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Abstract—The Global Positioning System (GPS) is the most
widely used positioning system for outdoor localization and
navigation. However, GPS signals are not always available,
especially in indoor or urban canyon environments. As such,
alternative positioning systems capable of operating in GPS-
denied environments are essential. This paper proposes a
novel visual positioning system that combines Red-Green-Blue
Depth (RGBD) map construction, semantic graph-based image
matching, and dynamic localization and tracking. Our system
utilizes a multi-modal sensor consisting of LiDAR and camera
to acquire data and build a map library of RGBD images
with sparse depth information. To initialize localization, we
construct semantic graphs from observed and map images and
construct image descriptors for matching to obtain approximate
positions. To achieve continuous localization, we combine visual
odometry with the ASpanFormer image matching method, and
correct pose estimates based on the map library to reduce
cumulative errors. We also dynamically update the map library
in response to environmental changes. The results show that our
system achieves superior accuracy and robustness in challenging
scenarios, such as lighting variations, dynamic objects, and
similar scene distributions.

Index Terms—visual localization, GPS-denied environments,
multi-modal sensor, map-based correction

I. INTRODUCTION

Localization systems are pivotal for automated machinery,
including robots and autonomous vehicles. They provide the
capability to determine and orient within an environment,
forming the basis for subsequent tasks such as navigation
[1] [2], planning [3] [4], and interaction [5]. The Global Po-
sitioning System (GPS) [6], which relies on satellite signals
to estimate the receiver’s position and direction, is the most
prevalent positioning system. However, in indoor or urban
settings, GPS signals are often unavailable or unreliable, with
signals potentially obstructed, reflected, or interfered with by
buildings [7], trees, or other obstacles [8]. Consequently, an
alternative positioning system capable of operating in a GPS-
free environment is essential.

We examine existing methods for positioning in GPS-
denied environments and categorize them into two primary
groups: SLAM-based methods and Map-based methods [9].
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SLAM, or simultaneous localization and mapping, is a
technique that allows a device to estimate its own position
and orientation while constructing a map of the surrounding
environment using sensor data such as camera images [10],
LiDAR scans [11], or inertial measurements. V-SLAM uses
camera images as the primary sensor data source, applying
computer vision techniques to extract features, match them
across frames, and estimate the camera pose and the 3D
structure of the scene. V-SLAM can provide rich seman-
tic information and low-cost hardware, but it also suffers
from illumination changes, occlusions, dynamic objects, and
feature sparsity. Some representative works on V-SLAM are
ORB-SLAM3 [12] and SOFT2 [13]. LiDAR SLAM uses
laser scanners to obtain 3D point clouds of the environment,
applying geometric methods to align them and estimate the
device pose and the map. LiDAR SLAM can provide high-
resolution and accurate measurements, but it also requires
expensive and bulky hardware. Some representative works
on LiDAR SLAM are LOAM [14] and CT-ICP [15]. Inertial
SLAM uses inertial measurement units (IMUs) to measure
the linear acceleration and angular velocity of the device,
integrating them to obtain the device pose and velocity.
Inertial SLAM can provide fast and smooth updates, but
it also suffers from sensor errors, drift, and bias. Some
representative works on inertial SLAM are OKVIS [16]
and VINS-Mono [17]. In general, SLAM-based methods
can achieve high accuracy and robustness in GPS-denied
environments, but they also face some challenges, such as
computational complexity, scalability, loop closure, and drift
[18].

Map-based methods form another category of positioning
systems in GPS-denied environments. They rely on a pre-
built map of the environment and a localization algorithm
that matches the sensor data with the map [19]. The map
can be constructed offline using SLAM or other methods,
or obtained from external sources, such as satellite imagery,
aerial photography, or floor plans. The map can be rep-
resented in different formats, such as point clouds, grids,
graphs, or semantic labels. The localization algorithm can
use various techniques, such as particle filters, Kalman filters,
or deep learning, to estimate the agent’s pose based on the
map and the sensor data. Some examples of map-based
methods are [20], [21], and [22]. The main advantages of
map-based methods are that they can provide more accurate
and robust localization than SLAM, and they can reduce the
computational cost and complexity of the positioning system.
However, map-based methods also have some limitations
and challenges. Map-based methods require a prior map
of the environment, which may not be available or up-to-
date, especially in dynamic or unstructured environments.
Furthermore, map-based methods may have difficulty in
handling occlusions, illumination changes, or sensor noise,
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which can affect the map-matching performance [23].
To address the issues present in existing methods, we pro-

