
A Sustainable Data Encryption Storage and
Processing Framework via Edge

Computing-Driven IoT
Qi Li, Jian Huang*, Sihan Li and Chenze Huang

Abstract—Edge computing serves as a critical intermediary
for secure data exchange between IoT devices and data centres
in healthcare, where the protection of sensitive patient data
is paramount. This study presents UdesMec, a comprehensive
edge computing framework designed for efficient and secure
data storage and processing in such contexts. Focusing on the
challenge of implementing robust data security models in the
presence of limited resources at edge nodes, UdesMec employs
a unified encryption approach that is particularly suited for
expert knowledge-based prediction of complex critical medical
events. Using secret sharing and homomorphic encryption, it
ensures the confidentiality and integrity of sensitive patient data
transmitted by IoT devices, while enabling efficient computation
of prediction algorithms on a cloud server. The experimental
evaluation confirms the strong encryption performance and the
ease of use of UdesMec, positioning it as a promising solution for
the secure and reliable prediction of complex critical medical
events in healthcare systems based on edge computing.

Index Terms—Network security, edge computing, homomor-
phic encryption, Internet of things

I. INTRODUCTION

In the context of the rapid evolution of smart transport,
location services, mobile pay and other innovative service
paradigms, driven by disruptive advances in IoT technology
and the widespread deployment of 5G networks. There
is a growing need to leverage these advances to improve
healthcare, particularly in the area of expert knowledge-based
prediction of complex and critical medical events [1]. The
exponential proliferation of smartphones, wearable devices,
smart TVs, and various sensor-equipped gadgets has led to
an unprecedented surge in data generation at IoT terminals
[2], [3]. It is estimated that by 2020, global data transmission
surpassed a staggering 15.3 quintillion bits [4]. Concurrently,
the number of Internet of Things (IoT) devices continues its
relentless ascent, reaching approximately 50 billion in the
same year [4].

In this era of pervasive connectivity, the traditional central-
ized big data processing approach, reliant on the cloud com-
puting model, is increasingly found wanting in addressing the
pressing demands for real-time processing, data security, and
energy efficiency when confronted with the deluge of data
generated by network edge devices [5], particularly in the

Manuscript received December 5, 2023; revised July 5, 2024.
Qi Li is a Lecturer of Shaoxing University, Shaoxing, Zhejiang 312000,

China (e-mail: lsongru1106@163.com).
Jian Huang is an Associate Researcher of Shaoxing University, Shaoxing,

Zhejiang 312000, China (e-mail: huangjian@usx.edu.cn).
Sihan Li is an undergraduate student of Shaoxing University, Shaoxing,

Zhejiang 312000, China (e-mail: li.sihan.0815@gmail.com).
Chenze Huang is a PhD candidate of Research and Development Institute

of Northwestern Polytechnical University, Shenzhen, Guangdong 518057,
China (e-mail: yxy 0713@qq.com).

healthcare domain where time-sensitive decision-making can
be lifesaving. This underscores the need for novel solutions
that can effectively leverage IoT-generated data and expert
medical knowledge to predict and manage complex, high-
risk medical events, thereby revolutionizing patient care and
outcomes in the era of digital health [6].

Our research is firmly anchored in this landscape, fo-
cusing on the development and application of advanced,
expert knowledge-driven predictive models for identifying
and mitigating complex, life-threatening medical events. By
integrating cutting-edge IoT technologies, real-time data an-
alytics, and deep domain expertise, we aim to bridge the gap
between the voluminous data generated at the network edge
and the urgent need for swift, accurate, and informed clinical
decision-making in the face of critical health situations.

Edge computing is a novel service that enables the pro-
cessing of data or tasks to occur at the network edge, in
close proximity to the data storage location [7]. The first
cloud computing facility relocates all or a portion of its
computational tasks to the data origin for execution. The
network edge refers to any device or system that performs
tasks, ranging from the data source to the cloud computing
center. These organizations possess edge computing systems
that integrate the primary functionalities of networking, pro-
cessing, storage, and applications. These platforms provide
consumers with computer services that are real-time, dynam-
ic, and intelligent. The concept of processing data locally also
provides more efficient assistance for safeguarding privacy
and data security [8]. Edge computing is becoming crucial in
domains such as the Internet, industrial robotics, autonomous
vehicles, intelligent transportation, and other related fields
[9]. This innovative autonomous architecture integrates cloud
computing’s storage, computation, and network tools with the
edge of the network, enhancing the performance of large,
collaborative online applications.

