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Abstract—-Software-defined networking (SDN) revolutionizes
network management by offering centralized control over
complex infrastructures, but it also introduces significant secu-
rity vulnerabilities. particularly Distributed Denial of Service
(DDoS) attacks that significantly interrupt network services.
The challenge of efficiently detecting DDoS attacks in SDNs is
exacerbated by the computational overhead associated with an-
alyzing numerous network features using conventional Machine
Learning (ML) techniques. Addressing this gap, our research
proposes a novel Intrusion Detection System (IDS) utilizing a 1D
Convolutional Neural Network (1DCNN-IDS) model specifically
designed to identify DDoS threats within SDN environments.
To refine feature selection and enhance detection accuracy, we
applied a hybrid objective function incorporating the Akaike
Information Criterion (AIC), F-test (ANOVA), and T-test. The
effectiveness of our model was validated using three diverse
datasets: InSDN, CICIDS2017, and UNSW-NB15, achieving
impressive accuracies of over 98%, 96%, and 92% respectively,
alongside high precision, recall, and F1 scores. These findings
highlight the substantial potential of incorporating ML and
Deep Learning (DL) techniques for effective and efficient
intrusion detection in SDNs, highlighting our methodology’s
contribution towards mitigating DDoS attack risks in these
networks.

Index Terms—Software-defined networking (SDN), IDS, Deep
Learning (DL), 1DCNN, InSDN dataset, FS methods

I. INTRODUCTION

THE conventional networks widely employed today have
become increasingly complex, presenting significant

challenges in terms of management and administration.
Particularly in cases where IT operators need to establish
sophisticated network policies, the existing network devices
based on IP exhibit vertical integration. In a single network
device, the control and data planes are closely integrated.

Manuscript received August 4, 2023; revised May 13, 2024.
Noor Almi’ani is a Ph.D. student at National Advanced IPv6 Centre

of Excellence (NAv6), University Sains Malaysia 11800 USM, Penang,
Malaysia (e-mail: nyswe1991@gmail.com).

Mohammed Anbar is a senior lecturer at National Advanced IPv6 Centre
of Excellence (NAv6), University Sains Malaysia 11800 USM, Penang,
Malaysia (corresponding author to provide phone: +04-6534633; fax: +04-
6533888; e-mail: anbar@usm.my).

Shankar Karuppayah is a senior lecturer at National Advanced IPv6
Centre of Excellence (NAv6), University Sains Malaysia 11800 USM,
Penang, Malaysia (e-mail: kshankar@usm.my).

Yousef Sanjalawe is an assistant professor at the Department of Cyberse-
curity, School of Information Technology, American University of Madaba
(AUM), Amman, 11821, Jordan (e-mail: jossephhfs@hotmail.com).

Hamza Alrababah is a lecturer at School of Computing, Skyline Univer-
sity College, University City of Sharjah – P.O. Box 1797 - Sharjah, United
Arab Emirates (e-mail: hamza.alrababah@skylineuniversity.ac.ae)

Fadi Abu Zwayed is a Ph.D. student at National Advanced IPv6 Centre
of Excellence (NAv6), University Sains Malaysia 11800 USM, Penang,
Malaysia (e-mail: f.abuzwayed@gmail.com).

Iznan H. Hasbullah is a research officer at National Advanced IPv6 Centre
of Excellence (NAv6), University Sains Malaysia 11800 USM, Penang,
Malaysia (e-mail: iznan@usm.my).

The control plane is responsible for decision-making, while
the data plane executes the appropriate actions for network
traffic based on directives from the control plane. The process
of establishing connections or relationships between different
entities is commonly referred to as interlinking. Furthermore,
the rapid expansion of networking has the potential to am-
plify maintenance expenses and create significant obstacles
to innovation within conventional network infrastructures.
Consequently, developing a novel routing algorithm may
require a time frame of 5 to 10 years and incur substantial
costs [1].

Moreover, the widespread adoption of devices throughout
the network has led to an increase in the number of interme-
diary devices, such as firewalls, traffic distributors, detection
systems, mitigation systems, and other similar components
[2]. According to the findings of [1] and [3], a considerable
57% of network enterprises have observed a notable surge in
the number of network appliances, now equaling the number
of other obligatory network devices, such as routers.

The recently implemented network architecture, com-
monly called SDN, offers a potential solution to the conven-
tional limitations of IP networks [4]. SDN provides faster-
centralized network control as key features [5]. The core
principle of SDN is to eliminate vertical integration by
separating the control plane from the underlying infrastruc-
ture devices. Fig 1 illustrates the primary distinguishing
characteristic between SDN and traditional networking.

Fig. 1. Traditional Network versus SDN architecture.

On the left, a traditional network device is shown, com-
partmentalized into a control plane, management plane, and
data plane, all enclosed within the device’s boundaries, sug-
gesting a tightly coupled architecture. In contrast, the right
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side depicts the SDN framework with a central controller
that governs the control and management planes. Below the
controller is the open flow protocol, represented as a bridge
between the controller and the data plane, which is further
connected to an open flow switch. This layout indicates a
decoupled, flexible approach where the control plane can
dynamically manage the network via the open flow API.
While SDN offers numerous advantages, security poses a
significant challenge that can hinder its extensive adoption
and implementation across diverse networks [6]. The central-
ized controller functions as the network’s central hub. In the
event of successful exploitation of the controller system by an
attacker, they can effectively disrupt or manipulate the entire
network by their malicious objectives [7]. This vulnerability
poses a significant obstacle to the robust implementation of
SDN. DDoS attacks represent a major and serious threat to
SDN networks.

IDSs are conventional security measures that monitor and
identify unauthorized activities occurring within an organiza-
tional network [8]. Their primary purpose is to identify and
flag illicit actions within the network environment. These
systems scrutinize incoming and outgoing network traffic,
comparing it against known patterns of suspicious behavior.
If a match is found, an alarm is triggered, indicating the
detection of a potential attack. IDS plays a crucial role in
maintaining network security by promptly identifying and
alerting against potential threats [9].

On the flip side, Feature Selection (FS) methods, FS
methods types illustrated in Fig 2, constitute a critical pre-
processing phase to ensure the success of anomaly detection
models. These methods are crucial for selecting and retaining
the most relevant features from the dataset. By meticulously
curating the feature set, anomaly detection models can be
fine-tuned to achieve optimal performance and accuracy.
Therefore, feature selection methods are a vital step in the
overall process of developing effective anomaly detection
models [10].

These methods can be broadly categorized into filter
wrapper, and embedded methods. Filter methods, such as
correlation-based selection, information gain, and chi-square
tests, assess the relevance of features independently of the
learning algorithm. They rely on statistics measures to rank
and select features based on their inherent properties. On the
other hand, wrapper methods, including forward selection,
backward elimination, and stepwise selection, evaluate fea-
ture subsets by training and testing a specific ML model.
These methods search for the optimal feature subset that
maximizes the model’s performance. Lastly, embedded meth-
ods, such as tree algorithms and regularization techniques, in-
tegrate feature selection into the model training process itself.
They simultaneously learn the model parameters and perform
feature selection, considering the specific characteristics of
the learning algorithm. By leveraging these diverse feature
selection methods, anomaly detection models can effectively
identify and prioritize the most relevant features, leading to
improved detection accuracy and computational efficiency
[11].

Fig. 2. Taxonomy of FS Methods (redrawing based on [12]).

