculation of optimal ancho **Engineering Letters**

In the first part, input techniques such as mosaic data This modification seeks to im

augmentation, adaptive image scaling, and automatic by maintaining the network's

calculation of optimal anchor **Engineering Letters**

In the first part, input techniques such as mosaic data This modification seeks to in

augmentation, adaptive image scaling, and automatic by maintaining the network's

calculation of optimal anchor In the first part, input techniques such as mosaic data This modification seeks to in
augmentation, adaptive image scaling, and automatic by maintaining the network
calculation of optimal anchor box values are employed. I In the first part, input techniques such as mosaic data This modification seeks to importantion, adaptive image scaling, and automatic by maintaining the network's calculation of optimal anchor box values are employed. In In the first part, input techniques such as mosaic data This modification seeks to im
augmentation, adaptive image scaling, and automatic by maintaining the network's
calculation of optimal anchor box values are employed. augmentation, adaptive image scaling, and automatic by maintaining the networcal
culuation of optimal anchor box values are employed. In module's computational com
the second part, Backbone, the main layers consist of Focu calculation of optimal anchor box values are employed. In module's computational con
the second part, Backbone, the main layers consist of Focus, FasterNet is a brand new
CBS (Conv+Batch Normalization+SiLU), C3, SPP, and the second part, Backbone, the main layers consist of Focus, FasterNet is a brand new neu

CBS (Conv+Batch Normalization+SiLU), C3, SPP, and by Chen et al. in 2023. It surpas

other modules, which are in charge of extract CBS (Conv+Batch Normalization+SiLU), C3, SPP, and by Chen et al. in 2023. It
other modules, which are in charge of extracting features speeds on devices by a 1
from the input images. A Feature Pyramid Network (FPN) accura other modules, which are in charge of extracting features speeds on devices by a
from the input images. A Feature Pyramid Network (FPN) accuracy of different vi
and a Path Aggregation Network (PAN) form the neck of the exi from the input images. A Feature Pyramid Network (FPN) accuracy of different visual task
and a Path Aggregation Network (PAN) form the neck of the existing operators, especially
YOLOv5s, generating a feature pyramid that and a Path Aggregation Network (PAN) form the neck of the existing operators, especial CMCOLOV5s, generating a feature pyramid that enhances the DWConv-FLOPS. The resultions of neck network features. The bounding box that YOLOv5s, generating a feature pyramid that enhances the DWConv-FLOPS. The resulting of neck network features. The bounding box that the operators' frequent regression loss function in the prediction sceicion is the $CloU$ fusing of neck network features. The bounding box
that the operators' frequent
regression loss function in the prediction section is the $CloU$
during depthwise convolution
loss. This section will introduce our optimizatio regression loss function in the prediction section is the *CloU* during depthwise convolution,
loss. This section will introduce our optimization work on poor FLOPS. In order to redu
YOLOv5s' original backbone network is c loss. This section will introduce our optimization work on poor FLOPS. In order to reduction to the great similarity of several end memory accesses while YOLOv5s' original backbone network is capable of strong characterist YOLOv5s in detail, focusing on four parts. (a) Although the and memory accesses v

YOLOv5s' original backbone network is capable of strong characteristics more efficien

feature extraction, the great similarity of several YOLOv5s' original backbone network is capable of strong characteristics more efficiently,
feature extraction, the great similarity of several (PConv) is presented. Based on
convolutions leads to a lot of duplication in fea feature extraction, the great similarity of several (PConv) is presented. B
convolutions leads to a lot of duplication in feature maps. To proposed. This innove
reduce the model parameters, the YOLOv5s backbone running sp convolutions leads to a lot of duplication in feature maps. To proposed. This innovation-
reduce the model parameters, the YOLOv5s backbone running speed of the replaces the original C3 module with a lightweight accuracy. reduce the model parameters, the YOLOv5s backbone running speed of the network replaces the original C3 module with a lightweight accuracy.
C3-Faster module, achieving an initial lightweight model. (b) Fig. 2 shows the gen **CIOU CONTEX ENTER CONTER CONTER CONTER CONTEX CONTEX CONDIDENT CONDIDENT SCALL THE CONDIDE in the feature fluid in the feature of the CHOM CONTER CONTE** C3-Faster module, achieving an initial lightweight model. (b) Fig. 2 shows the get Introduce the Ghost module in GhostNet to replace the Conventional convolution module is that it can generate similar feature only the mod Introduce the Ghost module in GhostNet to repl
module in the feature fusion part. The feature
module is that it can generate similar featur
low-cost linear operations. With this arch
model's computational load is further d Faster Network
 A. FasterNet Network and the arguments. With this architecture
 A. FasterNetwork is further made lighter. (c) describes a
 A. further made lighter. (c) describes a
 A. Fewterntion mechanisms are use Solutional load is further decreased, and the contiguous channels are regard

Work is further made lighter. (c) describes adding feature map for calculation whe

rameters and calculations to the network. Fewer SE memory ac

First of lightweight backbones. (d) For faster training sacrificing generality. Memory

convergence and better positioning accuracy, change the redundancies are decreased wi

CloU loss to the EloU loss. After the above adj CAL UNIVER THE CONTINUTE CONTINUTE IS the EVALUATE CONTROLL CONTINUTE CONTINUITY CONTINUITY CONTROLL AT A SURVEY CONTROLL AND MOVED THE COMPONENT CONTROLL AND MANUTE COMPONENT CONTROLLY THE COMPONENT CONTROLLY THE COMPONEN CIoU loss to the EIoU loss. After the above adjustments, the module. The FasterNet Block complex scenes.

and accuracy when handling each block consists of two Con

complex scenes. and accuracy when handling each block co model shows higher robustness and accuracy when handling

each block consists of two

complex scenes.

A. FasterNet Network

The C3 module is an important component in the TeaterNet Block, which a shortcut to reuse

The C

Example 18 Exercise 19 Exercise 20 Exercise 19 Exerci Example 18 Exercise 19 Exerci

g Letters
This modification seeks to improve the model's efficiency
by maintaining the network's depth while reducing the
module's computational complexity and parameter count.
FasterNet is a brand new neural network famil Letters

is modification seeks to improve the model's efficiency

maintaining the network's depth while reducing the

pdule's computational complexity and parameter count.

FasterNet is a brand new neural network family pr **Example 15**
This modification seeks to improve the model's efficiency
by maintaining the network's depth while reducing the
module's computational complexity and parameter count.
FasterNet is a brand new neural network fa **Species 12**
 Specification
 Specification
 Specification
 Specifications Examplement is a brand new neural network family proposed
 by Chen et al. in 2023. It surpasses rival networks' operating
 speeds on de Example 18

This modification seeks to improve the model's efficiency

by maintaining the network's depth while reducing the

module's computational complexity and parameter count.

FasterNet is a brand new neural networ **This modification seeks to improve the model's efficiency**
by maintaining the network's depth while reducing the
module's computational complexity and parameter count.
FasterNet is a brand new neural network family propos **This modification seeks to improve the model's efficiency**
by maintaining the network's depth while reducing the
module's computational complexity and parameter count.
FasterNet is a brand new neural network family propos This modification seeks to improve the model's efficiency
by maintaining the network's depth while reducing the
module's computational complexity and parameter count.
FasterNet is a brand new neural network family proposed This modification seeks to improve the model's efficiency
by maintaining the network's depth while reducing the
module's computational complexity and parameter count.
FasterNet is a brand new neural network family proposed This modification seeks to improve the model's efficiency
by maintaining the network's depth while reducing the
module's computational complexity and parameter count.
FasterNet is a brand new neural network family proposed This modification seeks to improve the model's efficiency
by maintaining the network's depth while reducing the
module's computational complexity and parameter count.
FasterNet is a brand new neural network family proposed by maintaining the network's depth while reducing the module's computational complexity and parameter count.

FasterNet is a brand new neural network family proposed

by Chen et al. in 2023. It surpasses rival networks' op module's computational complexity and parameter count.

FasterNet is a brand new neural network family proposed

by Chen et al. in 2023. It surpasses rival networks' operating

speeds on devices by a large margin while mai FasterNet is a brand new neural network family proposed
by Chen et al. in 2023. It surpasses rival networks' operating
speeds on devices by a large margin while maintaining the
accuracy of different visual tasks. The netwo by Chen et al. in 2023. It surpasses rival networks' operating
speeds on devices by a large margin while maintaining the
accuracy of different visual tasks. The network re-examines
the existing operators, especially the co accuracy. curacy of different visual tasks. The network re-examines
e existing operators, especially the computational speed of
MConv-FLOPS. The results of the investigation showed
the operators' frequent memory access, especially
r the existing operators, especially the computational speed of DWConv-FLOPS. The results of the investigation showed that the operators' frequent memory access, especially during depthwise convolution, is the main reason fo DWConv-FLOPS. The results of the investigation showed
that the operators' frequent memory access, especially
during depthwise convolution, is the main reason for the
poor FLOPS. In order to reduce unnecessary calculations
 that the operators' frequent memory access, especially
during depthwise convolution, is the main reason for the
poor FLOPS. In order to reduce unnecessary calculations
and memory accesses while also extracting spatial
char

metwork is further made lighter. (c) describes adding feature map for calculation where
arameters and calculations to the network. Fewer SE memory access. It is considered
attention mechanisms are used to enhance the extra parameters and calculations to the network. Fewer SE memory access. It is considered attention mechanisms are used to enhance the extraction feature maps' channel course
frect of lightweight backbones. (d) For faster trai attention mechanisms are used to enhance the extraction

effect of lightweight backbones. (d) For faster training

exactioning secrificing generality. Memory

convergence and better positioning accuracy, change the

comple during depthwise convolution, is the main reason for the
poor FLOPS. In order to reduce unnecessary calculations
and memory accesses while also extracting spatial
characteristics more efficiently, a unique partial convolut poor FLOPS. In order to reduce unnecessary calculations
and memory accesses while also extracting spatial
characteristics more efficiently, a unique partial convolution
(PConv) is presented. Based on PConv, FasterNet is fu and memory accesses while also extracting spatial
characteristics more efficiently, a unique partial convolution
(PConv) is presented. Based on PConv, FasterNet is further
proposed. This innovation significantly improves t characteristics more efficiently, a unique partial convolution (PConv) is presented. Based on PConv, FasterNet is further proposed. This innovation significantly improves the running speed of the network while maintaining (PConv) is presented. Based on PConv, FasterNet is further
proposed. This innovation significantly improves the
running speed of the network while maintaining its
accuracy.
Fig. 2 shows the general design of FasterNet. The proposed. This innovation significantly improves the running speed of the network while maintaining its accuracy.

