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Abstract—We propose a class of amensalism population
models in which the refuge is related to the density of the
second population. For the autonomous case, we obtain precise
thresholds that guarantee the extinction or stable survival of
the first population. For the non-autonomous case, sufficient
conditions are obtained to ensure the system’s persistence,
global asymptotical stability, and extinction, respectively. We
demonstrate the feasibility of the main results with the help of
numerical simulations.

Index Terms—Refuge; Ammensalism; Local stability; Global
stability.

I. INTRODUCTION

AMENSALISM is a phenomenon that describes the
relationship between two species, wherein one species

has limitations and constraints while the other species re-
mains unaffected. For example, grasshoppers and grassland
caterpillars[1], the Spanish ibex and the weevil[2] form the
amensalism relationship. Over the last twenty years, there
has been a significant focus on investigating the dynamic
behaviors of the amensalism system; see [1]-[30] and the
references cited therein. Such topics as the discrete amen-
samlism model ([6], [9], [13], [21], [23], [30]), the influence
of the Allee effect ([5], [8], [12], [14], [15], [16], [17], [22]),
the influence of harvesting ([7], [11], [24]), the influence
of delay ([10], [25]), the influence of stage structure ([18]),
the influence of refuge ([19], [20], [23], [26]), the influence
of functional response ([27], [28], [29]), the existence of
positive periodic solution [31] etc. were extensively studied.

In 2003, Sun[3] proposed a two-species amensalism
model. Zhu and Chen[4] investigated the following amen-
salism model:

dx

dt
= x

(
a1 − b1x− c1y

)
,

dy

dt
= y

(
a2 − c2y

)
.

(1)

Using vector field analysis, Zhu and Chen examined the
system’s trajectory and the stability of each equilibrium point
(1).

In numerous instances, the use of refuge has safeguarded
a consistent proportion of prey against predation. Over the
last twenty years, numerous experts have conducted research
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on the impact of sanctuary[32]-[48]. However, all of those
studies were focused on the predator-prey system. Only
recently did scholars [19], [20], [23], [26] pay attention to
the influence of refuge on the ammenaslism model. The
Lotka-Volterra amensalism model with refuges was initially
studied by Xie et al.[20] for its equilibrium point’s existence
and global stability. Wu et al.[26] then looked into the
amensalism model’s dynamic behaviour with refuges and
functional responses. Finally, Liu et al.[19] looked into the
effects of nonlinear capture and refuges on the amensalism
population model, and their research revealed that, under the
right circumstances, there are two saddle-node bifurcations
and two transcritical bifurcations. Discrete population models
are more realistic when there are comparatively few popula-
tions, as recently noted by Zhou et al.[23]. They suggested
a discrete amensalism model that included a cover for the
initial species, and they demonstrated the possibility of flip
bifurcation in the system.

In their study, Xie, Chen, and He [20] examined a two-
species amensalism model that incorporates a partial cover
mechanism for the first species, enabling it to defend itself
against the second species. The mathematical representation
of the model is as follows:

dx

dt
= a1x(t)− b1x

2(t)− c1(1− k)x(t)y(t),

dy

dt
= a2y(t)− b2y

2(t).

(2)

The variables ai, bi, and c1 are positive constants, where
i takes the values 1 and 2. Additionally, k (0 < k < 1)
represents a cover for the species x. The study’s authors
focused on examining the stability of the system. They

demonstrated that when the condition 0 ≤ k < 1 − a1b2
a2c1

is satisfied, the equilibrium point E2(0,
a2

b2
) exhibits global

stability. Conversely, when the condition 1 > k > 1− a1b2
a2c1

holds, the equilibrium point E3(x
∗, y∗) is the only positive

equilibrium that demonstrates global stability. To be more
specific, it can be said that the local stability criteria of
E2(0,

a2

b2
) are sufficient to guarantee its global stability.

Additionally, it can be seen that once a positive equilibrium
exists, it is globally stable.

In system (2), it is assumed that a constant proportion
of the first species is stated in the cover, and the second
species has no influence on this part of the first species.
However, generally speaking, the refuge’s purpose is to avoid
the competition or predation of other species. When the other
population does not exist, hiding in the refuge is unnecessary.
On the other hand, despite the increase in the number of
other species, the number of individuals that the refuge can
accommodate is certain. This inspires us to propose refuges
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related to the second species:

dx

dt
= a1x(t)− b1x

2(t)

−c1

(
1− ky(t)

1 + y(t)

)
x(t)y(t),

dy

dt
= a2y(t)− b2y

2(t).