While numerous ML-based FS techniques have been
suggested for detecting DDoS attacks [13],[14],[15], the
current preventive measures against DDoS attacks in SDNs
are deemed inadequate. Nonetheless, a notable drawback of
existing studies is the absence of intrusion datasets specifi-
cally designed for SDN networks. Many researchers rely on
datasets generated from conventional networks, which may
not accurately represent the intricacies of SDN architecture
[16]. Consequently, the applicability and effectiveness of
these adapted techniques for detecting intrusions in SDNs
may be questionable [17], [18]. SDN has introduced unique
security threats that differ from the typical risks faced
by traditional legacy networks. Consequently, the relevant
features characterizing DDoS attacks in traditional networks
may not necessarily apply to DDoS attacks in SDN networks.
Furthermore, utilizing weak FS algorithms may result in ex-
cluding crucial parameters, leading to the loss of significant
data information [19],[12].

Given the successful application of DL in various domains,
integrating SDN and DL can potentially enhance the per-
formance of IDS and network security. This paper aims to
enhance the accuracy of detecting DDoS attacks on SDN
networks by integrating a stepwise feature selection method
with hybrid objective functions and a 1DCNN. The key
contributions of this paper can be summarized as follows:

1) Hybrid Objective Function:
The introduction of a hybrid objective function that
incorporates multiple metrics, including the AIC,
ANOVA, and T-test statistics. This comprehensive ap-
proach aims to refine the selection of pertinent features
for detecting DDoS attacks.

2) Improved Stepwise Regression Feature Selection
Method:
Enhancement of the stepwise selection method based
on the hybrid objective functions. This methodology
is designed to identify the most pertinent DDoS at-
tack features within the dataset, leveraging the InSDN
dataset for validation and refinement.

3) Utilization of 1DCNN for IDSs:
Implement a 1DCNN in IDSs to efficiently detect
DDoS attacks in SDN environments. The 1D CNN
processes the features selected through the enhanced
stepwise selection method, improving the model’s abil-
ity to detect and respond to DDoS incidents.

The remaining sections of this paper are structured as
follows: Section II briefly explains the background of SDN
architecture and some of the new paradigm’s security prob-
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lems. Section III discusses related works and other DDoS
attack detection methods in SDNs. Techniques, datasets, and
DL models were employed. The methodologies utilized in
this paper are outlined in Section IV, whereas the experimen-
tal setup is detailed in Section V. The experimental result is
in Section VI. The conclusions drawn from this paper are
revealed in Section V11.

II. RESEARCH BACKGROUND

This section succinctly introduces the principles underpin-
ning the operation and architecture of SDN and illuminates
the security obstacles accompanying this nascent paradigm.
This section delves deeper into DDoS attacks in SDN, thor-
oughly examining their implications and exploring potential
defense mechanisms.

A. SDN Architecture

The architecture of the SDN network is divided into three
unique operational layers: the application layer, the control
layer, and the data layer [20],[21]. The application layer is
a platform for executing various applications and services,
leveraging northbound programming interfaces. The control
layer, on the other hand, is pivotal in its central oversight
of the network. It operates separately from the underlying
network infrastructure, the data plane, which comprises for-
warding network devices like OpenFlow switches [22].

B. DDoS Attack on SDN

Despite the numerous advantages that SDNs offer in
various application areas, there are still unresolved security
concerns within SDNs. In particular, the centralized control
plane presents a prime target for DDoS attacks aiming to
overwhelm and disable the controller. The controller’s cen-
tralized position can enhance network security by enabling
the deployment of innovative security tools through north-
bound APIs. By providing a global view of the network, the
controller can also efficiently detect anomalies and attacks.
However, the flip side is that the controller also introduces a
central point of failure. Flooding the controller with excessive
bogus flow requests from compromised SDN switches can
disrupt its ability to handle legitimate requests and manage
flows. Additionally, the separation of the data and control
planes enables indirect DDoS attacks from the data plane
to target the control plane. As most SDN controllers lack
scalability and resiliency capabilities, even short-lived data
plane attacks can significantly degrade the controller’s perfor-
mance. This then indirectly causes denial of service for new
flow requests. Moreover, the standardized protocols between
the control and data planes like OpenFlow provide a defined
interface for attackers to exploit. Vulnerabilities in OpenFlow
protocol implementations can be leveraged to trigger flooding
or resource depletion DDoS attacks on the controller. The
centralized controller, communications between separated
data and control planes, and use of standardized SDN pro-
tocols introduce avenues for DDoS attacks that can disable
the controller and server coordination between the planes.
Developing capabilities for DDoS detection and mitigation
specifically tailored to the SDN architecture is crucial to
realizing the benefits of SDNs across use cases [16],[22].

C. Stepwise Regression Method

Stepwise regression is a method of fitting regression
models in which an automatic procedure carries out the
choice of predictive variables. It involves adding or removing
potential explanatory variables in sequence, and testing for
statistical significance after each iteration. This method is
particularly useful when dealing with multiple variables and
aims to find a suitable model by including variables that
have a significant impact on the dependent variable. Stepwise
regression can follow two approaches: forward selection,
which starts with no variables and adds them one by one,
and backward elimination, which starts with all candidate
variables and removes the least significant one at each step.
The process is guided by specific criteria like the AIC,
Bayesian information criterion (BIC), or the adjusted R-
squared. The technique simplifies the model-building process
but is subject to criticism for its potential to overfit data and
its reliance on arbitrary significance levels. Despite this, it
remains a popular exploratory tool in statistical analysis and
predictive modeling [23].

III. RELATED WORKS

In recent years, numerous protective measures have been
proposed to address the issue of DDoS attacks in SDNs.
Interestingly, the centralized control feature of SDNs can
be leveraged to facilitate the detection of such attacks. This
section delves into the most all-encompassing methodology
for analyzing DDoS attacks within the framework of SDNs.
There have been several research initiatives aimed at resolv-
ing this problem, including the implementation of entropy-
based approaches (Section III-A), ML-based solutions (Sec-
tion III-B), and DL-based solutions (Section III-C).

A. Entropy-Based Approaches

In the context of detecting DDoS attacks, entropy has
been utilized as a measure of randomness in evaluating
traffic patterns [24]. The primary goal of these investigations
is to differentiate between legitimate and malevolent traffic
by examining the entropy of packet header fields. Through
experimental evaluations in simulated environments, the ef-
ficacy of entropy-based methods in identifying both low
and high-intensity DDoS attacks has been demonstrated.
This approach provides a high degree of detection accuracy
while minimizing false positives, enhancing its overall per-
formance. Furthermore, the computational overhead imposed
by this method has been considered tolerable. For an in-depth
analysis of network traffic, future research could explore
incorporating additional security layers at the infrastructure
stage.

To detect and counteract DDoS attacks in SDN environ-
ments, Shannon entropy was employed. [25]. This approach
yielded noteworthy outcomes, achieving an accuracy rate
exceeding 98.2% and an extraordinarily low false-positive
rate of 0.04%. Despite these favorable results, the authors
emphasized the imperative need for robust and reliable se-
curity solutions that can effectively protect networks against
fraudulent traffic. They also outlined potential avenues for
future research, including tackling the challenges presented
by slow DDoS attacks that emulate legitimate traffic and
consume fewer resources, as well as exploring the use of
multiple controllers for managing SDN control.
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Renyi joint entropy was used to find the connection
between different parts of network traffic [26]. The threshold
was changed dynamically based on the rate of traffic. This
methodology demonstrated enhanced detection accuracy for
DDoS attacks across various traffic rates, surpassing ex-
isting techniques in terms of true positive rates and false
positive rates. Recommendations for future research direc-
tions include integrating the dynamic threshold with other
information-theory-based algorithms and rule generation us-
ing ML techniques. The primary objective of these strategies
is to improve the performance of DDoS attack detection by
accurately identifying positive instances and reducing the
number of false alarms.