Fig. 2 shows the general design of FasterNet. The network shows a simple PConv module that simply applies a running speed of the network while maintaining its accuracy.
Fig. 2 shows the general design of FasterNet. The
network shows a simple PConv module that simply applies a
conventional convolution operation to a selected numb accuracy.

Fig. 2 shows the general design of FasterNet. The

network shows a simple PConv module that simply applies a

conventional convolution operation to a selected number of

input channels, keeping the remaining cha Fig. 2 shows the general design of FasterNet. The
network shows a simple PConv module that simply applies a
conventional convolution operation to a selected number of
input channels, keeping the remaining channels unchange network shows a simple PConv module that simply applies a
conventional convolution operation to a selected number of
input channels, keeping the remaining channels unchanged,
in order to extract spatial information. The fi conventional convolution operation to a selected number of
input channels, keeping the remaining channels unchanged,
in order to extract spatial information. The first or final
contiguous channels are regarded as indicativ input channels, keeping the remaining channels unchanged,
in order to extract spatial information. The first or final
contiguous channels are regarded as indicative of the full
feature map for calculation when using sequen in order to extract spatial information. The first or final
contiguous channels are regarded as indicative of the full
feature map for calculation when using sequential or regular
memory access. It is considered that the i contiguous channels are regarded as indicative of the full
feature map for calculation when using sequential or regular
memory access. It is considered that the input and output
feature maps' channel counts are the same wi feature map for calculation when using sequential or regular
memory access. It is considered that the input and output
feature maps' channel counts are the same without
sacrificing generality. Memory accesses and computati memory access. It is considered that the input and output
feature maps' channel counts are the same without
sacrificing generality. Memory accesses and computational
redundancies are decreased with the addition of the PCon feature maps' channel counts are the same without
sacrificing generality. Memory accesses and computational
redundancies are decreased with the addition of the PConv
module. The FasterNet Block is suggested using PConv;
ea sacrificing generality. Memory accesses and computational
redundancies are decreased with the addition of the PConv
module. The FasterNet Block is suggested using PConv;
each block consists of two Conv 1x1 layers after a P redundancies are decreased with the addition of the PConv
module. The FasterNet Block is suggested using PConv;
each block consists of two Conv 1x1 layers after a PConv
layer. Together, they are shown as inverted residual module. The FasterNet Block is suggested using PConv;
each block consists of two Conv 1x1 layers after a PConv
layer. Together, they are shown as inverted residual blocks,
with a shortcut to reuse input features and an in

Volume 32, Issue 8, August 2024, Pages 1585-1593

Engineering Letters

FasterNet blocks are positioned in the final two stages.

Accordingly, more computations are allocated to the last

two stages.

With the help of the Fasternet block structure, a

C3 foster module is p

FasterNet blocks are positioned in the 1
Accordingly, more computations are allo
two stages.
With the help of the Fasternet blo
C3-faster module is proposed. In con-
previous C3 module, the new C3-fast Engineering Letters

FasterNet blocks are positioned in the final two stages.

Accordingly, more computations are allocated to the last

two stages.

With the help of the Fasternet block structure, a

C3-faster module is p Engineering Letters

FasterNet blocks are positioned in the final two stages.

Accordingly, more computations are allocated to the last

two stages.

With the help of the Fasternet block structure, a

C3-faster module is p **Engineering Letters**

FasterNet blocks are positioned in the final two stages.

Accordingly, more computations are allocated to the last

two stages.

With the help of the Fasternet block structure, a

C3-faster module is **Engineering Letters**

FasterNet blocks are positioned in the final two stages.

Accordingly, more computations are allocated to the last

two stages.

With the help of the Fasternet block structure, a

C3-faster module is **Engineering Letters**

FasterNet blocks are positioned in the final two stages.

Accordingly, more computations are allocated to the last

two stages.

With the help of the Fasternet block structure, a

C3-faster module is Engineering Letters

FasterNet blocks are positioned in the final two stages.

Accordingly, more computations are allocated to the last

two stages.

With the help of the Fasternet block structure, a

C3-faster module is p FasterNet blocks are positioned in the final two stages.
Accordingly, more computations are allocated to the last
two stages.
With the help of the Fasternet block structure, a
C3-faster module is proposed. In comparison to FasterNet blocks are positioned in the final two stages.
Accordingly, more computations are allocated to the last
two stages.
With the help of the Fasternet block structure, a
C3-faster module is proposed. In comparison to *B.* GhostNet To further lightweight the algorithm, hostconv from GhostNet is also a lightweight and has fewer parameters in the algorithm provided while maintaining a lightweight model and improves the goal of creating ph With the help of the Fasternet block structure, a

S-faster module is proposed. In comparison to the

evious C3 module, the new C3-faster requires less

mputing power and has fewer parameters. It can reduce

e number of p C3-faster module is proposed. In comparison to the
previous C3 module, the new C3-faster requires less
computing power and has fewer parameters. It can reduce
the number of parameters in the algorithm and the
conventional previous C3 module, the new C3-faster requires less

computing power and has fewer parameters. It can reduce

the number of parameters in the algorithm and the

computational load while maintaining good detection

accuracy

computing power and has fewer parameters. It can reduce
the number of parameters in the algorithm and the
computational load while maintaining good detection
accuracy. This achieves the goal of creating a preliminary
dight For the number of parameters in the algorithm and the
computational load while maintaining good detection
accuracy. This achieves the goal of creating a preliminary
lightweight model and improves the performance of marine
 expensive operations computational and while maintaining good detection
accuracy. This achieves the goal of creating a preliminary
lightweight model and improves the performance of marine
debris detection to some extent.

 Examplementation: This achieves the goal of creating a preliminary

lightweight model and improves the performance of marine

debris detection to some extent.

To further lightweight the algorithm, we introduced

Ghostony Example the solution of the Ghost model and improves the performance of marine
debris detection to some extent.

To further lightweight the algorithm, we introduced

To further lightweight the algorithm, we introduced

Gh **Examplementation:** a regular convolution and a linear

finite apportion of the feature fusion part.

To further lightweight the algorithm, we introduced

GhostNet is also a lightweight network that transforms the

From eq B. *GhostNet*

To further lightweight the algorithm, we introduced

Ghostconv from GhostNet in the feature fusion part.

GhostNet is also a lightweight network that transforms the

From equations (1) is

heavy convolutiona B. *GhostNet*

To further lightweight the algorithm, we introduced

Ghostconv from GhostNet in the feature fusion part.

GhostNet is also a lightweight network that transforms the

heavy convolutional operations into gene *B. GhostNet*

To further lightweight the algorithm, we introduced

GhostNet in GhostNet in the feature fusion part.

ChostNet is also a lightweight network that transforms the

chostNet is also a lightweight network that To further lightweight the algorithm, we introduced

Ghostconv from GhostNet in the feature fusion part.

GhostNet is also a lightweight network that transforms the

leavy convolutional operations into generating a few

l Ghostonv from GhostNet in the feature fusion part.

GhostNet is also a lightweight network that transforms the

heavy convolutional operations into generating a few

linghly diversified feature maps [14]. Then, it applies GhostNet is also a lightweight network that transforms the
heavy convolutional operations into generating a few
inclusion in the computational expense of
highly diversified feature maps [14]. Then, it applies less times g heavy convolutional operations into generating a few
highly diversified feature maps [14]. Then, it applies less
expensive operations compared to regular convolutions to
transform these feature maps and obtain similar fea Assumming the given input data $X \in \mathbb{R}^{e \times w \times w}$ represents from the ensire and obtain similar feature also roughly s times
nsform these feature maps and obtain similar feature also roughly s times
nps. There are two c expensive operations compared to regular convolutions to

transform these feature maps and obtain similar feature also roughly s tim

maps. There are two components to the Ghost model's acceleration and para

implementati transform these feature maps and obtain similar feature

implementation: a regular convolution and a linear convolution and a linear convolution and a linear convolution and a linear the transformation count,

a portion o maps. There are two components to the Ghost module's
implementation: a regular convolution and a linear
operation with fewer parameters and computations. Firstly,
fe
operation of the feature maps is obtained through a lim components to the Ghost module's acceleration and parameter egular convolution and a linear the transformation count. Sarameters and computations. Firstly, feature maps generated, the maps is obtained through a limited bu

mplementation: a regular convolution and a linear
operation with fewer parameters and computations. Firstly, feature maps is obtained through a limited
regular convolution. Then, the obtained feature maps are
transformati operation with fewer parameters and computations. Firstly,

a portion of the feature maps is obtained through a limited

reqular convolution count is ofted feature maps are

further expanded by the linear operation to get a portion of the feature maps is obtained through a limited
regular convolution. Then, the obtained feature maps are
transformation cot
further expanded by the linear operation to get more feature
along the designated axi regular convolution. Then, the obtained feature maps are

further expanded by the linear operation to get more feature

along the designated axis. Fig. 3 compares regular

along the designated axis. Fig. 3 compares regula further expanded by the linear operation to get more teature