pose a novel visual positioning system capable of operating
in GPS-denied environments, utilizing a multi-modal sensor
composed of a LiDAR and a camera. Our system comprises
three main modules: RGBD map construction, vision lo-
calization, and map update. The RGBD map construction
module builds a map of the environment by fusing the Li-
DAR point clouds and the camera images, generating a map
library containing RGBD images and their corresponding
poses. The vision localization module consists of two sub-
modules: initialization and dynamic localization and tracking
(DLT). The initialization module uses a semantic graph-based
image matching method to find the most similar image in
the map library and estimate the initial pose of the camera.
The DLT module uses a combination of visual odometry
and map-based correction to track the camera motion and
update the pose estimation. The map-based correction uses
a detectorless image matching method based on adaptive
spanning transformers to calculate the spatial transformation
between the current image and the map image. The map
update module evaluates the differences between the current
image and the map image, replacing the outdated map image
with the new image if necessary.

The main contributions of our paper are as follows:
• We propose a novel visual positioning system capable

of operating in GPS-denied environments, utilizing a
multi-modal sensor composed of a LiDAR and a cam-
era.

• We propose a novel semantic graph-based image match-
ing method for efficient and robust initialization, capable
of handling lighting changes and dynamic objects in the
scene.

• The proposed two-threaded dynamic tracking and po-
sitioning method is capable of map-based correction to
reduce the cumulative error, and the detectorless image
matching method relied upon can well handle viewpoint
changes and environmental changes in the map.

• We conduct extensive experiments on real road data
to demonstrate the effectiveness and superiority of our
proposed system over state-of-the-art methods.

The rest of the paper is organized as follows: Section II
describes the RGBD map construction module. Section III
describes the proposed vision localization method. Section
IV presents the experimental results and analysis. Section V
concludes the paper and discusses future work.

II. RGBD MAP CONSTRUCTION

This section presents a theoretical framework for con-
structing a comprehensive visual map using a multi-modal
sensor, which includes a LiDAR and a camera. The proposed
visual map is an enriched dense 3D map that encapsulates
the database of camera poses, visual features, and the 3D
structures of the scene. This method is particularly suitable
for environments deprived of GPS, as it leverages LiDAR-
based odometry and designates the LiDAR coordinate system
of the initial frame as the global coordinate system.

The acquisition of multi-modal data within the target
environment is achieved by employing a lightweight yet
precise LiDAR SLAM algorithm, hdl graph slam [24], to

estimate the sensor poses. Given the disparate frame rates
of the LiDAR and the camera, we acquire a set of n1

LiDAR point cloud frames Li and the corresponding CT-
ICP poses Pi, along with n2 camera image frames Ij . To
synchronize the data, we perform timestamp alignment on
the collected data and select a subset of LiDAR point clouds
Lk and camera images Ik with timestamp differences below
a predefined threshold.

The fusion of each LiDAR frame Lk with its correspond-
ing camera frame Ik is achieved by utilizing the projection
equation:

Ik = K · T C
L · Lk (1)

where K denotes the camera’s intrinsic parameter matrix,
and T C

L signifies the 6-DOF rigid transformation representing
the pose of the camera relative to the LiDAR. This fusion
results in the generation of RGBD images Dk with sparse
depth information.

The poses of these RGBD images in the global coordinate
system are derived from the poses of their corresponding
LiDAR frames. For a set of images and point clouds in the
map, let PC , PL, and PM represent the coordinates of a
point in the camera, LiDAR, and map coordinate systems,
respectively. We then have the following equations:

PC = RC
L · PL + tCL (2)

PM = RL · PL + tL (3)

where, RC
L and tCL denote the rotation matrix and translation

vector between the LiDAR and the camera, respectively, as
determined by our previously established calibration method
[25]. RL and tL represent the rotation matrix and translation
vector of the current LiDAR coordinate system relative to
the map coordinate system, obtained during the mapping
process.

Substituting (3) into (2), we obtain:

PM = RL ·RC
L

−1 ·
(
PC − tCL

)
+ tL (4)

From (4), the rotation matrix RC and translation vector
tC of the camera coordinate system relative to the map
coordinate system are:

RC = RL ·RC
L

−1
(5)

tC = tL −RC · tCL (6)

In the final step, the system integrates each RGBD image
and its associated pose into a unified map node, thereby
constructing the map library.