(3)

In this model, we assume that the cover could accumulate
ky(t)x(t)

1 + y(t)
of the first species. If y = 0, then the first species

need not be stated in the cover; however, as y approaches
infinity, the cover could accumulate at most kx of the first
species. Additionally, the cover shows an increasing function
of the second species, suggesting that as the quantity of the
second species increases, it encompasses a greater number
of first species.

The primary aim of this research is to investigate the
stability properties of the various equilibria of the system
(2) at both local and global scales while also assessing the
influence of refuge. The paper is organized in the following
manner: In the subsequent section, we shall examine the
presence and local stability characteristics of the equilibria
of the system (2). In Section III, we will examine the
global stability feature of the system by utilizing differential
inequality theory and the Dulac Theorem. In Section IV, we
investigate the dynamic behaviors of the non-autonomous
system. In Section V, we offer an example and its quanti-
tative simulations to demonstrate the practicality of our key
findings.

II. THE EQUILIBRIA’S EXISTENCE AND STABILITY

The equilibria of the system described in equation (3) are
defined by the system

a1x− b1x
2 − c1

(
1− k y

1+y

)
xy = 0,

a2y − b2y
2 = 0.

(4)

Hence, the system (3) allows for four potential equilibria
E1

(
a1

b1
, 0
)
, E2

(
0, a2

b2

)
, as well as E3

(
x∗, y∗

)
, where

x∗ =
c1ka

2
2 + a1a2b2 + a1b

2
2 − c1a

2
2 − c1a2b2

b1b2(b2 + a2)
,

y∗ = a2

b2
.

(5)

Obviously, E3 is a positive equilibrium if and only if

k >
c1a

2
2 + c1a2b2 − a1a2b2 − a1b

2
2

a22c1

=
(
1− a1b2

a2c1

)(
1 +

b2
a2

)
def
= k0.

(6)

Given the four equilibria above, our focus lies on exam-
ining their local stability qualities.

Theorem 2.1. E0(0, 0) and E1(
a1

b1
, 0) are unstable; if

k < k0, then E2(0,
a2

b2
) is locally asymptotically stable, and

if k > k0, then E2(0,
a2

b2
) is unstable; if k > k0 hold,

E3(x
∗, y∗) is locally asymptotically stable.

Proof. The calculation of the Jacobian matrix for the system
(3) is performed as follows:

J(x, y) =

(
A11 A12

0 −2b2y + a2

)
, (7)

where

A11 = a1 − 2b1x− c1(1− ky
1+y )y,

A12 = c1(− k
1+y + ky

(1+y)2 )xy − c1(1− ky
1+y )x.

(8)

Therefore, the Jacobian matrix of the system (3) evaluated
at the equilibrium point E0(0, 0) could be expressed as(

a1 0
0 a2

)
.

Clearly, E0(0, 0) is unstable.
For E1(

a1

b1
, 0), its Jacobian matrix is given by(

−a1 −c1a1
b1

0 a2

)
.

Clearly, E1(
a1

b1
, 0) is unstable.

For E2(0,
a2

b2
), its Jacobian matrix is given by

( c1ka
2
2 + a1a2b2 + a1b

2
2 − c1a

2
2 − c1a2b2

b1b2(b2 + a2)
0

0 −a2

)
.

Therefore, if the value of k is less than k0, the system
described by equation (3) does not possess a positive equi-
librium. In this scenario, the point E2(0,

a2

b2
) is locally

asymptotically stable. Conversely, if the value of k is greater
than k0, the system does possess a positive equilibrium
denoted as E3. In this case, the point E2(0,

a2

b2
) is unstable.

Given that E3(x
∗, y∗) fulfils the equation

a1 − b1x
∗ − c1

(
1− k y∗

1+y∗

)
y∗ = 0,

a2 − b2y
∗ = 0.

(9)

The Jacobian matrix concerning the equilibrium point E3

is provided as follows(
−b1x

∗ ∆1

0 −b2y
∗

)
,

where

∆1 = c1(− k
1+y∗ + ky∗

(1+y∗)2 )x
∗y∗

−c1(1− ky∗

1+y∗ )x
∗.