along the designated axis. Fig. 3 compares regular

components between s

along the designated axis. Fig. 3 compares regular

convolution with ghost convolutio maps. Ultimately, the two teature map sets are combined
along the designated axis. Fig. 3 compares regular
convolution with ghost convolution.
Convolution with ghost convolutional
and w stand for the height and breadth of along the designated axis. Fig. 3 compares regu
convolution with ghost convolution.
Assuming the given input data $X \n\t\in R^{c \times h \times w}$, where
and w stand for the height and breadth of the informati
being input, respectively ights h' and widths w', the quantity of convolutional

ters is n, with k as the kernel size, and the linear

msformation has a kernel size of d and a transformation

mechanisms can amplify or

mechanisms can amplify or

m filters is n, with k as the kernel size, and
transformation has a kernel size of d and a tra
count of s. In the absence of bias terms b, the
compression ratio achieved by replacing
convolutions with Ghost convolutions can

$$
r_c = \frac{c \cdot n \cdot k \cdot k}{c \cdot k \cdot k \cdot \frac{n}{s} \cdot +(s-1) \cdot d \cdot d \cdot \frac{n}{s}} \approx \frac{c \cdot s}{c+s-1} \approx s \quad (1)
$$
 attention mechanisms such as CBAM,
Fig. 4 depicts the SE attention mechanism
It primarily involves two steps: squ

$$
r_s = \frac{c \cdot n \cdot k \cdot k \cdot h' \cdot w'}{c \cdot k \cdot k \cdot \frac{n}{s} \cdot h' \cdot w' + (s-1) \cdot d \cdot d \cdot \frac{n}{s} \cdot h' \cdot w'}
$$

=
$$
\frac{c \cdot k \cdot k}{c \cdot k \cdot k \cdot \frac{1}{s} + d \cdot d \cdot \frac{(s-1)}{s}} \approx \frac{c \cdot s}{c + s - 1} \approx s
$$

is retained. In the excitation
(2) is retained. In the excitation
introducing non-linear tra
linked layers pick up on e
inthroduce non-linearity,

it applies less

intervalses imes greater than that of ord

intervalses implies the computational cost for an equi

similar feature also roughly s times. The

Shost module's acceleration and parameter con

and a linear the Convertible Constrained Controllers and the Controllers of Constructional cost for an equivalent set of parameters is also roughly s times. The benefits of computational acceleration and parameter compression are influence also roughly s times. The benefits of computational acceleration and parameter compression are influenced by the transformation count. Specifically, the more "ghost" feature maps generated, the better the acceleration effe Fig. 3. GhostNet network structure.

Fig. 3. GhostNet network structure.

From equations (1) and (2), it is evident that the

computational expense of Ghost convolution is around s

times greater than that of ordinary conv The Ghost module

The Ghost module

Fig. 3. GhostNet network structure.

From equations (1) and (2), it is evident that the

computational expense of Ghost convolution is around s

times greater than that of ordinary convo Fig. 3. GhostNet network structure.

Fig. 3. GhostNet network structure.

From equations (1) and (2), it is evident that the

computational expense of Ghost convolution is around s

times greater than that of ordinary con (b)The Ghost module

Fig. 3. GhostNet network structure.

From equations (1) and (2), it is evident that the

computational expense of Ghost convolution is around s

times greater than that of ordinary convolution, and th (b)The Ghost module
Fig. 3. GhostNet network structure.

From equations (1) and (2), it is evident that the

computational expense of Ghost convolution is around s

times greater than that of ordinary convolution, and the Fig. 3. GhostNet network structure.

From equations (1) and (2), it is evident that the

computational expense of Ghost convolution is around s

times greater than that of ordinary convolution, and the

computational cost From equations (1) and (2), it is evident if
omputational expense of Ghost convolution is are
mes greater than that of ordinary convolution, a
monotational cost for an equivalent set of parames
so roughly s times. The ben The attention mechanism is a visual focus mechanism is to quively extract the consideration and parameters is
to roughly s times. The benefits of computational
celeration and parameter compression are influenced by
transfo computational cost for an equivalent set of parameters is
also roughly s times. The benefits of computational
acceleration and parameter compression are influenced by
the transformation count. Specifically, the more "ghost **Example 18 The Schoff Computational acceleration and parameter compression are influenced by** the transformation count. Specifically, the more "ghost" feature maps generated, the better the acceleration effect, but it may

 $\approx \frac{c \cdot s}{s} \approx s$ (1) attention mechanisms such $\approx \frac{c \cdot s}{s}$ acceleration and parameter compression are influenced by
the transformation count. Specifically, the more "ghost"
feature maps generated, the better the acceleration effect,
but it may lead to a decrease in detection accur The transformation count. Specifically, the more "ghost"
feature maps generated, the better the acceleration effect,
but it may lead to a decrease in detection accuracy. The
transformation count is often set at 1/2 in orde Fracture maps generated, the better the acceleration effect,
but it may lead to a decrease in detection accuracy. The
transformation count is often set at 1/2 in order to achieve a
compromise between speed and precision.

 but it may lead to a decrease in detection accuracy. The
transformation count is often set at 1/2 in order to achieve a
compromise between speed and precision.
C. Squeeze-and-Excitation
The attention mechanism is a visual transformation count is often set at $1/2$ in order to achieve a
transformation count is often set at $1/2$ in order to achieve a
compromise between speed and precision.
 $C. Squareze-and-Excitation$
that simulates the rapid acquisition of *C. Squeeze-and-Excitation*
 C. Squeeze-and-Excitation

The attention mechanism is a visual focus mechanism

that simulates the rapid acquisition of key information and

filtering of irrelevant information in the human b C. *Squeeze-and-Excitation*
The attention mechanism is a visual focus mechanism
that simulates the rapid acquisition of key information and
filtering of irrelevant information in the human brain. It
aims to quickly extrac C. *Squeeze-and-Excitation*
The attention mechanism is a visual focus mechanism
that simulates the rapid acquisition of key information and
filtering of irrelevant information in the human brain. It
aims to quickly extract C. Squeeze-and-Excitation
The attention mechanism is a visual focus mechanism
that simulates the rapid acquisition of key information and
filtering of irrelevant information in the human brain. It
aims to quickly extract t The attention mechanism is a visual focus mechanism
that simulates the rapid acquisition of key information and
filtering of irrelevant information in the human brain. It
aims to quickly extract the crucial features from a that simulates the rapid acquisition of key information and
filtering of irrelevant information in the human brain. It
aims to quickly extract the crucial features from an image.
Attention mechanisms are often employed in filtering of irrelevant information in the human brain. It
aims to quickly extract the crucial features from an image.
Attention mechanisms are often employed in computer
vision to improve neural networks' feature extracti ms to quickly extract the crucial features from an image.

tention mechanisms are often employed in computer

sion to improve neural networks' feature extraction

rformance. By assigning weights to the input, attention

re Attention mechanisms are often employed in computer
vision to improve neural networks' feature extraction
performance. By assigning weights to the input, attention
mechanisms can amplify or emphasize the important
feature vision to improve neural networks' feature extraction
performance. By assigning weights to the input, attention
mechanisms can amplify or emphasize the important
feature information in the image, making it a parameterized
 performance. By assigning weights to the input, attention
mechanisms can amplify or emphasize the important
feature information in the image, making it a parameterized
pooling method. Multiple experiments have shown that t

 \approx $\frac{c \cdot s}{s} \approx s$ linked layers pick up on each cha $h' \cdot w'$ is issuance. In the exchange is retained. In the excitation step, the global average values introducing non-linear transformations. These completely mechanisms can amplify or emphasize the important
feature information in the image, making it a parameterized
pooling method. Multiple experiments have shown that the
SE attention mechanism, with fewer parameters and
compu feature information in the image, making it a parameterized
pooling method. Multiple experiments have shown that the
SE attention mechanism, with fewer parameters and
computational requirements, significantly enhances our
 pooling method. Multiple experiments have shown that the SE attention mechanism, with fewer parameters and computational requirements, significantly enhances our optimization approach compared to frequently used attention SE attention mechanism, with fewer parameters and
computational requirements, significantly enhances our
optimization approach compared to frequently used
attention mechanisms such as CBAM, CA, and ECA [15].
Fig. 4 depicts computational requirements, significantly enhances our
optimization approach compared to frequently used
attention mechanisms such as CBAM, CA, and ECA [15].
Fig. 4 depicts the SE attention mechanism's structure.
It primar optimization approach compared to frequently used
attention mechanisms such as CBAM, CA, and ECA [15].
Fig. 4 depicts the SE attention mechanism's structure.
It primarily involves two steps: squeeze and excitation.
During attention mechanisms such as CBAM, CA, and ECA [15].
Fig. 4 depicts the SE attention mechanism's structure.
It primarily involves two steps: squeeze and excitation.
During the squeeze, the SE attention mechanism lowers the Fig. 4 depicts the SE attention mechanism's structure.
It primarily involves two steps: squeeze and excitation.
During the squeeze, the SE attention mechanism lowers the
feature maps' dimensionality through worldwide avera

C
 D

Fig. 4. Squeeze-and-Exci

ppture complex relationships between channels. To give

degre

ajor feature channels extra weight, the computed channel

eights are finally multiplied by the original feature maps.

mini *Exerce Complex relationships* between channels. To give

Fig. 4. Squeeze-and-Excitation

pigrefeature channels extra weight, the computed channel complicated. It takes interestion

is eights are finally multiplied by the

Fig. 4. Squeeze-and-Excitation
major feature channels extra weight, the computed channel complicated. It takes
weights are finally multiplied by the original feature maps. union and intersection
This enhances the represen Eig. 4. Squeeze-and-Excitation

major feature channels extra weight, the computed channel degree of ambiguity. Also, the

major feature channels extra weight, the computed channel

weights are finally multiplied by the or capture complex relationships between channels. To give degree of ambiguity. Also, the major feature channels extra weight, the computed channel complicated. It takes into accomplicated in the convergence of a modificatio capture complex relationships between channels. To give degree of ambiguity. Also, the major feature channels extra weight, the computed channel complicated. It takes into accouvergents are finally multiplied by the origi major feature channels extra weight, the computed channel
major feature channels extra weight, the computed channel
weights are finally multiplied by the original feature maps.
This enhances the representation capability in equation (3), where values of the Unit of the CloU loss equation (3), where values of the CloU loss equation (3), where values of the CloU loss formulation for the class probability score, the clouding box, and the cen This enhances the representation capability of these bounding box, and the enter portained and suppresses unimportant channels.