III. THEORETICAL FRAMEWORK FOR VISION
LOCALIZATION

The proposed vision localization system, as depicted in
Fig. 1, operates on a sequential workflow. The process
begins with an initialization phase that establishes the initial
position within the map. Following successful initialization,
the system maintains continuous positioning through a syn-
ergistic integration of odometry and map-based corrections.
This robust framework effectively mitigates odometry drift
and dynamically updates the map, ensuring adaptability to
evolving environments.
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Fig. 1. Overview of the proposed positioning system.

A. Localization Initialization Module

The initialization module employs an innovative semantic
graph-based image matching approach to achieve efficient
localization. The Mask2Former model [26], pre-trained on
Cityscapes, is utilized to segment images into 18 seman-
tic classes. We concentrate on 11 static classes for graph
construction, thereby ensuring robustness against dynamic
elements in the scene.

Semantic graphs are constructed at multiple scales to
capture variations in object density across different distance
ranges. At each scale, recognized objects are represented as
graph nodes using their 3D geometric centers, and nodes
of closely located objects with identical semantic labels
are merged. Each node encapsulates its 3D coordinates and
semantic label, while each edge signifies the spatial distance
between two nodes, representing their undirected spatial
relationship. As roads invariably form semantic blocks, we
construct the descriptor G for the graph by designating the
road node as the central node. Other nodes are inserted into
the descriptor in a clockwise order, starting from the node
directly above the road node. The distance between each
node and the central node, and the pixel range of each node,
are also incorporated into the descriptor. Fig. 2 illustrates the
process of descriptor extraction.

Descriptors are extracted for the collected images and
images in the map library, denoted as Gc and Gm, and
concatenated into one-dimensional vectors x and y. The
Pearson correlation coefficient is then used to calculate the

similarity between the vectors, defined as:

r =

∑n
i=1 (xi − x̄) (yi − y)√∑n

i=1 (xi − x̄)
2
√∑n

i=1 (yi − ȳ)
2

(7)

where x̄ and ȳ are the mean values of x and y, respectively.
The Pearson correlation coefficient is a statistical measure
that quantifies the strength of the linear relationship between
two variables, ranging from -1 to 1. A value near 1 implies a
strong positive correlation, indicating that the two vectors are
similar. A value near -1 implies a strong negative correlation,
indicating that the two vectors are dissimilar. A value near
0 implies no linear correlation, indicating that the two
vectors are independent. The advantage of using the Pearson
correlation coefficient for similarity calculation is that it is
invariant to scaling and shifting of the vectors, which can be
caused by illumination changes or noise in the images.

The similarity score between the two images is then given
by:

s =
r + 1

2
(8)

which normalizes the Pearson correlation coefficient to the
range of 0 to 1. The highest similarity score corresponds to
the image in the map image library that is most similar to
the currently collected image.

B. Dynamic Localization and Tracking Module

The Dynamic Localization and Tracking (DLT) mod-
ule employs a dual-threaded architecture, comprising visual
odometry and correction threads. The visual odometry thread
serves as the primary constraint, while the correction thread
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Fig. 2. The process of descriptor matrix creation.

addresses the cumulative error intrinsic to odometry. The
visual odometry thread persistently updates the pose between
successive calibration nodes, providing initial estimates for
the ensuing correction processes. The output of the position-
ing system hinges on the attitude estimation conducted by
the visual odometry thread, which uses the latest correction
node as a reference point.

The visual odometry thread estimates the camera motion
using a sequence of images captured by the onboard stereo
camera. The ORB algorithm is utilized to extract and match
feature points across consecutive frames, while the RANSAC
algorithm is employed to discard outliers and compute the
essential matrix. This matrix can be decomposed to obtain the
relative rotation and translation between camera poses. The
scale is recovered using the depth information from the stereo
camera. The visual odometry thread outputs the camera pose
as a 4x4 transformation matrix, composed of rotation and
translation components.

The correction thread computes the spatial transformation
between the observed and map images via image feature
matching, and finalizes the current positioning correction
based on the map image’s position information. To ensure
robustness against challenges such as outdated map data or
significant lighting and viewpoint variations, we leverage
ASpanFormer [27], a cutting-edge detectorless image match-
ing method. Its adaptive spanning transformer architecture
facilitates robust feature alignment amidst such complexities.
A semantic segmentation network is integrated within the
matching process to identify and mask dynamic elements
within the visual scene, mitigating potential estimation bi-
ases.