To identify and mitigate DDoS attacks in SDNs, re-
searchers incorporated entropy methodology into ensemble
learning techniques [27]. of their method, and the Random
Forest (RF) algorithm was used to find more problems when
they thought things were not going as planned. However, it’s
important to note that their use of open-flow switches for
detection purposes appears to contravene the core principles
of SDNs, which aim to abstract decision-making from the
underlying forwarding devices.

Using these different approaches and entropy and sta-
tistical measures to find and stop DDoS attacks in SDNs,
problems like false positives, the need for a lot of training
data, and high computational resource usage can be dealt
with. Other limitations include potential missteps in param-
eter selection, the ability of attackers to adapt and evade
detection, and the risk of missing low-rate but damaging
attacks. Delays in detection due to computational time and
difficulty dealing with dynamic networks can also present
challenges [28].

B. ML-Based Approaches

Recently, ML-based anomaly detection techniques have
demonstrated remarkable success in identifying DDoS at-
tacks in SDN networks. By harnessing the potential of ML,
these methods autonomously learn from training data and
reveal underlying patterns. Their superiority over signature-
based approaches lies in their ability to detect abnormal net-
work behavior, effectively identifying and mitigating DDoS
attacks in SDNs.

A recent study introduced a novel system that employs
machine learning techniques to identify DDoS attacks in
SDN networks [29]. The adopted approach leverages a hier-
archical multi-class (HMC) framework to address the issue
of imbalanced datasets effectively and boost the effectiveness
of underrepresented classes. The system was evaluated using
a dataset of genuine instances of DDoS attacks. The results
showed a high level of precision in detecting DDoS attacks
within the system, indicating the potential of this approach
for real-world applications.

An optimized ensemble model was presented in [30] that
uses weighted voting for detecting and mitigating DDoS
attacks in Software-Defined Network (SDN) environments.
This model combines six fundamental classifiers, including
two SVMs, two Random Forests (RFs), and two gradi-
entboosted machines. A novel hybrid metaheuristic opti-
mization algorithm called Binary Harmony Search (BHS)
was employed to determine the optimal weights for the
ensemble model. The proposed model’s effectiveness was

evaluated using the CIC-DDoS2019 dataset, demonstrating
a high detection rate of 99.41% while maintaining a low
false positive rate of 0.6409%.

Several FS techniques were used on the CICIDS2017
dataset to find important features contributing to the detec-
tion of DDoS attacks that were proposed. These included
”SelectPercentile,” ”SelectFromModel,” and Principal Com-
ponent Analysis (PCA). Most FS methods find a feature size
between 12 and 15 to yield optimal results. The researchers
evaluated six different machine-learning techniques for clas-
sification. Both the RF and the k-nearest neighbors algorithm
(KNN) demonstrated superior performance, while Logistic
Regression (LR) and Naive Bayes (NB) were comparatively
less reliable.

While ML approaches promise effective detection of
DDoS attacks in SDNs, they face challenges such as high
computational demands and the need for substantial, repre-
sentative training data. Overfitting can also be an issue, lead-
ing to models that don’t generalize well to new data. False
positives and negatives may compromise system reliability,
and the ’black box’ nature of some ML models complicates
troubleshooting and exposes potential weaknesses to adver-
saries. Finally, ML models might struggle to adapt quickly
to rapidly changing network conditions or previously unseen
attack types.

C. DL-Based Approach

Currently, DL approaches are significant as they can cap-
ture intrinsic patterns within input data automatically without
requiring manual intervention. However, there is a scarcity
of research that has utilized the DL approach to detect and
mitigate DDoS attacks in SDN environments.

In the realm of detecting DDoS attacks in SDNs, [31]
conducted a comparative analysis of the efficacy of Artificial
Neural Networks (ANN) in contrast to several classical ML
algorithms. A dataset about DDoS was generated within a
simulated setting, utilizing the Mininet software and Ryu
controller. The findings indicate that ANN exhibits promise
in detecting attacks, achieving a high level of accuracy at
98.2%.

To enhance the detection of DDoS attacks targeting
SDNbased SCADA systems, [32] suggests employing a
Recurrent Neural Network (RNN) classifier model that inte-
grates two separate parallel DL approaches: Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU). The
proposed parallel structure was meticulously refined using
the training and validation datasets. Experimental studies’ ac-
curacy in detecting DDoS attacks was impressive at 97.62%,
and using transfer learning techniques increased it by about
5%. Researchers have shown that the suggested RNN DL
classifier model can be used to find DDoS attacks that are
aimed at SDN-based SCADA systems.

Despite the inherent advantages of DL approaches over
traditional ML approaches, many previous studies have
primarily evaluated their models on datasets derived from
conventional IP networks rather than on SDN platforms. This
oversight hinders the full potential of DL in overcoming the
inherent challenges of traditional ML techniques. However,
SDNs differ significantly from conventional networks regard-
ing their properties and behavior during operation. SDNs
also employ novel protocols, like OpenFlow (OF), that are
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distinct from legacy networks. IDSs in the SDN can become
confused when new vulnerabilities are discovered in the OF
protocol, potentially driving attackers to build new attacks.

Much research also relies on out-of-date datasets like
KDDCup-’99 and NSL-KDD, compounding the problem.
These benchmark datasets weren’t just created using data
from two decades ago; they also don’t include any recent
Internet traffic. However, the sophistication and number of
new intrusion attack types constantly increase, making them
harder to recognize. On the other hand, previous studies
that evaluated the effectiveness of DL techniques on SDN
networks often utilized custom datasets that simulated the
SDN environment. However, these datasets were limited in
scope, primarily focusing on a subset of DDoS attacks and
neglecting comprehensive coverage of attacks targeting all
network layers.

IV. RESEARCH METHODOLOGY

In this paper, we propose a two-stage IDS-based 1DCNN
model for DDoS attack detection in SDN using an FS
method. In the first stage, an objective function that combines
AIC, ANOVA, and T-test guides an improved stepwise
regression method to find a subset of features that can
effectively detect DDoS attacks.

The second stage uses a 1DCNN-IDS model with 64
Conv1D layers that handle 40 features each. These lay-
ers capture local dependencies and patterns in the feature
sequence so that DDoS attack traits in SDN data can be
recognized better. The 1DCNN-IDS model is trained based
on the features selected in Stage 1. CCC

A. Data Pre-processing

To construct an accurate IDS, data preprocessing is a
pivotal initial step before model training. The original input
data may not be in a suitable format for building and
training DL models. Several essential steps are undertaken to
transform the input dataset into a comprehensible and usable
format, including the following steps:

1) Data cleansing:
Data cleansing is a process applied to an existing
dataset to eliminate anomalies, ensuring an accurate
and unique representation of the dataset’s domain. This
operation helps reduce the cost and complexity of the
model. [33], [34]. The InSDN dataset contains features
like source IP, destination IP, and flow ID. To mitigate
the risk of overfitting, all socket-specific characteristics
have been removed. [16], as these features can vary
from network to network. Additionally, non-numeric
columns are removed.

2) Encoding the Labeled Data:
Machines understand numbers, not text [35]. It is
necessary to convert each text category into num-
bers for the machine to process using mathematical
equations [36]. The labeled string is transformed into
a distinctive numerical equivalent using the one-hot
encoding method, which converts label classes into
unique integer forms[37]. This model specifically fo-
cuses on binary classification, distinguishing input data
into two categories: malicious and non-malicious [16].
Consequently, a binary value of 0 is assigned to normal
strings, while all malicious DDoS attack traffic is

represented by a value of 1. The significance of the
labeling symbols is depicted in Table I.