If the condition k > k0 is satisfied, it follows that x∗ > 0.
Consequently, both eigenvalues of the matrix mentioned
above are negative, and as a result, E3 exhibits local
asymptotic stability. The proof of Theorem 2.1 is concluded
at this point.
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III. THE GLOBAL STABILITY ANALYSIS OF THE
EQUILIBRIA

Subsequently, we will proceed to conduct a more com-
prehensive analysis of the global stability of the boundary
equilibrium E2, as well as the positive equilibrium E3.

Theorem 3.1. If k < k0 holds, then E2(0,
a2

b2
) is globally

attractive.

Proof. k < k0 is equivalent to

a1 < c1

(
1−

k a2

b2

1 + a2

b2

)a2
b2

(10)

holds. Therefore, one can select a sufficiently small value of
ε > 0 such that the inequality

a1 < c1

(
1−

k(a2

b2
+ ε)

1 + (a2

b2
+ ε)

)
(
a2
b2

− ε) (11)

holds. For above ε > 0, since the second equation of system
(3) is independent of x and it is a famous Logistic equation,
then

lim
t→+∞

y(t) =
a2
b2

. (12)

That is, there exists a positive value T > 0 such that for all
t > T , the following inequality holds

a2
b2

− ε < y(t) <
a2
b2

+ ε. (13)

Now for t > T , from the first equation of (3), (11), and (13)
one has

dx

dt
= a1x(t)− b1x

2(t)

−c1

(
1− ky(t)

1 + y(t)

)
x(t)y(t),

≤ x(t)
(
a1 − c1

(
1−

k(a2

b2
+ ε)

1 + (a2

b2
+ ε)

)
(
a2
b2

− ε)
)

def
= x(t)Γ,

(14)
where

Γ = a1 − c1

(
1−

k(a2

b2
+ ε)

1 + (a2

b2
+ ε)

)
(
a2
b2

− ε) < 0.

Therefore, the inequality

x(t) < x(T ) exp{Γ(t− T )} → 0 (15)

holds as t approaches positive infinity. Above analysis shows
that the boundary equilibrium E2(0,

a2

b2
) of system (3)is

global attractivity. The proof of Theorem 3.1 is concluded
at this point.

Remark 3.1. Theorem 3.1 shows that if the boundary
equilibrium E2 is locally asymptotically stable, it is also
globally attractive.

Theorem 3.2. If k > k0 hold, then E3

(
x∗, y∗

)
is globally

stable.

Proof. Firstly, similarly to the analysis of (3.6)-(3.8) in [20],
It can be demonstrated that all solutions of the system (3)

that originate in R2
+ exhibit uniform boundedness. In other

words, there is an ε > 0 such that for any t greater than T

x(t) <
a1
b2

+ ε, y(t) <
a2
b2

+ ε. (16)

Set B = {(x, y)| ∈ R2
+ : x < a1

b1
+ ε, y < a2

b2
+ ε}. All

solutions of the system (3) that start in the positive quadrant
are uniformly bounded on the set B. Note that under the
assumption of Theorem 3.2, boundary equilibria E0, E1,
and E2 are all unstable. According to Theorem 2.1, there
exists a single local stable positive equilibrium denoted as
E3(x

∗, y∗). If we could show that the system has no closed
orbit in the area B, then the omega limit set of the system
is E3, and every solution with positive initial conditions
should approach E3 as t → +∞. Now, let us consider the
Dulac function, denoted as u(x, y) = x−1y−1, then

∂(uP )

∂x
+

∂(uQ)

∂y

=
a1 − 2b1x− c1(1− ky

1+y )y

xy

−
a1x− b1 x

2 − c1(1− ky
1+y )xy

x2y

+
−2b2y + a2

xy
− −b2 y

2 + a2y

x y2

= −b1x+ b2y

xy
< 0,

(17)

where

P (x, y) = a1x− b1x
2 − c1

(
1− ky

1 + y

)
xy,

Q(x, y) = a2y − b2y
2.

(18)

According to the Dulac Theorem, it may be concluded
that a closed orbit within region B does not exist. The
equilibrium E3(x

∗, y∗) exhibits global asymptotic stability.
The proof of Theorem 3.2 is now concluded.

Remark 3.2. Theorem 3.2 demonstrates the global stability
of the positive equilibrium E3, provided that it exists.

Remark 3.3. Noting that

x∗(k) =
c1k a

2
2 + a1a2b2 + a1 b

2
2 − c1 a

2
2 − c1a2b2

b1b2(b2 + a2)
> 0,

then
dx∗(k)

dk
=

c1 a
2
2

b1b2(b2 + a2)
> 0.