Consider the mate of the set of the convergence more precise, there be convergence more prec

$$
CIoU = IoU - (\frac{\rho^2}{C^2} + \alpha v)
$$
 (3) This results in the illogical

$$
v = \frac{4}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^2
$$
 descent approach
(4) descent approach
complexity sense

$$
\alpha = \frac{v}{v + (1 - IoU)} \qquad \qquad \text{the goals of function is} \qquad \qquad \text{function is} \qquad \qquad \text{function} \qquad \text{function}
$$

Colouring the integral of the expected box and the ground distance of the equation (8), we and the expected by the symbol ρ , while the diagonal distance of the expected by the symbol ρ , while the diagonal distance o $\mathcal{L}IoU = IoU - (\frac{\rho^2}{C^2} + \alpha v)$ (3) This results in the illogical complete the parameters are changed in the parameters. This descen $\mathcal{L} = \frac{d}{dt} \left(\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h} \right)^2$ (3) This results in the illogical
 $v = \frac{4}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^2$ (4) the opposite ways. This complexity, especially in large
 $\alpha = \frac{v}{v + (1 - IoU)}$ (5) t $v = \frac{4}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^2$
 $\alpha = \frac{v}{v + (1 - IoU)}$

Equation (3) shows the crossing point of the square in equation is deployed as the incomplexity, especially in large-

resulting in higher computation fi $v = \frac{4}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^gt} - \tan^{-1} \frac{w}{h})^2$

(4) descent approach, the neural

complexity, especially in large

resulting in higher computation

(4) descent approach, the neural

complexity, especially in large

result $v = \frac{v}{\pi^2} (tan^{-1} \frac{w}{h^{gt}} - tan^{-1} \frac{w}{h})^2$ (4) the opposite ways. To emplexity, especially in la

resulting in higher computation (3) shows the crossing point of the goals of our lightweig

Equation (3) shows the crossing π^2 h^{8} h \cosh{m} complexity, especially i
 $\alpha = \frac{v}{v + (1 - IoU)}$ (5) the goals of our lightwise in the ground the goals of our lightwise in the ground the properties of the combination of the expected box and the g $\alpha = \frac{v}{v + (1 - IoU)}$ (5) function (3) shows the crossing point of the combination of the expected box and the ground truth box.
The Euclidean separation between the two boxes' centers is denoted by the symbol p, while the d $\alpha = \frac{v}{v + (1 - IoU)}$ the goals of our lightweighted
Equation (3) shows the crossing point of the minimation of the expected box and the ground truth box.

Euclidean separation between the two boxes' centers is

noted by the $\alpha = \frac{b + (1 - IoU)}{b + (1 - IoU)}$ (5) function is deployed as

Equation (3) shows the crossing point of the

combination of the expected box and the ground truth box.

The Euclidean separation between the two boxes' centers is

d $v + (1 - IoU)$

Equation (3) shows the crossing point of the

combination of the expected box and the ground turb box.

The Euclidean separation between the two boxes' centers is

denoted by the symbol c, while the diagonal d

Both The Characterian and the center point. The center of ambiguity. Also, the calculation of $CIoU$ is more complicated. It takes into account parameters such as the union and intersection ratios, the height and breadth o ¹¹²³⁴ H

¹²²³⁴ H

²³

degree of ambiguity. Also, the calculation of *CIoU* is more

complicated. It takes into account parameters such as the

union and intersection ratios, the height and breadth of the
 Excitation
degree of ambiguity. Also, the calculation of *CloU* is more
complicated. It takes into account parameters such as the
union and intersection ratios, the height and breadth of the
bounding box, and the center p Excitation
degree of ambiguity. Also, the calculation of $CloU$ is more
complicated. It takes into account parameters such as the
union and intersection ratios, the height and breadth of the
bounding box, and the center po degree of ambiguity. Also, the calculation of $CloU$ is more complicated. It takes into account parameters such as the union and intersection ratios, the height and breadth of the bounding box, and the center point. The ad degree of ambiguity. Also, the calculation of *CloU* is more complicated. It takes into account parameters such as the union and intersection ratios, the height and breadth of the bounding box, and the center point. The a d-Excitation
degree of ambiguity. Also, the calculation of *CloU* is more
complicated. It takes into account parameters such as the
union and intersection ratios, the height and breadth of the
bounding box, and the center

$$
\frac{\partial v}{\partial w} = \frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^* \frac{h}{w^2 + h^2}
$$
 (6)

$$
\frac{\partial v}{\partial h} = -\frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^* \frac{w}{w^2 + h^2}
$$
 (7)

 $\frac{4}{\pi}$ (tan⁻¹ $\frac{w^{gt}}{t}$ – tan⁻¹ $\frac{w}{t}$)² descent approach, the neural network changes w and h in complexity, especially in large-scale object detection tasks, function is deployed as the new loss function, and its calculation is shown in equation (8) : Equation (3) shows the crossing point of the ELOU = $IoU - (\frac{\rho^2}{C^2} + av)$
 $U = \frac{4}{\pi^2} (tan^{-1} \frac{w^{gt}}{h^{gt}} - tan^{-1} \frac{w}{h})^2$
 $= \frac{4}{\pi^2} (tan^{-1} \frac{w^{gt}}{h^{gt}} - tan^{-1} \frac{w}{h})^2$
 $= \frac{v}{\rho + (1 - IoU)}$

Equation (3) shows the crossing poin mergence. However, when the aspect ratio factor v in
 $\frac{\partial D}{\partial u} = \frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^* + \frac{h}{w^2 + h^2}$ (6)
 $\frac{\partial v}{\partial h} = -\frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^* + \frac{w}{w^2 + h^2}$ (6)

This results in the *CIoU* calculation equation calculates the gradient for w
and h, it will be found that the two have opposing gradient
directions., as shown in equations (6) and (7):
 $\frac{\partial v}{\partial w} = \frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h$ and h, it will be found that the two have opposing gradient
directions., as shown in equations (6) and (7):
 $\frac{\partial v}{\partial w} = \frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h}) * \frac{h}{w^2 + h^2}$ (6)
 $\frac{\partial v}{\partial h} = -\frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}}$ directions., as shown in equations (6) and (7):
 $\frac{\partial v}{\partial w} = \frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^* \frac{h}{w^2 + h^2}$ (6)
 $\frac{\partial v}{\partial h} = -\frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^* \frac{w}{w^2 + h^2}$ (7)

This results in the ill $\frac{\partial v}{\partial w} = \frac{8}{\pi^2} (\tan^2 \frac{w^{gt}}{h^{gt}} - \tan^2 \frac{w}{h})^* \frac{h}{w^2 + h^2}$ (6)
 $\frac{\partial v}{\partial h} = -\frac{8}{\pi^2} (\tan^2 \frac{w^{gt}}{h^{gt}} - \tan^2 \frac{w}{h})^* \frac{w}{w^2 + h^2}$ (7)

This results in the illogical consequence that every time

the parameters ar $\frac{\partial v}{\partial w} = \frac{8}{\pi^2} (\tan^2 \frac{w^{gt}}{h^{gt}} - \tan^2 \frac{w}{h})^* \frac{h}{w^2 + h^2}$ (6)
 $\frac{\partial v}{\partial h} = -\frac{8}{\pi^2} (\tan^2 \frac{w^{gt}}{h^{gt}} - \tan^2 \frac{w}{h})^* \frac{w}{w^2 + h^2}$ (7)

This results in the illogical consequence that every time

the parameters ar $rac{\partial v}{\partial w} = \frac{8}{\pi^2} (\tan^2 \frac{w}{h^{gt}} - \tan^2 \frac{w}{h})^* \frac{n}{w^2 + h^2}$ (6)
 $\frac{\partial v}{\partial h} = -\frac{8}{\pi^2} (\tan^2 \frac{w^{gt}}{h^{gt}} - \tan^2 \frac{w}{h})^* \frac{w}{w^2 + h^2}$ (7)

This results in the illogical consequence that every time

the parameters are cha For π^2 h^{st} h $w^2 + h^2$ (0)
 $\frac{\partial v}{\partial h} = -\frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^* \frac{w}{w^2 + h^2}$ (7)

This results in the illogical consequence that every time

the parameters are changed using the random gradie $\frac{\partial v}{\partial h} = -\frac{8}{\pi^2} (\tan^{-1} \frac{w^{gt}}{h^{gt}} - \tan^{-1} \frac{w}{h})^* \frac{w}{w^2 + h^2}$ (7)
This results in the illogical consequence that every time
the parameters are changed using the random gradient
descent approach, the neural network Exercise are changed using the random grase

Secent approach, the neural network changes w and

poposite ways. This increases computated

mplexity, especially in large-scale object detection is

sulting in higher computat using the random gradient
network changes w and h in
increases computational
-scale object detection tasks,
nal costs. This does not meet
model. Therefore, the *EloU*
new loss function, and its
n (8):
 $(\frac{\rho_w}{w^c})^2 + (\frac{\rho_h}{$ descent approach, the neural network changes w and h in
the opposite ways. This increases computational
complexity, especially in large-scale object detection tasks,
resulting in higher computational costs. This does not

$$
EIoU = IoU - \left(\left(\frac{\rho}{C} \right)^2 + \left(\frac{\rho_w}{w^c} \right)^2 + \left(\frac{\rho_h}{h^c} \right)^2 \right) \tag{8}
$$