Large terminal networks make terminal device data stor-
age, sharing, and other security concerns complex. Once
the central processing node is attacked, the edge computing
network will receive incorrect control directives, which might
damage persons and property [6]. Edge computing applica-
tions commonly use real-time data to operate equipment.
Mithun et al. [10] detailed edge network privacy security.
Lu et al. [5] advocated IoT data privacy and aggregation. An
integrated approach for secure data management and com-
putation in edge computing environments is proposed here.
Considering the expansive array of sensor nodes, diverse
device types, and the network’s inherent diversity, a standard-
ized protocol for encrypting data at the edge nodes has been
devised, designed to be seamlessly integrated with various

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



application contexts. Our proposed framework delineates the
architecture of edge computing into distinct tiers: cloud
services, edge processing, and application interfaces. Owing
to the limited computational and storage capabilities inherent
in edge node data handling, cryptographic techniques such
as secret distribution and encryption that allows computation
on ciphertexts are utilized to transmit data securely and
offload the bulk of processing tasks to the cloud server. The
cloud computes and analyzes the edge node ciphertext. The
encryption approach protects user data. The innovations of
this paper are summarised as follows:
• We designed a complete data encryption model for edge

computing. The edge node and cloud server use this
approach to securely transfer ciphertext IoT data to the
edge layer, cloud service layer and application layer.
The cloud server handles the operation and storage of
the ciphertext, offloading the computational and storage
load from the edge computing nodes. Data collection
and processing under encryption is efficient.

• We engineered a security framework at the applica-
tion level for user authentication and permission man-
agement, which facilitates the secure transmission of
IoT sensor information to the cloud’s computational
infrastructure while mitigating the concerns regarding
potential cyber threats. Cloud providers are capable
of aggregating their server capacities to facilitate edge
computing operations, serve a multitude of user commu-
nities through a unified hardware and software platform,
and regulate the data access permissions for users.

• We evaluated the influence of the model on communica-
tion and computational performance through numerous
experiments, analyse its suitability for real-world edge
computing applications, and demonstrate the effective-
ness of our proposed model.

II. RELATED WORK

Currently, cloud computing has well-developed and com-
prehensive security protection methods and technologi-
cal solutions [11]. Nevertheless, the evolving features of
lightweight devices and the diverse architecture of edge
computing render the security paradigms of conventional
cloud computing obsolete [12]. The use of cryptographic
technology in the edge computing environment is crucial for
resolving data security concerns [13].

Edge computing design complicates key negotiation since
cloud servers, edge servers, and users hold and handle
key information differently. Key agreement technology is
needed for edge node-cloud server communication [14].
For security, each edge computing connection needs a key.
Authentication and session keys are needed by the device
and communication layers, respectively. Comprehensive and
secure key systems are necessary. An identity-based anony-
mous authentication key agreement system for mobile edges
was developed by Jia et al [15]. The protocol assures user
anonymity and non-traceability and verifies both participants’
identities in one message exchange cycle. The protocol’s
implementation is constrained by device processing capacity,
even if the calculation time is faster than other techniques.
The authors’ [16] three-party key negotiation approach for
the CK (Canetti and Krawczyk) security model does not
preserve device and server anonymity.

Fig. 1: Fully homomorphic encryption.

The most prevalent use of cryptography in edge computing
is communication data encryption. Edge networks may store
localized data shared by several users and have a lower data
storage capacity than the cloud [17]. The edge computing
framework’s public key encryption algorithm is too difficult
for terminal devices with limited resources to calculate
for decryption [18]. Lightening the encryption algorithm
remains a challenge. Most public-key encryption systems are
identity-based [12]. Kim et al. [19] presented identity-based
broadcast encryption for edge computing data encryption.
It decreases terminal device processing and communication
costs by offloading partial decryption to the edge. When
edge devices require more sophisticated computing resources
and services to process and analyze data, they outsource
it to a third party, separating ownership and data control.
Fully homomorphic encryption [2], [3] is a practical strategy
for data outsourcing since it ensures that ciphertext algebra
operations yield the same results as plaintext. Fig. 1 depicts
completely homomorphic encryption.

Traditional cloud computing privacy protection techniques
do not apply to edge devices, and edge nodes cannot execute
algorithms [14]. Existing related efforts cannot combine
cloud and edge computing effectively [4], [16]. This study
proposes a hierarchical security integration paradigm for end-
cloud integration that securely stores data in the cloud and
edge nodes according to application needs. The model may
also reliably interface with end-cloud data, deliver suitable
apps, and fully integrate cloud and edge computing.