This implies that the presence of the cover has the potential to
enhance the population densities of the first species, thereby
reducing the risk of extinction for this species.

Remark 3.4. The stability of the second species is demon-
strated by (12). For the first species, there is a critical value
k0 such that if the habitat cover is above this threshold
(k > k0), the species has the potential to survive. Conversely,
the first species will be driven to extinction if the habitat
cover is below this threshold (k < k0).
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IV. NONAUTONOMOUS CASE

It is well known that the survival environment of a
population changes with time. Therefore, a more realistic
model needs to take into account the coefficients of the
system as a function of time, i.e., it is necessary to consider
non-autonomous systems; however, to the best of the author’s
knowledge, so far, there has not been any scholarly study of
non-autonomous population models, in which the refuge is
related to the second population, which inspires us to study
the non-autonomous scenario of the model (3).

In this section, we will study the non-autonomous case of
the system (3)

dx

dt
= a1(t)x(t)− b1(t)x

2(t)

−c1(t)
(
1− ky(t)

1 + y(t)

)
x(t)y(t),

dy

dt
= a2(t)y(t)− b2(t)y

2(t).

(19)

Throughout this section, for a continuous and bounded
function, we let f l = inft∈R f(t) and fu = supt∈R f(t).

In system (19), we always assume:

(H1) k is a positive constant which satisfies 0 < k <
1, a1(t), b1(t), a2(t), b2(t) and c1(t) are all continuous and
strictly positive functions that satisfy

min{al1, bl1, al2, bl2, cl1} > 0,

max{au1 , bu1 , au2 , bu2 , cu1} < +∞.

Set

yl
def
=

al2
bu2

, yu
def
=

au2
bl2

. (20)

Following, we aim to investigate the persistence and
extinction property of the system (19); indeed, we have the
following result.

Theorem 4.1.
(1) Assuming

au1 < cl1

(
1− kyu

1 + yu

)
yl (21)

holds, then the first species x(t) will be driven to extinction;
(2) Assuming

al1 > cu1

(
1− kyl

1 + yl

)
yu (22)

holds, then the system is permanent.
Proof. It follows from (21) and (22) that for enough small
ε > 0, the following inequalities hold:

au1 < cl1

(
1− k(yu + ε)

1 + (yu + ε)

)
(yl − ε), (23)

al1 > cu1

(
1− k(yl − ε)

1 + (yl − ε)

)
(yu + ε). (24)

From the second equation of system (19) we have

y
(
al2 − bu2y

)
≤ dy

dt
≤ y
(
au2 − bl2y

)
, (25)

thus, one has

yl
def
=

al2
bu2

≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ au2
bl2

def
= yu, (26)

For ε > 0 enough small, which satisfies the inequality (23)
and (24), there exists a T > 0 such that

yl − ε < y(t) < yu + ε, t ≥ T. (27)

Now, for t ≥ T , from the first equation of (19) and (27), one
has

dx

dt
= a1(t)x(t)− b1(t)x

2(t)

−c1(t)
(
1− ky(t)

1 + y(t)

)
x(t)y(t)

≤
(
au1 − cl1

(
1− k(yu + ε)

1 + (yu + ε)

)
(yl − ε)

−bl1x(t)
)
x(t)

(28)

If condition (21) holds, then follows from (28) one has

x(t) ≤ x(T ) exp
{
Γ1(ε)(t− T )

}
→ 0 as t → +∞. (29)

where

Γ1(ε) = au1 − cl1

(
1− k(yu + ε)

1 + (yu + ε)

)
(yl − ε) < 0.

(30)
That is, if (21) holds, the first species x(t) will be driven to
extinction. This ends the proof of Theorem 4.1 (1).

Now assume that inequality (22) holds, then it immediately
follows that

au1 > cl1

(
1− kyu

1 + yu

)
yl (31)

so, for ε > 0 enough small, the following inequality holds

au1 > cl1

(
1− k(yu + ε)

1 + (yu + ε)

)
(yl − ε). (32)

Hence, it follows from (28) that

lim sup
t→+∞

x(t) ≤ Γ1(ε)

bu1
, (33)

where Γ1(ε) is defined by (30). Setting ε → 0 in (30) leads
to

lim sup
t→+∞

x(t) ≤ Γ1

bu1
, (34)

where
Γ1 = au1 − cl1

(
1− kyu

1 + yu

)
yl. (35)

Again, from the first equation of (19) and (27), one has

dx

dt
= a1(t)x(t)− b1(t)x

2(t)