In equation (8), w^c and h^c stand for the height and the opposite ways. This increases computational
complexity, especially in large-scale object detection tasks,
resulting in higher computational costs. This does not meet
the goals of our lightweight model. Therefore, the complexity, especially in large-scale object detection tasks,
resulting in higher computational costs. This does not meet
the goals of our lightweight model. Therefore, the *EloU*
function is deployed as the new loss func resulting in higher computational costs. This does not meet
the goals of our lightweight model. Therefore, the *EIoU*
function is deployed as the new loss function, and its
calculation is shown in equation (8):
 $EIoU = IoU - \left$ the goals of our lightweight model. Therefore, the *EloU*
function is deployed as the new loss function, and its
calculation is shown in equation (8):
 $EIoU = IoU - \left(\left(\frac{\rho}{C} \right)^2 + \left(\frac{\rho_w}{w^c} \right)^2 + \left(\frac{\rho_h}{h^c} \right)^2 \right)$ (8)
 function is deployed as the new loss function, and its
calculation is shown in equation (8):
 $EIoU = IoU - \left(\frac{\rho}{C} \right)^2 + \left(\frac{\rho_w}{w^c} \right)^2 + \left(\frac{\rho_h}{h^c} \right)^2$ (8)
In equation (8), w^c and h^c stand for the height and
breadt

E. *Improved YOLOv5s Network Structure*

E. *Improved YOLOv5s Network Structure*

In this article, the backbone of YOLOv5 is replaced with

the lightting vary across

the individual Individual Individual Individual Individ Fig. 5. Improved YOLOv5s network structure

E. Improved YOLOv5s Network Structure

In this article, the backbone of YOLOv5 is replaced with

the lightweight C3-Faster module, which initially reduces over 760

fewer paramet Fig. 5. Improved YOLOv5s Network Structure

Fig. 5. Improved YOLOv5s network structure

several kinds of marine

E. Improved YOLOv5s Network Structure

In this article, the backbone of YOLOv5 is replaced with

the lightwe Fig. 5. Improved YOLOv5s network structure

E. Improved YOLOv5s Network Structure

In this article, the backbone of YOLOv5 is replaced with

the lightweight C3-Faster module, which initially reduces

the computational load E. *Improved YOLOv5s Network Structure*

E. *Improved YOLOv5s Network Structure*

Furthermore, the clarity of

In this article, the backbone of YOLOv5 is replaced with

the lightweight C3-Faster module, which initially re E. *Improved YOLOv5s Network Structure*

several kinds of mannum and the lightweight C3-Faster module, which initially reduces

the lightweight C3-Faster module, which initially reduces

the computational load and complexi E. *Improved YOLOv5s Network Structure*

E. *Improved YOLOv5s Network Structure*

In this article, the backbone of YOLOv5 is replaced with

the lightweight C3-Faster module, which initially reduces

the computational load *E. Improved YOLOv5s Network Structure*

Furthermore, the clarity of

In this article, the backbone of YOLOv5 is replaced with

the lightweight C3-Faster module, which initially reduces

includes over 7600 ims

the computa *E. Improved YOLOv5s Network Structure*

In this article, the backbone of YOLOv5 is replaced with

the lightweight C3-Faster module, which initially reduces

the lightweight C3-Faster module, which initially reduces

free In this article, the backbone of YOLOv5 is replaced with

the lightweight C3-Faster module, which initially reduces

the computational load and complexity of the model. With

the computational load and complexity of the mo the lightweight C3-Faster module, which initially reduces

the computational load and complexity of the model. With

fewer parameters in the new model, this substitution

improves inference time without sacrificing perform the computational load and complexity of the model. With

fewer parameters in the new model, this substitution

fewer parameters in the new model, this substitution

feature improves inference time without sacrificing perf fewer parameters in the new model, this substitution

improves inference time without sacrificing performance.

Further improvements involve substituting Ghost

convolutions for the regular convolution modulus in the

YOLO improves inference time without sacrificing performance.

Further improvements involve substituting Ghost

convolutions for the regular convolutions maintain model

YOLOv5s network. Ghost convolutions maintain model

perf Further improvements involve substituting Ghost

convolutions for the regular convolution modules in the

YOLOv5s network. Ghost convolutions maintain model

erformance to a certain extert while decreasing

computational c convolutions for the regular convolution modules in the

YOLOv5s network. Ghost convolutions maintain model

performance to a certain extent while decreasing

computational costs, particularly in mobile devices or

resourc YOLOv5s network. Ghost convolutions maintain model

performance to a certain extent while decreasing

computational costs, particularly in mobile devices or

resource-constrained environments, aiming to further

reduce the performance to a certain extent while decreasing

computational costs, particularly in mobile devices or

resource-constrained environments, aiming to further

reduce the model's parameter count. Embedding SE

attention mo computational costs, particularly in mobile devices or

resource-constrained environments, aiming to further

reduce the model's parameter count. Embedding SE

antention modules in the network structure helps enhance

the resource-constrained environments, aiming to further

reduce the model's parameter count. Embedding SE

attention modules in the network structure helps enhance

the model's focus on crucial features, improving its

perfor reduce the model's parameter count. Embedding SE

attention modules in the network structure helps enhance

the model's focus on crucial features, improving its

performance in object detection tasks. By increasing the

em is pectrol detection tasks. By increasing the

ing and leveraging key information, the

enhance detection accuracy. Lastly,

loss helps better reflect differences in

mensions of target boxes, improving the

accuracy for o mental is able to enhance detection accuracy. Lastly,

odel is able to enhance detection accuracy. Lastly,

ilizing the *EloU* loss helps better reflect differences in

e position and dimensions of target boxes, improving Solution and dimensions of target boxes, improving the

lizing the EloU loss helps better reflect differences in

position and dimensions of target boxes, improving the

pole!'s prediction accuracy for overlapping objects where the position and dimensions of target boxes, improving the

model's prediction accuracy for overlapping objects or

those with significant size variations in object detection,

thereby enhancing overall detection per

derived from the union of multipled and the state of a model's prediction accuracy for overlapping objects or
those with significant size variations in object detection,
thereby enhancing overall detection performance. Thi Theorem and the securiton are the set and the control of the control of a model, relations in object detection,
thereby enhancing overall detection performance. This
process results in an optimized algorithmic model. Fig. The three with a significant size variations in original detection of the comparison of the displays the enhanced YOLOv5s network structure.

Table I lists all of the displays the enhanced YOLOv5s network structure.

IV. E significant virtuous and the control of quality, depth, scene displays the enhanced YOLOv5s network structure.

Fig. 5 Table I lists all of the contributions in an optimized algorithmic model. Fig. 5 Table I lists all of t Table 1 lists all of the comdisplays the enhanced YOLOv5s network structure.

size is set to 16, the initial lear

is and Experimental Environment

This research employs the Trash-ICRA19 dataset for

This research employs

Since

Since $\frac{1}{2}$ Since

Since $\frac{1}{2}$ Since

Since $\frac{1}{2}$ Since

Since $\frac{1}{2}$ Sin Since

Since split into training, the quality of the

dighting vary across the videos. In total, the d Solution Solution Solution Solution Solution Solution Several kinds of marine trash taken in actual settings.

Furthermore, the clarity of the water and the quality of the lighting vary across the videos. In total, the dat e trash taken in actual settings.

of the water and the quality of the

ne videos. In total, the dataset

nages, encompassing organisms,

or to conducting experiments, the

t into training, validation, and test

ratio.

TA of marine trash taken in actual settings.

he clarity of the water and the quality of the

across the videos. In total, the dataset

7600 images, encompassing organisms,

ROVs. Prior to conducting experiments, the

were sp

Cuda Cuda10.1

Data Processing Python3.8

DL Framework Pytorch1.7

Table I lists all of the computer configurations for

perimental setup. In order to train the model, the bs

ze is set to 16, the initial learning rate is Data Processing

DL Framework

Pytorch1.7

Table I lists all of the computer configurations for the

perimental setup. In order to train the model, the batch

ce is set to 16, the initial learning rate is adjusted to 0.01,

DL Framework Pytorch1.7

Table I lists all of the computer configurations for the

experimental setup. In order to train the model, the batch

size is set to 16, the initial learning rate is adjusted to 0.01,

the momentum DL Framework Pytorch1.7

Table I lists all of the computer configurations for the

experimental setup. In order to train the model, the batch

size is set to 16, the initial learning rate is adjusted to 0.01,

the momentum Table I lists all of the computer configurations for the experimental setup. In order to train the model, the batch size is set to 16, the initial learning rate is adjusted to 0.01, the momentum is adjusted to 0.937, the t Table I lists all of the computer configurations for the experimental setup. In order to train the model, the batch size is set to 16, the initial learning rate is adjusted to 0.01, the momentum is adjusted to 0.937, the t

EXECUTE: The content of the total sum of parameters in a model, which are determined to calculate the model's size. Parameter count refers to the total sum of parameters in a model, which affects both in memory usage an

Precision =
$$
\frac{TP}{TP + FP}
$$
 (9) displayed in Fig. 6. Comparat the same environment to evaluate the axis.

$$
Recall = \frac{TP}{TP + FN}
$$
 (10) identification models in order
underwater rubbish detecti

$$
AP = \int_{0}^{1} P(R) dR \tag{11}
$$

$$
mAP = \frac{1}{C} \sum_{c \in C} AP(c)
$$
 (12) single-stage object detection
classic two-stage object detet

Precision = $\frac{TP}{TP + FP}$ (9) displayed in rig. 6. Con

the same environment to
 $Recall = \frac{TP}{TP + FN}$ (10) identification models in contenting
 $AP = \int_{C}^{1} P(R) dR$ (11) $\frac{1}{2}$ study. This experiment
 $MP = \frac{1}{2} \sum_{c,d} AP(c)$ (12) The same $T + FP$
 $Recall = \frac{TP}{TP + FN}$ (10) identification models in
 $AP = \frac{1}{C} P(R) dR$ (11) $\frac{2}{C}$ single-stage object de
 $mAP = \frac{1}{C} \sum_{c \in C} AP(c)$ (12) single-stage object de