TABLE I
ENCODED THE LABELLED DATA

Symbol Description
0 Normal
1 DDOS attack

3) Scaling:
Data-scaling methodologies include standardization
and normalization. Standardization, often called Z-
score normalization, adjusts the values of a specific
feature in a dataset to achieve a mean of 0 and a
standard deviation of 1. This scaling technique assumes
that the data follows a Gaussian distribution (also
known as a normal distribution or a bell curve). On
the other hand, normalization customizes these values
to fit within a specified range [38].
The features in the InSDN dataset exhibit varying
ranges [39]. To address this variability, the data were
rescaled using the standardization method, or Z-score,
as per Equation 2 [37]. This process transforms the
data scale, resulting in standardized data with a mean
value of 0 and a standard deviation of 1.

x(i) =
x(i)− µ(x(i))

σ(x(i))
(1)

The feature value is denoted by i, while the value after
normalization is represented by x(i) and has a zero
mean (µ) and a standard deviation (σ) of 1.

B. The Hybrid-Objective-Based FS Method

FS plays a vital role in handling high-dimensional datasets
in the realm of big data analytics. The primary objective of
FS is to identify the most significant features for accurate
prediction while discarding irrelevant or extraneous features
[40]. The model of this paper focuses on pinpointing the
most informative attributes from the input dataset, bridging
the gap between the fundamental concept of FS and its
practical application. This tailored model is being employed
to enhance the efficiency and effectiveness of FS in big data
analytics, enable more accurate predictions, and streamline
data analysis processes.

1) Hybrid Objective Function

The core purpose of a model based on the FS method is
a stepwise regression method combined with an objective
function that combines several metrics: AIC, ANOVA, and
T-test statistics of a subset of features. The objective score
is minimized during the forward selection process and max-
imized during the backward elimination process. Thus, the
FS will favor the selection of features that both improve the
log-likelihood of the model (thus lowering the AIC) and have
significant relationships with the target variable (thus having
large ANOVA and T-Test Statistic)[41],[42]. The formula can
define the objective score:

ObjectiveScore = Anova − AIC + T Test (2)

Where:
AIC: a measure of a statistical model’s goodness of fit.
Anova: represents the between-group variability relative to
the within-group variability, calculated using the ANOVA.
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Fig. 3. Architecture of the proposed 1DCNN-IDS model with the FS method

T-test statistic: is the measure of the difference between
the means of the selected features and the target variable,
computed using the T-test.

2) AIC

An error metric that gives the best predictive accuracy
of the model. The AIC penalizes increasing the number of
parameters in the model (to discourage overfitting), so it’s
often used for FS. The goal is to minimize the AIC. The
AIC is calculated using the formula [43].

AIC = 2k − 2ln(L) (3)

Where:
K: is the number of parameters in the model. L: is the
likelihood of the model.

3) ANOVA Statistic

The ANOVA measures the ratio of between-group vari-
ability to within-group variability in the chosen feature
subset[44]. The ANOVA is calculated using the formula[45]:

ANOV A =
MSR

MSE
(4)

Where:
MSR=Mean Square Regression.
MSE = Mean Square Error.

MSR =
SumofSquaresRegression

DegreesofF reedomRegression
(5)

MSE =
SumofSquaresError

DegreesofF reedomError
(6)

Where:
Sum of Squares Regression: is the sum of
squares explained by the regression model.
Degrees of Freedom Regression: is the number of predictor
variables in the model. Sum of Squares Error: is the sum
of squares not accounted for by the model, also known as
the residual sum of squares. Degrees of Freedom Error: is
the number of observations minus the number of predictor
variables minus 1.

4) T-test Statistic

Ttest can be employed as a part of the process to eval-
uate the statistical significance of individual features[46].
For each step in the selection process (either forward or
backward), a regression model is fitted on the selected
features. Then, a t-test is performed for each regression
coefficient to test the null hypothesis that the coefficient (and,
consequently, the corresponding feature) is not significantly
different from zero[47]. In mathematical terms, the t-statistic
for a given regression coefficient β can be calculated using
the formula[48]: Let’s break down the components of this
formula:

T =
β

SE(β)
(7)

Where: β: is the estimated coefficient for the feature.
SE(β) is the standard error of the coefficient.

C. Improved stepwise regression method

In traditional stepwise feature selection, the primary metric
used is the AIC, which measures the fit of a model to
the data while penalizing models with higher complexity
to avoid overfitting. The default process typically involves
two primary strategies: forward selection, which starts with
no variables and adds those that most enhance the AIC,
and backward elimination, which begins with all variables
and removes those whose exclusion improves the AIC.
Relying solely on one metric may degrade the performance
of feature selection in terms of selecting appropriate features.
Therefore, this approach has been enhanced by adapting the
hybrid function depicted in Equation 2.

This hybrid approach modifies the traditional forward and
backward selection steps. In the forward selection phase, fea-
tures are added based on their contribution to minimizing the
combined objective score, ensuring the inclusion of features
that fit the model well and have strong statistical relationships
with the target variable. In backward elimination, features
are removed to maximize the objective score, focusing on
eliminating features that are statistically insignificant or do
not contribute meaningfully to model fit and prediction
accuracy.
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Algorithm 1 Pseudocode of Improved stepwise regression
method

1: Input:
2: Data: The dataset of features
3: Number of Features to Select (k)
4: Output:
5: Selected Feature Indices
6: Begin:
7: Split Dataset into Predictor Variables (X) and Target

Variable (y)
8: procedure OBJECTIVEFUNC-

TION(Model,X, y,Feature Indices)
9: Fit the Model using X at Feature Indices and y

10: Predict y using fitted Model and X at
Feature Indices

11: Calculate Log-Likelihood (L)
12: Calculate AIC = 2k − 2 ln(L)
13: Retrieve the best predictive accuracy of the model
14: Calculate ANOVA = MSR

MSE between X at
Feature Indices and y, retrieve F-Statistic

15: Calculate T = β
SE(β) between X at Feature Indices

and y, retrieve T-Test Statistic
16: Calculate Objective Score = ANOVA − AIC +

T-Test Statistic
17: Return Objective Score
18: end procedure
19: Initialize Logistic Regression Model
20: Apply algorithm 2 (Forward selection)
21: Apply algorithm 3 (Backward selection)
22: Return indices of selected Features

Algorithm 2 Forward Selection Strategy
1: Initialize SequentialFeatureSelector with Logistic Re-

gression Model, Objective Function, k, and direction
’forward’

2: Apply SequentialFeatureSelector to standardized Predic-
tor Variables and Target Variable

3: Initialize empty Selected Features set
4: for i from 1 to k do
5: Initialize best fitness as negative infinity and

best feature as None.
6: Initialize min Objective Score to −∞
7: for each Feature in the Predictor Variables do
8: if Feature not in Selected Features then
9: Calculate the Objective Score for the Feature

using Objective Function
10: if Objective Score is less than min Objective

Score then
11: Update min Objective Score to current

Objective Score
12: Update best feature to current Feature
13: end if
14: end if
15: end for
16: Add best feature to Selected Features
17: end for

The impact of this hybrid stepwise selection on the chosen
features is substantial. It allows for a more comprehensive
evaluation of features, considering their statistical signif-

Algorithm 3 Backward Selection Strategy
1: Initialize SequentialFeatureSelector with Logistic Re-

gression Model, Objective Function, k, and direction
’backward’

2: Apply SequentialFeatureSelector to standardized Predic-
tor Variables and Target Variable

3: while number of Selected Features > desired number of
features (k) do

4: Initialize worst fitness as negative infinity and
worst feature as None.