−c1(t)
(
1− ky(t)

1 + y(t)

)
x(t)y(t)

≥
(
al1 − cu1

(
1− k(yl − ε)

1 + (yl − ε)

)
(yu + ε)

−bu1x(t)
)
x(t)

(36)

If condition (22) holds, then follows from (24) one has

lim inf
t→+∞

x(t) ≥ Γ2(ε)

bu1
, (37)
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where

Γ2(ε) = al1 − cu1

(
1− k(yl − ε)

1 + (yl − ε)

)
(yu + ε). (38)

Setting ε → 0 in (37) leads to

lim inf
t→+∞

x(t) ≥ Γ2

bu1
, (39)

where

Γ2 = al1 − cu1

(
1− kyl

1 + yl

)
yu. (40)

(26), (34), and (39) show that under the assumption (22)
holds, the system is permanent. This ends the proof of
Theorem 4.1 (2).

The proof of Theorem 4.1 is ended.
Concerned with the global attractivity of the positive

solutions of the system, we have the following result.
Theorem 4.2 Let (x∗(t), y∗(t)) be a positive solution of
system (19). In addition to (22), assume further that the
following inequality holds:

bl2 >
2cu1ky

u + cu1k(y
u)2

(1 + yl)2
+ cu1 , (41)

where the variables yl, yu are specified by equations (26).
Then (x∗(t), y∗(t)) exhibits global asymptotic stability.

Proof. The condition expressed in inequality (41) indicates
that, for a sufficiently small positive constant ε > 0 (ε <
1
2y

l), the following inequality is valid.

bl2 >
2cu1k(y

u + ε) + cu1k(y
u + ε)2

(1 + (yl − ε))2
+ cu1 . (42)

Consider the positive solution (x(t), u(t)) of equation (19),
it may be deduced from condition (22) and Theorem 4.1 that,
given any positive value of ε, there exists a positive value of
T such that

yl − ε < y(t), y∗(t) < yu + ε for all t ≥ T. (43)

For t ≥ T , let us consider a Lyapunov function that is
defined by

V (t) = | ln{x(t)} − ln{x∗(t)}|

+| ln{y(t)} − ln{y∗(t)}|.
(44)

We are now estimating and computing the upper right
derivative of V (t) along the positive solutions of the system

(19) for t > T . Applying (43) yields the following results:

D+V (t)

= sgn(x(t)− x∗(t))
[
− b1(t)x(t) + b1(t)x

∗(t)

−c1(t)
(
1− ky(t)

1 + y(t)

)
y(t)

+c1(t)
(
1− ky∗(t)

1 + y∗(t)

)
y∗(t)

+sgn(y(t)− y∗(t))
[
− b2(t)y(t) + b2(t)y

∗(t)
]

= sgn(x(t)− x∗(t))
[
− b1(t)(x(t)− x∗(t))

−c1(t)(y(t)− y∗(t))

+
c1(t)k

[
(y(t))2(1 + y∗(t))− (y∗(t))2(1 + y(t)

]
(1 + y(t))(1 + y∗(t))

+sgn(y(t)− y∗(t))
[
− b2(t)(y(t)− y∗(t))

]
= sgn(x(t)− x∗(t))

[
− b1(t)(x(t)− x∗(t))

−c1(t)(y(t)− y∗(t))

+
c1(t)k(y(t)− y∗(t))(y(t) + y∗(t))

(1 + y(t))(1 + y∗(t))

+
c1(t)ky(t)y

∗(t)(y(t)− y∗(t))

(1 + y(t))(1 + y∗(t))

]
+sgn(y(t)− y∗(t))

[
− b2(t)(y(t)− y∗(t))

]
≤ −Γ1|x(t)− x∗(t)| − Γ2|y(t)− y∗(t)|,

(45)
where

Γ1 = bl1 > 0,

Γε
2 = bl2 −

2cu1k(y
u + ε) + cu1k(y

u + ε)2

(1 + (yl − ε))2
− cu1 > 0.

(46)
For t ≥ T , one thus has

D+V (t) ≤ −µ
(
|x(t)− x∗(t)|+ |y(t)− y∗(t)|

)
, (47)

where µ = min{Γ1,Γ
ε
2}. Performing integration on both

sides of equation (47) with respect to the variable t across
the interval from T to t yields

V (t) +µ

∫ t

T

(
|x(s)− x∗(s)|+ |y(s)− y∗(s)|

)
ds

≤ V (T ) < +∞, t ≥ T.