The number of marine debris samples that are accur $Recall = \frac{TP}{TP + FN}$ (10) identification models in order
 $AP = \int_{0}^{1} P(R) dR$ (11) intervater rubbish detection
 $MP = \int_{0}^{1} P(R) dR$ (11) $\frac{\text{study}}{\text{vOLOv5n}}$, the YOLOv5s

network changed to Sh
 $mAP = \frac{1}{C_{\text{esc}}} \sum_{c} AP(c)$ (12) singl Recall = $\frac{TP+FN}{TP+FN}$ (10) dentification models in ord

underwater rubbin detect
 $AP = \int_{0}^{1} P(R) dR$ (11) study. This experiment fee
 $MP = \frac{1}{C_{\text{ecc}}} AP(c)$ (12) single-stage object detect

classic two-stage object detect

d $AP = \int_{0}^{1} P(R) dR$ (11) study. This experiment
 $mAP = \frac{1}{C_{\text{ecc}}} AP(c)$ (12) single-stage object classic two-stage object

The number of marine debris samples that are accurately and the U displays the reductions above. The q $AP = \int_{0}^{1} P(R) dR$ (11) study. This experiment to

volCoV5n, the YOLOV5n, the YOLOV5n, the YOLOV5n, the YOLOV5n, the YOLOV5n, the YOLOV5n, the VOLOV5n, the VOLOV5n, the causaic two-stage object detectied is represented by $mAP = \frac{1}{C} \sum_{\text{etc}} AP(c)$ (12) single-stage object det

are mumber of marine debris samples that are accurately

identified is represented by True Positives (TP) in the

equations above. The quantity of marine debris sample $mAP = \frac{1}{C_{\text{eec}}} \Delta P(c)$ (12) single-stage object detection
classic two-stage object detection
The number of marine debris samples that are accurately
dentified is represented by True Positives (TP) in the
equations above. $mAP = \frac{1}{C_{\text{sec}}} AP(c)$ (12) singie-stage object c

classic two-stage object

identified is represented by Tue Positives (TP) in the

equations above. The quantity of marine debris samples

that were mistakenly identified is The number of marine debris samples that are accurately

identified is represented by True Positives (TP) in the Callel H displays the rest

equations above. The quantiy of marine debris samples

that were mistakenly iden The number of marine debris samples that are accurately

identified is represented by True Positives (TP) in the

equations above. The quantity of marine debris samples

that were missed hy dentified is called False Posit identified is represented by True Positives (TP) in the
equations above. The quantity of marine debris samples
that were mistakenly identified is called False Positives
(FP). The number of samples that are marine debris bu equations above. The quantity of marine debris samples

that were mistakenly identified is called False Positives

(FP). The number of samples that are marine debris but

Negatives (FN). For marine debris samples, assessme that were mistakenly identified is called False Positives

(FP). The number of samples that are marine debris but

were missed by the model is represented by False

Negatives (FN). For marine debris samples, assessment

cr (FP). The number of samples that are marine debris but
were missed by the model is represented by False SSD
Negatives (FN). For marine debris samples, assessment
criteria like AP (Average Precision) and mAP (Mean
Average P Frace missed by the model is represented by False

starives (FN). For marine debris samples, assessment

teria like AP (Average Precision) and mAP (Mean

reader Necession) are frequently employed. The number

samples that Negatives (FN). For marine debris samples, assessment

criteria like AP (Average Precision) and mAP (Mean

Average Precision) are frequently employed. The number

of samples that are marine debris but were missed by False criteria like AP (Average Precision) and mAP (Mean

Average Precision) are frequently employed. The number

of samples that are marine debris but were missed by the

measures like Average Precision (AP) and Mean Average

m Average Precision) are frequently employed. The number
of samples that are marine debris but were missed by the
model is represented by False Negatives (FN). Evaluation
measures like Average Precision (AP) are frequently e

²

<sup>C. C. Comparison Results and the enhanced method are

E. C. Comparison Results and Analysis

Therefore, is desirable to have a range of 30FPS or higher to

C. Comparison Results and Analysis

Yolov5's detection resul</sup>

Fechnique against the existing mainstream object study. This experiment featured the lightweight network
YOLOv5n, the YOLOv5s network with its backbone single-stage object detection technique SSD, and the AP) as assessment criteria. The following formulas can

used to determine these metrics:
 $Precision = \frac{TP}{TP + FP}$ (9) displayed in Fig. 6. Correlation models in
 $Recall = \frac{TP}{TP + FN}$ (10) identification models in
 $AP = \int_{0}^{1} P(R) dR$ (11) be used to determine these metrics:
 $Precision = \frac{TP}{TP + FP}$ (9)
 $Recall = \frac{TP}{TP + FP}$ (9)
 $Recall = \frac{TP}{TP + FN}$ (10)
 $Recall = \frac{TP}{TP + FN}$ (10)
 $AP = \int_{0}^{1} P(R) dR$ (11)
 $= \int_{C}^{1} P(R) dR$ (11)
 $= \int_{C}^{1} P(R) dR$ (12)
 $= \int_{C}^{1} P(R) dR$ (12)
 $= \int_{C}^{1}$ VOLOv5s

Sand improved algorithm

Sand improved algorithm

Sand improved algorithm

Sand improved algorithm

Sand 30 fps. Therefore,

is desirable to have a range of 30FPS or higher to

cilitate real-time garbage detection displayed in Fig. 6. Comparison
over the frame rate of real-time cameras is between 24 fps and 30 fps. Therefore,
it is desirable to have a range of 30FPS or higher to
facilitate real-time garbage detection.
C. Comparison The same of YOLOv5s

The same of real-time cameras is between 24 fps and 30 fps. Therefore,

treal-time cameras is between 24 fps and 30 fps. Therefore,

it is desirable to have a range of 30FPS or higher to

facilitate re ov5s and improved algorithm
respond to abnormal events. Typically, the frame rate of
real-time cameras is between 24 fps and 30 fps. Therefore,
it is desirable to have a range of 30FPS or higher to
facilitate real-time gar is an improved algorium
respond to abnormal events. Typically, the frame rate of
real-time cameras is between 24 fps and 30 fps. Therefore,
it is desirable to have a range of 30FPS or higher to
facilitate real-time garbage respond to abnormal events. Typically, the frame rate of
real-time cameras is between 24 fps and 30 fps. Therefore,
it is desirable to have a range of 30FPS or higher to
facilitate real-time garbage detection.
C. Compariso real-time cameras is between 24 fps and 30 fps. Therefore,
real-time cameras is between 24 fps and 30 fps. Therefore,
it is desirable to have a range of 30FPS or higher to
facilitate real-time garbage detection.
C. Compari it is desirable to have a range of 30FPS or higher to
facilitate real-time garbage detection.
C. Comparison Results and Analysis
Yolov5's detection results and *Analysis*
Yolov5's detection results and *Analysis*
Yolov network changed to ShuffleNetV2, the standard single-stage object detection method is and the enhanced method are displayed in Fig. 6. Comparative tests were carried out in the same environment to evaluate the performance C. Comparison Results and Analysis

Yolov5's detection results and Analysis

Yolov5's detection results and the enhanced method are

displayed in Fig. 6. Comparative tests were carried out in

the same environment to evalu C. Comparison Results and Analysis
Yolov5's detection results and the enhanced method are
displayed in Fig. 6. Comparative tests were carried out in
the same environment to evaluate the performance of this
technique agains C. Comparison Results and Analysis

Yolov5's detection results and the enhanced method are

displayed in Fig. 6. Comparative tests were carried out in

the same environment to evaluate the performance of this

technique ag against the existing mainstream object
n models in order to confirm the efficacy of the
rubbish detection method suggested in this
experiment featured the lightweight network
the YOLOv5s network with its backbone
changed t

SSD 96.1 26 1.6 3941314

Faster R-CNN 98.9 0.6 300 28295818

Yolov5-shufflenet 92.6 32 7.8 860813

Ours 97.9 40 10.7 4636584

Table II shows that although the SSD network has a low

processing need for devices and a straig Faster R-CNN 98.9 0.6 300 28295818

Yolov5-shufflenet 92.6 32 7.8 860813

Ours 97.9 40 10.7 4636584

Table II shows that although the SSD network has a low

processing need for devices and a straightforward

framework, its Faster R-CNN 98.9 0.6 300 28295818

Yolov5-shufflenet 92.6 32 7.8 860813

Ours 97.9 40 10.7 4636584

Table II shows that although the SSD network has a low

processing need for devices and a straightforward

framework, its Yolov5-shufflenet 92.6 32 7.8 860813

Ours 97.9 40 10.7 4636584

Table II shows that although the SSD network has a low

processing need for devices and a straightforward

framework, its device identification speed is some Yolov5-shufflent 92.6 32 7.8 860813

Ours 97.9 40 10.7 4636584
 Example 18 Solows that although the SSD network has a low

processing need for devices and a straightforward

framework, its device identification speed is

Pastemet+GhostNet+SE 96.4 40 23.9 10.

Ours 98.3 40 23.9 10.

Ours 98.3 40 23.9 10.