Consider a robot located at point A, with its initial attitude
determined by the localization system’s odometry thread
before correction. Firstly, j images in closest proximity to
the robot’s current location are extracted from the map
library and subjected to image matching with the observed
images. The map images with depth information are used
to transform 2D feature point correspondences into 2D-3D
correspondences, thereby formulating a PnP (Perspective-n-
Point) problem. By solving the PnP problem, the rotation
matrix Robs

map and translation vector tobsmap between the camera
coordinate systems of the observation and map images can be
determined. Combined with the position information associ-
ated with the map image, i.e., the rotation matrix Rmap and
translation vector tmap relative to the map coordinate system,
the positioning information can be corrected to obtain the
rotation matrix Rcorr and translation vector tcorr relative to
the map coordinate system after the observation image is

corrected :
Rcorr = Rmap ·Robs

map

−1
(9)

tcorr = tmap −Rcorr · tobsmap (10)

where RC denotes the corrected pose at point A. Until
the next correction node is reached, the odometry thread
performs relative attitude estimations between frames based
on RC as the output of the positioning system.

C. Map Update Module

The Map Update Module is designed to ensure the con-
sistency and precision of the map library by identifying and
updating environmental changes. Two types of changes are
considered that could impact the quality of the map: semantic
and illumination changes. Semantic changes encompass the
addition, removal, or alteration of objects or structures in
the scene, such as buildings, trees, or vehicles. Illumination
changes pertain to variations in lighting conditions due to
factors like weather, time of day, or seasons. Both types
of changes can influence the performance of the image
matching and localization modules, necessitating appropriate
handling.

Semantic changes are detected using the semantic simi-
larity score s, computed in the initialization module. If s
falls below a predefined threshold τs, it indicates significant
semantic differences between the current and map images,
necessitating an update of the map image. Illumination
changes are detected using image brightness. RGB images
are converted to grayscale, and the average pixel intensity b is
computed for each image. If the absolute difference between
the current image brightness and the map image brightness
exceeds a predefined threshold τb, it signifies a significant
change in illumination conditions, prompting an update of
the map image.

At each correction node, the current image is compared
with the map image using the semantic similarity score
and image brightness. If either exceeds the corresponding
threshold, the map image is marked as outdated and replaced
with the current image. The position and orientation of
the map image are also updated using the output of the
correction thread. This approach ensures that the map library
consistently reflects the most recent state of the environment.

IV. EXPERIMENTAL RESULTS

Fig. 3 illustrates our mobile robotic experimental platform,
equipped with a suite of sensors including a binocular
camera, LiDAR, and a GPS receiver. The binocular camera
is a ZED2 model, and the LiDAR is a HESAI Pandar XT-32
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Fig. 3. The mobile robotic experimental platform, outfitted with sensors
such as a camera, LiDAR, GPS receiver, among others.

model. The GPS receiver, utilizing RTK technology in con-
junction with a mobile base station, achieves centimeter-level
positioning and provides ground truth for the experimental
data. The onboard computing platform of the robot comprises
an industrial computer with 8GB RAM, powered by an Intel
i5-8257U processor, and operates under Ubuntu 18.04.

For the experiments, real-world road data was collected
from the community of Changchun, China, as indicated in
red in Fig. 4. The selected experimental routes presented
challenges, including random dynamic objects, lighting vari-
ations, and similar scene distributions. Subsequently, the
mobile robot was deployed to construct the map of the
experimental area. Fig. 4 presents the final map structure,
which includes the point cloud map generated by the LiDAR
SLAM system, the RGB image of each key point, and
the corresponding depth image obtained by point cloud
projection.

A. Image Search Experiment during Initialization

To assess the efficacy of our proposed method in com-
parison to other state-of-the-art techniques, we randomly
gather images at the map scale and match them against
images in the map library. We employ three widely-used
image matching methods for comparison: ORB [28], SURF
[29], and AspanFormer [27]. The efficiency is gauged by
computing the time complexity of matching each image
with its corresponding map image. Additionally, robustness
is evaluated by examining the ability to handle variations
in lighting and environmental changes induced by dynamic
objects.

We curate three sets of images to evaluate the adaptability
of the methods under diverse conditions:

• Set 1: Images captured in the afternoon, exhibiting
different lighting conditions compared to the morning
build.

• Set 2: Images gathered at deviations from the build tra-
jectory, offering different perspectives and orientations
compared to the original images.

• Set 3: Images collected with environmental alterations,
such as vehicles parked on the roadside.