5: Initialize max Objective Score to −∞
6: for each Feature in Selected Features do
7: Temporarily remove Feature from Selected Fea-

tures
8: Calculate Objective Score without Feature using

Objective Function
9: if Objective Score is greater than max Objective

Score then
10: Update max Objective Score to current Ob-

jective Score
11: Update worst feature to current Feature
12: end if
13: Add Feature back to Selected Features
14: end for
15: Remove worst feature from Selected Features
16: end while

icance and contribution to the model’s fit. This leads to
improved model accuracy and generalizability, as the model
incorporates features that not only fit well according to AIC
but are also relevant and distinct, as indicated by ANOVA
and T-test scores. Additionally, this method helps reduce
overfitting by balancing model complexity with fit and focus-
ing on statistically significant features, which is crucial for
predictive modeling. Algorithm 1 shows the pseudocode of
the Improved Stepwise Regression method, while Algorithm
2 shows the Forward Selection Strategy, and Algorithm 3
shows the Backward Selection Strategy. After this stage,
we obtain a set of significant features that are essential for
detecting DDoS attacks on SDN.

D. 1DCNN-based detection model

The 1DCNN-IDS model is trained based on selected
features in Stage 1. A 1DCNN operates by applying learned
filters, or ”kernels,” across the sequential data, capturing
localized patterns [49]. This feature allows the model to iden-
tify and learn from local dependencies in the data, thereby
being robust to noise and distortions. Additionally, due to the
shared-weight architecture of CNNs, 1DCNNs are relatively
parameter-efficient compared to fully connected networks,
enabling faster training [50]. Furthermore, the hierarchical
structure of 1DCNNs allows them to learn complex patterns
at varying scales, contributing to their wide applicability and
power in various tasks involving sequential data[51].

Cov1D layers, which are 1D adaptations of CNN layers,
are utilized. Each Cov1D layer comprises 64 convolution
filters and 40 features, in conjunction with a kernel size 3.
The ’RELU’ activation function is applied to these layers,
engineered to transmit the input directly if it is positive,
or else it generates zero. Subsequently, a dropout layer is
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integrated to enhance the regularization of the output. A max-
pooling layer is then introduced, inherently simplifying or
pooling the feature maps and creating a condensed depiction
of the detected features in the input. 1D max pooling is used
for this purpose. The processed output is next guided through
a flattening layer. This layer converts the output matrix
into a more amenable vector format, promoting efficient
classification. In the final phase of the 1DCNN model, a fully
connected layer is included. This layer splits into two Dense
layers. The initial Dense layer is designed with 100 neuron
detectors and a ’Relu’ activation function. Conversely, the
final Dense layer is designed with 2 feature detectors and a
’Softmax’ activation function.

V. EXPERIMENTAL SETUP

The experimental design serves as a blueprint to assess
the efficiency and reliability of the proposed SDN data
classification method. This section explains the dataset used
(utilizing the InSDN dataset rich in diverse SDN activities,
the CICIDS2017 dataset, and the UNSW-NB15 dataset), the
model setup, and the choice of evaluation metrics (accuracy,
precision, recall, and F1 score).

A. Benchmark Dataset

This research makes use of the InSDN dataset, CI-
CIDS2017, and UNSW-NB15 network intrusion datasets for
evaluation. The InSDN dataset encapsulates diverse SDN
activities, including normal traffic like HTTPS, HTTP, DNS,
Email, FTP, and SSH, and attack categories such as DoS,
DDoS, Probe, Botnet, Exploitation, Password-Guessing, and
Web attacks. It provides over 80 statistical features extracted
from PCAP and CSV formats [16]. CICIDS2017 contains
network traffic generated from an intrusion detection testbed,
including normal activities and attacks like DoS, DDOS,
brute force, infiltration, botnet, etc. The raw flows were pre-
processed to extract 80 features[52]. UNSW-NB15, created
by cybersecurity researchers, comprises 49 features from
raw packets representing contemporary normal and attack
traffic[53].

B. Architecture of 1DCNN-IDS model

This section explains the architecture of the proposed
1DCNN-IDS model as shown in Fig 4 alongside the hyper-
parameters used to train the 1DCNN-IDS model as tabulated
in II.

TABLE II
HYPERPARAMETERS USED IN 1DCNN-IDS MODEL TRAINING

Parameter Value
Epoch 100
Activation function ReLU
Batch Size 128
Learning Rate 0.001
Loss Function Sparse categorical cross entropy
Optimizer Adam

As illustrated in Fig 4, the proposed 1DCNN-IDS model
consists of multiple convolutional layers and pooling layers
designed to extract crucial features from the input data. Ex-
perimental analysis was conducted to determine the optimal
number of computational layers and kernel size by varying
the number of convolutional layers from 1 to 3 and the kernel
size from 2 to 5, as depicted in Fig 5 and Fig.6, respectively.

Fig. 5. Impact of Number of Convolutional Layers

Fig. 6. Impact of Kernel Size

The results in Fig 5 and Fig.6 show the model achieves
optimal performance with 2 convolutional layers and a kernel
size of 3.

The hyperparameters employed for training the model,
detailed in Table II, encompass factors such as the number
of filters, filter size, activation function, and learning rate,
among others. These hyperparameters play a crucial role in
optimizing the model’s performance and convergence during
the training process. The number of epochs is set to 100,
allowing the model to iterate over the training data multiple
times and improve its learning. The ReLU activation function
is chosen for its simplicity and effectiveness in introducing
non-linearity to the model. The batch size of 128 determines
the number of samples processed in each iteration, balancing
computational efficiency and convergence speed. The learn-
ing rate of 0.001 controls the step size at which the model’s
weights are updated during optimization, ensuring a stable
and gradual learning process. The sparse categorical cross-
entropy loss function is selected as it is well-suited for multi-
class classification problems, measuring the dissimilarity
between the predicted and actual class distributions. Finally,
the Adam optimizer is employed for its adaptive learning rate
and efficient convergence properties. The rationale for se-
lecting these hyperparameters aligns with commonly utilized
practices in existing research, as demonstrated in [54],[55].

C. Evaluation Metrics

The model’s efficiency is assessed by employing widely
accepted performance metrics such as accuracy, precision,
recall, and F-score metrics [53]. These metrics are calculated
using the following equations.
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Fig. 4. Block diagram of the proposed 1DCNN-IDS model

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F-score =
2× Precision × Recall

Precision + Recall
(11)

Accuracy measures the overall correctness of the model’s
predictions, considering both true positives (TP) and true
negatives (TN) about the total number of instances. Precision
focuses on the model’s ability to correctly identify anomalous
instances among all the instances predicted as anomalous,
calculated as the ratio of true positives to the sum of true
positives and false positives (FP). Recall, also known as
sensitivity or true positive rate, measures the model’s ability
to correctly identify all the actual anomalous instances,
computed as the ratio of true positives to the sum of true
positives and false negatives (FN). The F-score is a harmonic
mean of precision and recall, providing a balanced evaluation
of the model’s performance, particularly useful when dealing
with imbalanced datasets. These metrics, along with the
analysis of TP, TN, FP, and FN, form a robust framework
for assessing the performance of anomaly detection models,
allowing researchers and practitioners to make informed
decisions about their effectiveness and suitability for specific
tasks.

VI. EXPERIMENTAL RESULT

The findings of this paper substantiate the methodology
presented for developing an efficient IDS in SDN. The
paper quantifies its effectiveness through evaluation metrics,
including accuracy, precision, recall, and F1-score.