Then, for all t ≥ T ,∫ t

T

(
|x(s)−x∗(s)|+ |y(s)−y∗(s)|

)
ds ≤ µ−1V (T ) < +∞,

and hence,

|x(t)− x∗(t)|+ |y(t)− y∗(t)| ∈ L1([T,+∞)).

The fact that x∗(t) and y∗(t) are bounded, and that x(t) and
y(t) are ultimately bounded, implies that the derivatives of
x(t), x∗(t), y(t), and y∗(t) are all bounded for t ≥ T , as
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indicated by the equations that govern their behavior. Conse-
quently, it may be inferred that |x(t)−x∗(t)|+ |y(t)−y∗(t)|
is uniformly continuous on [T,+∞). Thus,

lim
t→+∞

(
|x(t)− x∗(t)|+ |y(t)− y∗(t)|

)
= 0.

The proof is completed.

V. NUMERIC SIMULATIONS

Now let us consider the following example:

Example 5.1. Consider the subsequent system:
dx

dt
= x(t)− 1

4x
2(t)− (1− k)x(t)y(t),

dy

dt
= 2y(t)− y2(t).

(48)

In this system, which corresponds to system (2), we utilize
a1 = b2 = c1 = 1, a2 = 2, b1 = 1

4 . Then from Theorem
3.1 and 3.2 in [20], for k < 1

2 , the first species goes extinct
while the second species reaches its maximum environmental
carrying capacity. For all values of k larger than 1

2 , the system
(48) possesses a single positive equilibrium that is globally
asymptotically stable.

Now, let us proceed to examine the system
dx

dt
= x(t)− 1

4x
2(t)−

(
1− k

y

1 + y

)
x(t)y(t),

dy

dt
= 2y(t)− y2(t).

(49)

By simple computation,

k0 =
(
1− a1b2

a2c1

)(
1 +

b2
a2

)
=

3

4
,

thus, from Theorem 3.1, if k < 3
4 , the boundary equilibrium

E2(0, 2) is globally attractive. Fig. 1 shows the feasibility of
this assertion (here we choose k = 1

4 ), from Theorem 3.2,
if k > 3

4 , the positive equilibrium E3(x
∗, y∗) is globally

asymptotically stable. Fig. 2 shows the feasibility of this
assertion (here, we choose k = 7

8 ).

Example 5.2. Now, let’s consider the following non-
autonomous case.

dx

dt
= ( 32 − 1

2 cos(t))x(t)−
1
4x

2(t)

−( 3
16 + sin(2t)

16 )
(
1− 4

5

y

1 + y

)
x(t)y(t),

dy

dt
= ( 32 + 1

2 sin(t))y(t)− y2(t).

(50)

Here, corresponding to system (19), we choose a1(t) =
3
2 −

1
2 cos(t), b1(t) = 1

4 , c1(t) = 3
16 + sin(2t)

16 , k = 4
5 . a2(t) =

3
2 + 1

2 sin(t), b2(t) = 1. Then, simple computation shows
that yl = 1, yu = 2, and

al1 = 1 >
3

10
= cu1

(
1− kyl

1 + yl

)
yu, (51)

bl2 = 1 >
1

10
+

1

4
=

2cu1ky
u + cu1k(y

u)2

(1 + yl)2
+ cu1 . (52)

That is, all the conditions of Theorem 4.2 are satisfied,
and so, any positive solution (x∗(t), y∗(t)) of system (19)
is globally asymptotically stable. Fig. 3 and 4 support this
assertion.

VI. DISCUSSION

This paper proposes an amensalism model in which the
refuge is linked to the second species. Our study shows that
its dynamics are similar to those of the amensalism model
with proportional refuge, and there is a threshold k0; if
k > k0, then the two populations can coexist stably, and if
k < k0, then the first population is extinct. However, based
on numerical simulations, our proposed model requires a
larger refuge space to ensure the two populations’ stable
coexistence.

It should be pointed out that, to the best of the author’s
knowledge, this is the first time to investigate the global sta-
bility property of a nonautonomous ecosystem with nonlinear
refuge. The research methodology of Theorem 4.2 can be
used to explore other studies of ecosystems with nonlinear
refuges.

It has been widely accepted that employing a discrete
model when dealing with a limited number of populations
is more rational. At a later stage, we will further investigate
the dynamic characteristics of the discrete model associated
with the model (3).
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