Our proposed method demonstrates superior performance
across all three experimental sets, achieving 100% accuracy

TABLE I
IMAGE SEARCH EXPERIMENT RESULTS

Method
Group1 Group2 Group3

accuracy time accuracy time accuracy time

ORB 76.7% 1.68s 63.3% 1.71s 70.0% 1.68s

SURF 96.7% 9.73s 86.6% 9.78s 93.3% 9.69s

Aspan 100% 14.61s 100% 14.32s 100% 14.43s

Proposed 100% 4.01s 100% 3.94s 100% 4.03s

while maintaining significantly lower time complexity. In Set
1, where images were captured under varying lighting condi-
tions, ORB achieved 76.7% accuracy in 1.68 seconds. SURF
improved accuracy to 96.7%, but required a longer duration
of 9.73 seconds. AspanFormer achieved perfect accuracy
but incurred a higher time complexity of 14.61 seconds.
Set 2, involving images collected while deviating from the
build trajectory, saw our proposed method outperforming
the other methods with perfect accuracy and requiring only
3.94 seconds for image matching - thereby demonstrating
its robustness to changes in viewing angle and orientation.
In Set 3, where environmental changes such as vehicles
parked on the roadside were introduced into the image, both
AspanFormer and our proposed method maintained perfect
accuracy; however, our method was more than three times
faster. The results indicate that while traditional methods like
ORB are faster, they compromise on accuracy. Conversely,
learning-based methods like AspanFormer are accurate but
computationally intensive. The proposed semantic graph-
based image matching method ensures high accuracy while
optimizing computational efficiency, rendering it ideal for
real-time applications where both speed and accuracy are
paramount.

B. Quantitative Assessment of Localization Precision

We employ ground truth poses, derived from a GPS
receiver equipped with RTK technology, as the benchmark
for evaluating the localization precision. The performance of
our proposed DLT module is compared with two alternative
methods:

• ZED2 odometry: an inherent feature of the ZED2 stereo
camera.

• V-LOAM: a cutting-edge Visual-LiDAR SLAM system
[30]

We conduct a quantitative examination of the positioning
errors associated with the three methods, where the error is
quantified as the Euclidean distance between the estimated
pose and the ground truth pose. A boxplot representing the
estimated positioning error for each method is illustrated in
Fig. 5. The boxplot depicts the distribution of error values,
encompassing the median, lower and upper quartiles, and
minimum and maximum values. The box plot substantiates
that our DLT module exhibits the lowest median and quartile
values along with the narrowest range of error values, sig-
nifying its superior accuracy and consistency. The V-LOAM
method displays higher median and quartile values and a
broader range of error values, suggesting its moderate accu-
racy and consistency. The ZED2 odometry method presents
the highest median and quartile values and the broadest range
of error values, indicating its low accuracy and consistency,

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1545-1552

 
______________________________________________________________________________________ 
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Fig. 5. Comparison of box plots for three methods.

TABLE II
COMPARATIVE RESULTS OF THE PROPOSED METHOD WITH ZED2 AND

V-LOAM METHODS

ZED2 V-LOAM Proposed Method

Test Length(m) 1184 1184 1184

Max errors(m) 0.274 0.093 0.079

Mean errors(m) 0.029 0.015 0.007

which is attributed to the inherent cumulative error of visual
odometry. TABLE II enumerates the maximum error and
average error of the three methods. The proposed method
eradicates the cumulative error engendered by the visual
front-end through the correction thread, and the average po-
sitioning precision can be sustained within 0.01m, achieving
centimeter-level positioning.

To delve deeper into the localization error of our DLT
module, we also plot the error along the x, y, and z axes, as
depicted in Fig. 6. The error is computed as the discrepancy
between the estimated pose and the ground truth pose in
each axis. The figure reveals that the error in the x and y
axes is relatively minuscule and stable, indicating that our
DLT module can precisely estimate the horizontal position.
The error in the z axis is marginally larger and more fluctu-
ating, suggesting that the vertical position estimation poses
more challenges. However, the error in the z axis remains
within an acceptable range, and does not impede the overall
performance of our DLT module. The error analysis along

the xyz axes corroborates the high accuracy and consistency
of our DLT module in 3D localization.

V. CONCLUSION

This paper introduced a novel visual positioning system
designed for mobile robot navigation within the environments
devoid of GPS. The system is composed of three pri-
mary modules: system initialization, vision localization, and
map update. It capitalizes on multi-modal sensors, seman-
tic graph-based image matching, and an adaptive spanning
transformer to accomplish robust and precise localization.
The system’s performance was evaluated using real road data
gathered from a demanding urban scenario. Experimental
outcomes demonstrated that our system surpassed state-of-
the-art methods in terms of localization precision, efficiency,
and adaptability. The system is versatile and can be deployed
in a variety of applications necessitating reliable and exact
positioning, including autonomous driving, indoor naviga-
tion, and augmented reality.
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