A. Result of Improved Stepwise Regression Feature Selection
method

The improved stepwise regression significantly reduced
the dimensionality of the initial three datasets through an
efficient FS process. The process began with an exhaustive

list of features, systematically pruned to include only those
with an objective score that minimized AIC, maximized
ANOVA, and the T-test statistic.

This rigorous FS contributes to a more efficient and
manageable data pipeline, retaining the most significant data
for further steps in the model training process. The algorithm
adopted an FS process to add features one at a time based on
the best objective score and a backward elimination process
to remove the least significant features, ensuring an optimal
feature subset. The data reduction process for the InSDN,
CICIDS2017, and UNSW-NB15 datasets is depicted in Table
III.

As depicted in Table III, the high dimensionality of the
InSDN, CICIDS2017, and UNSW-NB15 datasets is effi-
ciently reduced through FS.

TABLE III
FS IN INSDN, CICIDS2017,AND UNSW-NB15 DATASETS

Dataset Initial Number of
Features

Number of Features
After Selection

InSDN 48[23] 10
CICIDS2017 80[54] 12
UNSW-NB15 42[55] 8

For InSDN, the features were reduced from 48 to 10,
for CICIDS2017 from 80 to 12, and for UNSW-NB15, the
reduction was from 42 to 8 relevant features. This refinement
decreases model complexity, improves computational effi-
ciency, and enhances the training of the 1D-CNN-IDS model
by retaining only the most significant attributes. The reduced
dimensionality also results in faster and more effective
data processing, further boosting performance. Overall, FS
streamlines all three datasets by eliminating redundant and
irrelevant information, leading to more efficient models with
greater accuracy in network intrusion detection.The features
selected by the improved stepwise regression method for
each dataset are outlined in Table IV for InSDN, Table V
for CICIDS2017, and Table VI for UNSW-NB15.
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TABLE IV
THE 10 FEATURES SELECTED IN INSDN DATASET USING
IMPROVED STEPWISE REGRESSION FEATURE SELECTION

METHOD

Feature
Index

Name of
Feature

Rationale for
Feature

1 Protocol Identifies targeted protocols
in DDoS attacks.

2 Flow Duration Unusual durations can
signal an attack.

5 Total Forward
Packets

High counts indicate one-sided
conversations in DDoS.

15 Flow Packets Reflects abnormal traffic
patterns in DDoS attacks.

18 Flow IAT Max Deviations suggest irregular
traffic in DDoS attacks.

30 Backward IAT
Total

Indicates response to
attack patterns.

31 Forward Header
Length

Manipulated headers can
indicate DDoS attacks.

32 Backward
Header Length

Changes can indicate
malicious DDoS activities.

33 Forward Packets High count can indicate
an outgoing DDoS attack.

34 Backward Packets High counts can suggest
a response to incoming attacks.

TABLE V
THE 12 FEATURES SELECTED IN CICIDS2017 DATASET USING

IMPROVED STEPWISE REGRESSION FEATURE SELECTION
METHOD

Feature
Index

Name of
Feature

Rationale for
Feature

3 Source Port Unusual traffic can
indicate an attack.

8 Flow Duration Identifies abnormal
network flows.

9 Total Fwd Packets High count suggests
overwhelming traffic.

23 Flow IAT Mean Unusual averages signal
irregular traffic.

24 Flow IAT Std High values indicate
inconsistent flows.

32 Bwd IAT Total Anomalies suggest a response
to an attack.

34 Bwd IAT Std High variability indicates
attack responses.

47 Packet Length Mean Changes suggest malicious
packet crafting.

54 ACK Flag Count Unusual patterns indicative of
SYN flood attacks.

59 Average Packet Size Deviations indicate attack
traffic.

60 Avg Fwd Segment
Size

Changes suggest an ongoing
attack.

61 Avg Bwd Segment
Size

Abnormal sizes indicate
a response to attacks.

The improved stepwise feature selection method substan-
tially reduced feature dimensionality by systematically elim-
inating redundant variables based on multiple mathematical
criteria. After using minimum AIC, maximum ANOVA, and
maximum T-test statistics together, the best feature subsets
that could predict DDoS attacks were selected from the
original feature sets.

For the InSDN dataset, the initial 48 features were reduced
to the 10 most relevant features that exhibited strong statisti-
cal significance across the combined objective metrics. Table
IV shows that the chosen characteristics include protocols,
long flow times, lots of traffic, strange packet and IAT
patterns, and packet headers that have been changed.

Similarly, for CICIDS2017, the hybrid statistical evalua-
tions retained 12 features demonstrating maximum predictive
capability from the original 80 attributes. The best features
include source ports, duration, forward packet counts, IAT
statistics, ACK flag metrics, segment sizes, and other key
signs of DDoS attacks, as shown in Table V.

TABLE VI
THE 8 FEATURES IN UNSW-NB15DATASET USING IMPROVED

STEPWISE REGRESSION FEATURE SELECTION METHOD

Feature
Index

Name of
Feature Rationale for Feature

1 srcip Source IPs analyzed for DDoS patterns.
3 dstip Identifies targeted devices or services.
8 sbytes High values indicate an outgoing attack.

9 dbytes High values represent a response
to incoming attacks.

10 sttl Low TTL values are used in
certain attack strategies.

11 dttl Deviations from the norm indicate
a network under attack.

15 Sload A high load indicates a source
attempting to flood

In the same way, the combined minimum AIC, maximum
ANOVA, and T-test benchmark were used to pick eight
statistically significant features from the original 42 variables
for UNSW-NB15. As Table VI exhibits, core indicators like
IP addresses, payload sizes, TTL values, and high originating
loads had outstanding statistical scores, underlying their
relevance in pinpointing DDoS attacks.

B. Result of 1DCNN-IDS model using several Datasets

The 1DCNN-IDS model underwent evaluation using the
InSDN, CICIDS2017, and UNSW-NB15 datasets. The use
of multiple datasets enhances the diversity of the evaluation.
Different datasets may capture distinct aspects of network
traffic and attack scenarios, ensuring a more comprehensive
assessment of the model’s capabilities. Table VII displays
the performance metrics for the InSDN, CICIDS2017, and
UNSW-NB15 datasets.

TABLE VII
PERFORMANCE METRICS OF THE 1DCNN-IDS MODEL ON

THE INSDN, CICIDS2017, AND UNSW-NB15 DATASETS USING
IMPROVED STEPWISE REGRESSION FEATURE SELECTION

Metric InSDN
Value (%)

CICIDS2017
Value (%)

UNSW-NB15
Value (%)

Accuracy 98.2 96.4 92.5
Precision 98.7 97.2 94.2

Recall 97.8 95.3 91.7
F1-score 98.6 96.1 93.3

As depicted in Table VII, the proposed 1DCNN-IDS
demonstrated exceptional performance on the InSDN dataset.
Notably, it achieved an accuracy of 98.2%, precision values
of 98.7%, a recall rate of 97.8%, and an F1 score of
98.6%. Collectively, these metrics underscore the model’s
accuracy, precision, recall, and overall balanced performance
in predicting activities within the InSDN dataset.

The evaluation of the model’s performance extended to the
CICIDS2017 and UNSW-NB15 intrusion detection datasets.
On the CICIDS2017 dataset, the model achieved an accuracy
of 96.4% and demonstrated high precision, recall, and F1
scores. For the UNSW-NB15 dataset, the model achieved an
accuracy surpassing 92.5%. The consistent and robust results
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across these diverse datasets showcase the model’s versatility
in effectively identifying network intrusions.