The aforementioned algorithms. In contrast, the current

mainstream improved method, ShuffleNetV2, is replacing

the YOLOv5s backbone net techniques. In this study, several enhancements are made to the accuracy requirements are material enhancement in the study of the study of the study of the study of the study, several enhancement in the study of the study of the stud Ours 98.3 40 23.9 10.7

The aforementioned algorithms. In contrast, the current V. CONC

mainstream improved method, ShuffleNetV2, is replacing

the YOLOv5s backbone network method, which, in terms

of detection speed and The aforementioned algorithms. In contrast, the current

mainstream improved method, ShuffleNetV2, is replacing

the YOLOv5s backbone network method, which, in terms

ord detection speed and accuracy, is slower than our Th the aforementioned algorithms. In contrast, the current

mainstream improved method, ShuffleNetV2, is replacing

the YOLOv5s backbone network method, which, in terms

ord detection speed and accuracy, is slower than our

s the aforementioned algorithms. In contrast, the current

mainstream improved method, ShuffleNetV2, is replacing

the YOLOv5s backbone network method, which, in terms

orducted on the YOLOv5s appearing the YOLOv5s appearing

mainstream improved method, ShuffleNetV2, is replacing
the YOLOv5s backbone network method, which, in terms
orducted on the YOLOv
of detection speed and accuracy, is slower than our
sumpreconducted on the YOLOv5s are
this the YOLOv5s backbone network method, which, in terms

ord detection speed and accuracy, is slower than our

suggested approach. In conclusion, the method presented in

this study offers better advantages in terms of overal of detection speed and accuracy, is slowed suggested approach. In conclusion, the method this study offers better advantages in terms performance when compared to other obje techniques. In this study, several enhancements ggested approach. In conclusion, the method presented in

s study offers better advantages in terms of overall

the method according to the study's

computational and memor

thingues.

In this study, several enhancements a this study offers better advantages in terms of overall
performance when compared to other object detection
techniques.
In this study, several enhancements are made to the
mobile devices while
YOLOv5s model: the use of C3performance when compared to other object detection
techniques.

In this study, several enhancements are made to the

YOLOv5s model: the use of C3-Faster; the incorporation of

the SE attention mechanism; the replacement o resources.

In this study, several enhancements are made to the

YOLOv5s model: the use of C3-Faster, the incorporation of

the SE attention mechanism; the replacement of the securacy requirem

conventional convolution wit

In this study, several enhancements are made to the

YOLOv5s model: the use of C3-Faster; the incorporation of

the accuracy requirement

the SE attention mechanism; the replacement of the

conventional convolution with Gh YOLOv5s model: the use of C3-Faster; the incorporation of
the accuracy requirement
the SE attention mechanism; the replacement of the
optimization of the loss function, and the
optimization of the loss function of the cont the SE attention mechanism; the replacement of the
conventional conventional convolution with Ghost convolution; and the
erviconventional speed and
equivariation of the loss function. An ablation test was
computated out an conventional convolution with Ghost convolution; and the

optimization of the loss function. An ablation test was

carried out and compared with the original model in order

increased in the contribution of each component optimization of the loss function. An ablation test was

carried out and compared with the original model in order

to confirm the contribution of each component, as indicated

improves the functional

In Table III.

The I carried out and compared with the original model in order

improves the functionality

to confirm the contribution of each component, as indicated

in Table III. indicates that YOLOv5s achieves very high

Nonetheless, ther to confirm the contribution of each component, as indicated

in Table III. Table III indicates that YOLOv5s achieves very high

detection accuracy, but it also has a lot of network

parameters and requires substantial comp in Table III.

Table III indicates that YOLOv5s achieves very high

Monetheless, there are

detection accuracy, but it also has a lot of network

(1) Implementing detection accuracy, but it also has a lot of network

reso algorithm.

24.2 14.1 5856616

23.9 10.7 4603816

23.9 10.7 4636584

26.9 10.7 4636584

26.9 10.7 463 24.2 14.1 5856616

23.9 10.7 4603816

23.9 10.7 4636584

26.9 4636584

26 4636584

26 463 23.9 10.7 4603816

23.9 10.7 4636584

26.9 4636584

26 2636584

26 2636584

26 2636584

26 2636584

26 26 26 23.9 10.7 4603816

23.9 10.7 4636584

26.9 10.7 463 accuracy. This method demonstrates its capability to fulfill 23.9 10.7 4636584

10.7 4636584

10.7 4636584

10.7 4636584

10.7 4636584

2010 10.9 408 10.9 408 10.9 408 10.9 408 10.9 408 10 V. CONCLUSIONS

A lightweight and high-precision optimization study was

conducted on the YOLOv5s object detection algorithm.

The enhanced YOLOv5s approach considerably lowers the

processing needs and parameter count of V. CONCLUSIONS
A lightweight and high-precision optimization study was
conducted on the YOLOv5s object detection algorithm.
The enhanced YOLOv5s approach considerably lowers the
processing needs and parameter count of the v. CONCLUSIONS
A lightweight and high-precision optimization study was
conducted on the YOLOv5s object detection algorithm.
The enhanced YOLOv5s approach considerably lowers the
processing needs and parameter count of the A lightweight and high-precision optimization study was
conducted on the YOLOv5s object detection algorithm.
The enhanced YOLOv5s approach considerably lowers the
processing needs and parameter count of the network,
accord systems. is eenhanced YOLOv5s approach considerably lowers the
ocessing needs and parameter count of the network,
cording to the study's findings, thus meeting the
mputational and memory constraints of underwater
bile devices while processing needs and parameter count of the network,
according to the study's findings, thus meeting the
computational and memory constraints of underwater
mobile devices while maintaining excellent detection
accuracy. Thi according to the study's findings, thus meeting the
computational and memory constraints of underwater
mobile devices while maintaining excellent detection
accuracy. This method demonstrates its capability to fulfill
the a computational and memory constraints of underwater
mobile devices while maintaining excellent detection
accuracy. This method demonstrates its capability to fulfill
the accuracy requirements of complex underwater
environme

mobile devices while maintaining excellent detection
accuracy. This method demonstrates its capability to fulfill
the accuracy requirements of complex underwater
environments in detection systems, finding a medium
ground b accuracy. This method demonstrates its capability to fulfill
the accuracy requirements of complex underwater
environments in detection systems, finding a medium
ground between speed and precision. As a result, it
successfu for the accuracy requirements of complex underwater
environments in detection systems, finding a medium
ground between speed and precision. As a result, it
successfully accomplishes the goals of this study and
improves the the absolution of the absolution and the absolution and the absolution and precision. As a result, it successfully accomplishes the goals of this study and improves the functionality of underwater trash detection systems.
 ervolutional detween speed and precision. As a result, it
successfully accomplishes the goals of this study and
improves the functionality of underwater trash detection
systems.
Nonetheless, there are several drawbacks to recognition. (1) Implementing detection before image augmentation,
such as using next-generation networks to expand the
dataset, followed by a deep unsupervised quality
assessment method to evaluate and select excellent pictures
for u mphementary deceator economic mage diagnoniation,
as using next-generation networks to expand the
set, followed by a deep unsupervised quality
ssment method to evaluate and select excellent pictures
use as training example as using next-generation networks to expand the
set, followed by a deep unsupervised quality
ssment method to evaluate and select excellent pictures
use as training examples. (2) Accurately positioning
its for underwater r stet, followed by a deep unsupervised quality

sisment method to evaluate and select excellent pictures

use as training examples. (2) Accurately positioning

its for underwater robots involves combining

idimensional loca ssment method to evaluate and select excellent pictures
use as training examples. (2) Accurately positioning
the formular method is involved complining
idimensional localization data with multifaceted object
gnition.
REFER for use as training examples. (2) Accurately positioning
targets for underwater robots involves combining
multidimensional localization data with multifaceted object
recognition.

EEFERENCES
[1] Y. W. Cheng, J. N. Zhu, M.

REFERENCES

- environment: A review of their sources, distribution Real-Time New Remaining P.V. W. Cheng, J. N. Zhu, M. X. Jiang, J. Fu, C. S. Pang, P. D. Wang, K. Sankaran, O. Onabola, Y. M. Liu, D. B. Liu and Y. Bengio, "FloW: A Datas 2013 ION Underwater Tobots Involves Combining

idimensional localization data with multifaceted object

ginition.

REFERENCES

Y. W. Cheng, J. N. Zhu, M. X. Jiang, J. Fu, C. S. Pang, P. D. Wang,

K. Sankaran, O. Onabola, Y idimensional localization data with multifaceted object
gnition.

REFERENCES

Y. W. Cheng, J. N. Zhu, M. X. Jiang, J. Fu, C. S. Pang, P. D. Wang,

K. Sankaran, O. Onabola, Y. M. Liu, D. B. Liu and Y. Bengio,

"FloW: A Data REFERENCES

(1) Y. W. Cheng, J. N. Zhu, M. X. Jiang, J. Fu, C. S. Pang, P. D. Wang,

K. Sankaran, O. Onabola, Y. M. Liu, D. B. Liu and Y. Bengio,

"FloW: A Dataset and Benchmark for Floating Waste Detection in

Inland Wate REFERENCES

Y. W. Cheng, J. N. Zhu, M. X. Jiang, J. Fu, C. S. Pang, P. D. Wang,

K. Sankaran, O. Onabola, Y. M. Liu, D. B. Liu and Y. Bengio,

"FloW: A Dataset and Benchmark for Floating Waste Detection in

Inland Waters," REFERENCES

X. W. Cheng, J. N. Zhu, M. X. Jiang, J. Fu, C. S. Pang, P. D. Wang,

K. Sankaran, O. Onabola, Y. M. Liu, D. B. Liu and Y. Bengio,

"FloW: A Dataset and Benchmark for Floating Waste Detection in

Inland Waters," KEFERENCES

KEFERENCES

K. W. Cheng, J. N. Zhu, M. X. Jiang, J. Fu, C. S. Pang, P. L

K. Sankaran, O. Onabola, Y. M. Liu, D. B. Liu and Y.

Irland Watters," Proceedings of the IEEE/CVF Inter

Irland Watters," Proceedings o [1] Y. W. Cheng, J. N. Zhu, M. X. Jiang, J. Fu, C. S. Pang, P. D. Wang,
K. Sankaran, O. Onabola, Y. M. Liu, D. B. Liu and Y. Bengio,
"FloW: A Dataset and Benchmark for Floating Waste Detection in
Inland Waters," Proceeding
- K. Sankaran, O. Onabola, Y. M. Luu, D. B. Luu and Y. Bengio, "FloW: A Dataset and Benchmark for Floating Waste Detection in Inland Waters," Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp "FloW: A Dataset and Benchmark for Floating Waste Detection in

Inland Waters," Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pp. 10953-10962, 2021.