1) confusion matrix

The confusion matrix shown in Fig 7, Fig8, and Fig 9 is
used to calculate the performance metrics for the INSDN,
CICIDS2017, and UNSW-NB15 datasets, respectively. The
confusion matrices provide a detailed breakdown of the
performance of the 1DCNN-IDS model on three differ-
ent datasets: InSDN, CICIDS2017, and UNSW-NB15. The
InSDN dataset shows a relatively small number of false
positives (92) and false negatives (54), indicating a good
overall performance of the model. However, the CICIDS2017
and UNSW-NB15 datasets have a larger number of mis-
classifications, with CICIDS2017 having 455 false positives
and 265 false negatives, and UNSW-NB15 having 893 false
positives and 607 false negatives.

Fig. 7. Confusion matrix for INSDN

Fig. 8. Confusion matrix for CICIDS2017

Fig. 9. Confusion matrix for UNSW-NB15

2) The training and validation loss curves

It is worth mentioning that we observed the training
models of the 1DCNN-IDS resulting from the three datasets
to ensure the absence of overfitting or underfitting problems.
Figurine 10 displays the training and validation loss curves of
the proposed 1DCNN-IDS model using the InSDN dataset.
Figurine 11 shows the training and validation loss curves
for the same model used on the CICIDS2017 dataset, and
Figurine 12 shows the results for the UNSW-NB15 dataset.
These graphs serve as powerful tools for visualizing the
model’s performance over time across different datasets.

The training and validation loss curves provide valuable
insights into the model’s learning progress and generalization
ability. In an ideal scenario, both the training and validation
loss curves should decrease steadily and converge to a stable
value, indicating that the model is learning effectively from
the data and generalizing well to unseen samples. If the
training loss continues to decrease while the validation loss
starts to increase, it suggests that the model is overfitting,
meaning it is memorizing the training data instead of learning
meaningful patterns. Conversely, if both the training and val-
idation losses remain high and do not decrease significantly,
it implies that the model is underfitting, struggling to capture
the underlying patterns in the data [56].

The curves in Fig. 10, Fig.11, and Fig. 12 depict the
model’s learning progress, with the loss values consistently
decreasing as the training advances. The comparison between
training and validation losses provides crucial insights into
the model’s learning status on each dataset. Ideally, both
curves should exhibit a similar downward trend for each
dataset, indicating effective learning without overfitting or
underfitting. Any significant divergence between these curves
might suggest potential overfitting or underfitting issues, war-
ranting further investigation into the model’s generalization
capabilities.
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Fig. 10. Training and Validation Loss Curve for InSDN using 1DCNN-IDS
model

Fig. 11. Training and Validation Loss Curve for CICIDS2017 using
1DCNN-IDS model

Fig. 12. Training and Validation Loss Curve for UNSW-NB15 using
1DCNN-IDS model

The training and validation loss curves for the InSDN,
CICIDS2017, and UNSW-NB15 datasets, shown in Figures
10, 11, and 12 respectively, demonstrate that the 1DCNN-
IDS model is learning effectively and generalizing well
across different datasets. In all three cases, the curves are
closely aligned and exhibit a consistent downward trend,
converging towards stable values. This suggests that the
model is capturing meaningful patterns from the data and
improving its performance over time, without significant

overfitting or underfitting issues. The absence of a widening
gap between the training and validation losses indicates that
the model is not memorizing the training data but rather
learning to generalize to unseen samples. Comparing the
loss curves across the three datasets reveals similar patterns
of learning behavior, reinforcing the model’s robustness and
adaptability to various network traffic scenarios.

3) ROC and PR Curves

Receiver Operating Characteristic (ROC) curves and
Precision-Recall (PR) curves provide a more nuanced vi-
sualization of model performance by plotting the trade-off
between true positive rate vs false positive rate and precision
vs recall respectively at different classification thresholds.

Fig. 13. ROC curve for 1DCNN-IDS on three datasets:
InSDN,CICIDS2017 and UNSW-NB15

Fig.13 and Fig.14 presents the ROC and PR curves for the
evaluation of the 1DCNN-IDS model across three distinct
datasets: InSDN, CICIDS2017, and UNSW-NB15.From the
ROC curve, we can observe that the 1DCNN-IDS model
performs exceptionally well on the InSDN dataset, with an
AUC of 0.98, indicating excellent discrimination between
normal and attack instances. The model’s performance on the
CICIDS2017 dataset is also quite good, with an AUC of 0.95.
However, the model’s performance on the UNSW-NB15
dataset is relatively lower, with an AUC of 0.91, suggesting a
greater difficulty in distinguishing between normal and attack
instances in this dataset. The PR curves, on the other hand,
provide insights into the trade-off between precision (the
fraction of true positives among all positive predictions) and
recall (the fraction of true positives among all actual posi-
tives). These curves are particularly useful when dealing with
imbalanced datasets, where the positive (attack) instances are
significantly outnumbered by the negative (normal) instances.
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Fig. 14. RP curve for 1DCNN-IDS on on three datasets:
InSDN,CICIDS2017 and UNSW-NB15

From the PR curves, we can see that the 1DCNN-IDS
model achieves high precision and recall values on the
InSDN dataset, with an average precision (AP) of 0.98. The
model’s performance on the CICIDS2017 dataset is also
commendable, with an AP of 0.95. However, the model’s
performance on the UNSW-NB15 dataset is relatively lower,
with an AP of 0.91, consistent with the observations from
the ROC curve analysis.Overall, these results demonstrate the
effectiveness of the 1DCNN-IDS model in detecting DDoS
attack, particularly on the InSDN and CICIDS2017 datasets.

Finally, the performance metrics of the 1DCNN-IDS
model on INSDN, CICIDS2017, and UNSW-NB15 datasets
using the standard stepwise regression feature selection
method and without using the feature selection method, are
listed in Table VIII and IX, respectively.

TABLE VIII
PERFORMANCE METRICS OF THE 1DCNN-IDS MODEL ON

THE INSDN, CICIDS2017, AND UNSW-NB15 DATASETS WITH
STANDARD STEPWISE REGRESSION FEATURE SELECTION

METHOD

Metric InSDN (%) CICIDS2017 (%) UNSW-NB15 (%)
Accuracy 90.0 85.0 80.0
Precision 90.5 86.0 81.0

Recall 89.0 83.0 78.0
F1-score 89.5 84.5 79.5

TABLE IX
PERFORMANCE METRICS OF THE 1DCNN-IDS MODEL ON

THE INSDN, CICIDS2017, AND UNSW-NB15 DATASETS
WITHOUT FEATURE SELECTION METHOD

Metric InSDN (%) CICIDS2017 (%) UNSW-NB15 (%)
Accuracy 85.0 80.0 75.0
Precision 85.5 81.0 76.0

Recall 84.0 78.0 73.0
F1-score 84.5 79.5 74.5

As depicted in Table VIII, when the model was applied
with a standard stepwise regression feature selection method,
there was a noticeable decrease in performance metrics
across all datasets. Specifically, the accuracy dropped to
90.0% for InSDN, 85.0% for CICIDS2017, and 80.0%
for UNSW-NB15. In the same way, precision, recall, and
F1 scores went down. This shows that standard stepwise
regression helps choose features, but its improved version
is better at selecting the significant features contributing to
detecting DDoS attacks.

Meanwhile, the most significant performance drop was
observed when the model was applied without any feature
selection, as shown in Table IX. The accuracy drops to
85.0% for InSDN, 80.0% for CICIDS2017, and 75.0%
for UNSW-NB15. Precision, recall, and F1-scores followed
a similar downward trend. This decline in performance
metrics highlights the critical role of feature selection in
the model’s ability to accurately detect network intrusions.
Without feature selection, the model is likely overwhelmed
by irrelevant or redundant data, impeding its learning and
predictive capabilities.

The comparison of the 1DCNN-IDS approach using var-
ious feature selection techniques indicates the significance
of the feature selection method in IDS. Specifically, the
improved stepwise regression feature selection method sub-
stantially improves the model’s performance across different
datasets, as illustrated in Table VII. This demonstrates its
effectiveness in fine-tuning the model for optimal intrusion
detection.

C. Comparative Analysis

The proposed 1DCNN-IDS has undergone benchmarking
against several prominent IDSs leveraging DL algorithms.
This comparative evaluation utilizes the metrics outlined in
Section V-C. This assessment aims to determine the accuracy,
precision, recall, and F1-score of the proposed 1DCNN-
IDS in identifying intrusions within a complex network
environment, especially when compared to similar IDSs.

The comparison involves IDSs based on well-known DL
models, such as CNN-IDS[57], CNN with GRU-IDS[58],
LSTM-IDS[59], and CNN-IDS[60]. These models were cho-
sen as benchmark models due to their similar performance
characteristics. Fig 15 depicts a comparison between the pro-
posed 1DCNN-IDS and these benchmark models, including
CNN-IDS, CNN-GRU-IDS, LSTM-IDS, and a Deep Forest-
based NIDS. The comparison is based on four fundamental
metrics listed in Section V-C

As depicted in Fig. 15, the proposed 1DCNN-IDS ap-
proach distinguishes itself with exceptional performance,
achieving the highest accuracy at 98.2%. This signifies a
remarkable ability to correctly classify instances compared
to benchmark models. Notably, the precision of the proposed
1DCNN-IDS is impressive at 98.7%, indicating a low false
positive rate and effective identification of positive instances
while minimizing false alarms. Additionally, the proposed
1DCNN-IDS demonstrates strong recall at 97.8%, showcas-
ing its effectiveness in capturing actual positive instances and
maintaining a low false negative rate. The F1-score, a metric
that balances precision and recall, peaks with the proposed
1DCNN-IDS at 98.6%. This underscores its balanced per-
formance by accurately identifying positive instances while
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Fig. 15. Performance Comparison: Proposed 1DCNN-IDS vs. State-of-the-Art IDSs

minimizing false alarms. In comparison, other benchmark
models, such as CNN-IDS, CNN-GRU-IDS, LSTM-IDS,
and Deep Forest-based NIDS, exhibit lower performance
across these metrics. Consequently, the proposed 1DCNN-
IDS emerges as a promising IDS, outperforming its counter-
parts in various aspects of intrusion detection.

D. Discussion

The significant performance superiority of the 1DCNN-
IDS approach, as illustrated in Fig. 15, can be attributed to
two key contributions. Firstly, a hybrid objective function in-
tegrating AIC, ANOVA, and T-test statistics facilitates a more
focused selection of the most relevant input features from the
DDoS datasets. This hybrid function, when combined with
stepwise elimination, narrows down the feature space to a
vital subset, demonstrating high discrimination between at-
tack and normal classes. Feeding the selected subset features
to a customized 1DCNN-IDS model enhances the detection
capabilities. The collaborative use of hybrid feature selection
and an optimized 1DCNN-IDS model increases accuracy to
98.2%, precision to 98.7%, recall to 97.8%, and F1 to 98.6%,
surpassing existing methods across all key metrics.

Quantitatively, this highlights the 1DCNN-IDS’s reliable
identification of actual DDoS samples while minimizing
false alarms, supporting its effectiveness for real-world de-
ployment. Delving deeper into the performance gains, the
1DCNN-IDS correctly classifies a higher proportion of total
traffic, effectively balancing precision and recall, outperform-
ing alternatives by over 3% recall and 0.8% accuracy.

While the 1DCNN-IDS model shows strong DDoS de-
tection capability, open challenges remain for real-world
viability of IDS[57],[58],[59],[60]. The hybrid deep learn-
ing model from [58] achieves high accuracy but relies on
complex, time-consuming manual selection of architectures.
The LSTM and CNN models from [59] also do not match
the hyperparameters and layers of the neural networks to the

datasets better, which makes detection less accurate. Also,
the multi-stage Deep Forest classifier from [60] needs to be
tested on real SDN testbeds to ensure it works in software-
defined environments. A lot of work needs to be done to
make sure that existing models are still up to date with the
latest information about networks and to test how reliable
they are against inputs that are purposely misclassified [57]
and citehenry2023composition. There are also problems with
figuring out how data class imbalance, computational com-
plexity, and interpretability affect IoT environments with lim-
ited resources [59],[60]. The proposed 1DCNN-IDS model
solves these problems by using a more advanced automatic
statistical feature selection method that combines stepwise
regression with a hybrid objective function. This model
streamlines architecture and hyperparameter tuning, conse-
quently enhancing accuracy. The hybrid objective function
formulation ensures that the inputs are optimized for the
specific characteristics of the DDoS data. This makes sure
that the feature selection process is highly customized and
effective. The 1DCNN-IDS model, with its automated input
filtering and precision-tuned architecture, marks a significant
step forward in advancing DDoS detection, bringing it closer
to providing robust real-world protection.

In our approach to DDoS detection in SDNs, we introduce
a new approach that leverages advanced machine learning
techniques, distinguishing itself significantly from existing
methods through its adaptability and efficiency. Unlike tra-
ditional detection systems that often rely on static rule sets
or simple anomaly detection algorithms, our model employs
a dynamic, data-driven approach. This enables it not only
to identify a broader range of DDoS attack types, including
those that employ sophisticated masking techniques but also
to adapt over time as new patterns of attacks emerge. Our
method shows particular strengths in environments with
evolving attack vectors, highlighting its robustness under
various network conditions.
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Furthermore, we have conducted a comprehensive com-
parison with leading existing methods, demonstrating that
our approach not only achieves higher accuracy rates but
also maintains superior computational efficiency. This ef-
ficiency is crucial for SDNs, where the rapid processing
of large volumes of network traffic data is essential. Our
model optimizes resource usage, ensuring minimal impact
on network performance while actively monitoring for and
mitigating DDoS threats. This balance of high detection ac-
curacy with low computational overhead offers new insights
into creating scalable and effective security solutions for
modern networks, addressing one of the critical challenges
in cybersecurity today.

VII. CONCLUSION

The effectiveness of the proposed 1DCNN-IDS model in
classifying network intrusion data was confirmed through ex-
perimental results, specifically within an SDN environment.
The model displayed outstanding performance on the InSDN
dataset, underscoring its adaptability and robustness to var-
ious network activities. Remarkable precision in identifying
malicious activities was demonstrated, an attribute that is
vital to minimizing the potential negative impact of false
positives in IDSs within SDNs. Additionally, high recall
rates underline the model’s ability to correctly pinpoint a
significant percentage of actual positive cases, affirming its
utility in real-world SDN scenarios. It’s important to note
that various factors can affect how well DL models perform,
such as the suggested 1D CNN-IDS. These encompass the
selection of hyperparameters, the intricacy of the model’s
architecture, and the unique attributes of the dataset. As
a result, ongoing research and meticulous fine-tuning of
the model may be required to ensure optimal performance
across diverse contexts. In summary, this paper underscores
the promising potential of DL methodologies, specifically
1DCNN, in tackling complex classification tasks within the
SDN environment. These findings pave the path for future
research and advancements in the classification of network
data, specifically within SDN environments, and contribute
to the further development of intrusion detection systems.
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