R. Coyle, G. Hardiman, Driscoll, "Mic Inland Waters," Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pp. 10953-10962, 2021.

[2] R. Coyle, G. Hardiman, Driscoll, "Microplastics in the marine

environment: A review of their sou Conterence on Computer Vision (ICCV), pp. 10953-10962, 2021.

R. Coyle, G. Hardiman, Driscoll, "Microplastics in the marine

environment: A review of their sources, disribution processes,

uptake and exchange in ecosystems
- R. Coyle, G. Hardıman, Driscoll, "Microplastic
environment: A review of their sources, distri-
uptake and exchange in ecosystems," Case Studies
Environmental Engineering, vol. 2, pp. 100010, 202
Cr. P. Zhang and H. W. Peng environment: A review of their sources, distribution processes,
uptake and exchange in cosystems," Case Studies in Chemical and
Environmental Engineering, vol. 2, pp. 100010, 2020.
[3] Z. P. Zhang and H. W. Peng, "Deeper a uptake and exchange in ecosystems," Case Studies in Chemical and
Environmental Engineering, vol. 2, pp. 100010, 2020.

Z. P. Zhang and H. W. Peng, "Deeper and Wider Siamese Networks

for Real-Time Visual Tracking," 2019 IE Environmental Engineering, vol. 2, pp. 100010, 2020.

Z. P. Zhang and H. W. Peng, "Deeper and Wider Siamese Networks

for Real-Time Visual Tracking," 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CV
-
-
-
- [3] Z. P. Zhang and H. W. Peng, "Deeper and Wider Siamese Networks
for Real-Time Visual Tracking," 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, pp. 4591-4600, 2019.
[4] F for Real-Time Visual Tracking," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 4591-4600, 2019.

F. Y. Wang, J. J. Zhang, et al, "Where does AlphaGo go: from church-tur Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 4591-4600, 2019.
F. Y. Wang, J. J. Zhang, et al, "Where does AlphaGo go: from church-turing thesis to AlphaGo thesis and beyond," IEEE/CAA Journal of USA, pp. 4591-4600, 2019.

F. Y. Wang, J. J. Zhang, et al, "Where does AlphaG

church-turing thesis to AlphaGo thesis and beyond,"

Journal of Automatica Sinica, pp. 113-120, 2016.

D. Yuan and Y. Xu, "Lightweight Vehicle
- **Engineering Letters**

[8] W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Proces **Engineering Letters**

W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Processing **Engineering Letters**
W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:
Proposal-Fusion Among Multiple Images for Underwater Object
Detection, International Conference on Acoustics, Speech, and
Signal Processing(ICA **Engineering Letter**

W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Processing(**Engineering Letters**

[8] W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Proces **Engineering Letters**

W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Processing W. H. Lin, J. X. Zhong, S. Liu, T. Li an
Proposal-Fusion Among Multiple Images for
Detection, International Conference on Acot
Signal Processing(ICASS P). pp. 2588-2592, 202
P. F. Shi, X. W. Xu, J. J. Ni, et al, "Underwate **Engineering Letters**

[8] W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Proces **Engineering Letters**

W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Processing **Example 12, 19.13**

W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Processing(I [8] W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Processing(ICASS P). pp. 2588 W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:
Proposal-Fusion Among Multiple Images for Underwater Object
Detection, International Conference on Acoustics, Speech, and
Signal Processing(ICASS P). pp. 2588-2592, W. H. Lin, J. X. Zhong, S. Liu, T. Li and G. Li. Roimix:
Proposal-Fusion Among Multiple Images for Underwater Object
Detection, International Conference on Acoustics, Speech, and
Signal Processing(ICASS P). pp. 2588-2592,
-
-
-
- [12] B. Zheng, S. Lui, 1. Li and G. Li. Kommx:

Proposal-Fusion Among Multiple Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Processing(ICASS P). pp. 2588-2592, 2020.
 Proposal-Puson Among Wultipe Images for Underwater Object

Detection, International Conference on Acoustics, Speech, and

Signal Processing(ICASS P). pp. 2588-2592, 2020.

P. F. Shi, X. W. Xu, J. J. Ni, et al, "Underwater Detection, international Conference on Acoustics, speech, and
Signal Processing(ICASS P). pp. 2588-2592, 2020.
P. F. Shi, X. W. Xu, J. J. Ni, et al, "Underwater Biological Detection
Algorithm Based on Improved Faster-RCNN, Signal Processing(CASS P). pp. 2566-2592, 2020.

P. F. Shi, X. W. Xu, J. J. Ni, et al, "Underwater Biological Detect

Algorithm Based on Improved Faster-RCNN," Water, vol. 13, no.

Algorithm Based on Improved Faster-RCNN,"
- [13] J. R. W. A. J. J. W. et al., Underwater Blougkail Detection

[10] L. Wei, S. Kong, Y. Wu, et al. "Image Semantic Segmentation of

Underwater Garbage with Modified U-Net Architecture Model,"

Sensors, vol. 22, no. 17, Argonium Dasea on improved Paster-KCNN, Water, Vol. 13, 10. 17,

I. Wei, S. Kong, Y. Wu, et al. "Image Semantic Segmentation of

Underwater Garbage with Modified U-Net Architecture Model,"

Sensors, vol. 22, no. 17, pp. 65 pp. 2+20, 2021.

2- Wei, S. Kong, Y. Wu, et al. "Image Semantic Segmentation of

Underwater Garbage with Modified U-Net Architecture Model,"

Sensors, vol. 22, no. 17, pp. 6546 – 6557, 2022.

Detection Algorithm Based on I L. wei, S. Kong, T. W., et al. Image Sentantu esguieration of
Underwater Garbage with Modified U-Net Architecture Model,"
Sensors, vol. 22, no. 17, pp. 6546 - 6557, 2022.
B. Zhang, X. X. Zhang and Z. Li, "An Efficient Face Conterwater Garoage with Modined O-Net Atchite

Sensors, vol. 22, no. 17, pp. 6546 - 6557, 2022.

B. Zhang, X. X. Zhang and Z. Li, "An Efficient Face

Detection Algorithm Based on Improved YOLOv3

Letters, vol. 30, no. 4, Sensors, vol. 22, no. 1/, pp. 03-940 – 035/, 2022.

[11] B. Zhang, X. X. Zhang and Z. Li, "An Efficient Face Mask Wearing

Detection Algorithm Based on Improved YOLOv3," Engineering

Letters, vol. 30, no. 4, pp. 1493-1503, B. Znang, A. X. Znang and Z. Li, "An Entricent race Mass wearing
Detection Algorithm Based on Improved YOLOv3," Engineering
Letters, vol. 30, no. 4, pp. 1493-1503, 2022.
Z. H. Zheng, P. Wang, D. W. Ren, et al. "Enhancing G Detection Algorithm Based on improved YOLOV3," Engineering

Letters, vol. 30, no. 4, pp. 1493-1503, 2022.

Z. H. Zheng, P. Wang, D. W. Ren, et al. "Enhancing Geometric

Factors in Model Learning and Inference for Object De Letters, vol. 30, no. 4, pp. 1493-1503, 2022.

Z. H. Zheng, P. Wang, D. W. Ren, et al. "Enh

Factors in Model Learning and Inference for Obj

Instance Segmentation," In IEEE Transactions on

52, no. 8, pp. 8574 – 8586, 202 [12] Z. H. Zeneng, P. wang, D. W. Ken, et al. "Ennameng Geometric Tection and

Instance Segmentation," In IEEE Transactions on Cybernetics, vol.

52, no. 8, pp. 8574 - 8586, 2022.

[13] J. R. Chen, S. H. Kao, H. He, W. P. ractors in Model Learning and Interence for Object Detection and
Instance Segmentation," In IEEE Transactions on Cybernetics, vol.
52, no. 8, pp. 8574 - 8586, 2022.
J. R. Chen, S. H. Kao, H. He, W. P. Zhuo, S. Wen, C. H. L mstance Segmentation," in IEEE Transactions on Cybernetics, vol.
52, no. 8, pp. 8574 – 8586, 2022.
J. R. Chen, S. H. Kao, H. He, W. P. Zhuo, S. Wen, C. H. Lee and S.
H. Chan. "Don't Walk: Chasing Higher FLOPS for Faster Ne 52, no. 8, pp. 85/4 – 8586, 2022.

[13] J. R. Chen, S. H. Kao, H. He, W. P. Zhuo, S. Wen, C. H. Lee and S.

H. Chan, "Don't Walk: Chasing Higher FLOPS for Faster Neural

Networks," In Proceedings of the IEEE/CVF Conference
-
-
- J. R. Chen, S. H. Kao, H. He, W. P. Zhuo, S. Wen, C. H. Lee and S.
H. Chan. "Don't Walk: Chasing Higher FLOPS for Faster Neural
Networks," In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognitio H. Chan. "Don't Walk: Chasing Higher HLOPS for Faster Neural
Networks," In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
12021–12031, 2023.
K. Han, Y. Wang, Q. Tian, J. Guo a Networks," In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12021–12031, 2023.

I2021–12031, 2023.

K. Han, Y. Wang, Q. Tian, J. Guo and C. Xu, "GhostNet: More Features From Computer Vision and Pattern Recognition (CVPR), pp. 12021–12031, 2023.

12021–12031, 2023.

K. Han, Y. Wang, Q. Tian, J. Guo and C. Xu, "GhostNet: More

Features From Cheap Operations," 2020 IEEE/CVF Conference on

Compute