III. UDESMEC MODEL

The full hierarchical security integration model is shown
in Fig. 2, which is comprised of three layers: the application
layer, the edge layer, and the cloud service layer.

Edge Layer: It is comprised of interconnected networks
of IoT devices and nodes specifically designed for edge
computing. Every terminal network consists of a designated
quantity of edge computing nodes, which are charged with
the collection and processing of network information. Within
the structure of every terminal network, a precise number of
edge computing nodes is designated to undertake the critical
tasks of gathering and meticulously analyzing the pertinent
network data. Each terminal network is equipped with a set
number of edge computing nodes that are entrusted with
the responsibility of amassing and scrutinizing the network
data. These equipments, such as personal computers, servers,
or base stations, are characterized by their computational
capabilities. They collect data from IoT devices and pro-
vide specialized capabilities for calculating and storing data.

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



Fig. 2: Hierarchical security integration model diagram.

The cloud service layer and application layer’s network
architecture is resilient to the fluctuating numbers of IoT
devices and edge computing nodes within the edge layer.
The expandability ensures that the edge layer devices are
adept at handling extensive decentralized networks. The
network’s design is such that it accommodates changes in
the IoT ecosystem without disruption, thereby enhancing
its suitability for expansive and distributed networks. The
architecture’s inherent flexibility ensures that the edge layer
remains operational and efficient, even with the ebb and flow
of IoT devices and computing nodes.

Cloud Service Layer: Cloud servers from service
providers receive encrypted, pre-processed data from edge
computing nodes. Edge nodes homomorphically encrypt
data, allowing for direct encryption on the cloud server
without the need for cloud service layer decryption, thereby
safeguarding the privacy of IoT device data.

Application Layer: Data owners use service provider
application software to link many IoT devices to the edge
computing network. For cloud storage, IoT devices transfer
data to edge nodes. Data viewing and analysis must be
available in the service provider’s application system. Service
providers must optimize server resources to serve clients.
Users may access diverse data using a sophisticated user
authentication and access control method to secure data and
prevent hostile attackers from accessing it. Providers furnish
a comprehensive edge computing framework enabling user
collectives to interface with a centralized system aligned
with their credentials, for the purpose of aggregating and
analyzing data. The edge computing framework offered by
service providers is designed to cater to various user groups,
each with access to a centralized system tailored to their
specific identities, facilitating the aggregation and analysis
of data.

A. Edge Layer Ciphertext Model

The IoT connects tangible things to the digital world using
integrated circuits and detectors. A large, multi-geographical
sensor network can collect a significant amount of valuable
data to improve people’s understanding of their environment.
Visual data, the primary type of data collected by surveillance
cameras, is used extensively in autonomous monitoring tasks
such as road surveillance, pedestrian flow identification and

anomalous activity alerts. Advancements in image process-
ing and data analysis technologies allow anyone to utilize
surveillance camera footage for various data analysis tasks,
including quantity statistics, face recognition, license plate
recognition, and real-time tracking.

This section primarily uses the experimentally developed
system as a case study to clarify the concept of the edge
layer cipher. The IoT terminals refer to cameras that are part
of a distributed network. These cameras communicate video
data to the edge computer node. The edge computing node
analyzes the picture to detect people, producing their coor-
dinates, color histograms, and other pertinent data. Because
of the vast volume of data, the character color histogram
is classified as unstructured data and sent as a file inside
the integrated security system. In order to establish the data
model of the system, it is crucial to generate an individual
meta-database for each edge node. This meta-database will
store distinct keys and supplementary data.

For edge node a, randomize two prime numbers p1 and
p2 (typically 1024 bits) to get their product n using the RSA
technique. Formula (1) generates two prime numbers (p1 =
53, p2 = 59) for node a, and n = 3127, yielding ϕ(n)= 3016.
We use smaller keys to enhance readability and simplify
computation. We must produce a random number p, which
is a positive integer that is relatively prime to n.

ϕ (n) = (p1 − 1) (p2 − 1) (1)

After the edge node’s metadata has been set up, the node
initiates and is equipped to accept the raw video footage
obtained from the cameras. Upon the completion of the
recognition processing for each frame of the camera data, the
derived structured data, which is illustrated in Table I. The
data consists of the frame sequence number, identified as id,
the camera number, identified as cam id, the time stamp,
identified as timestamp, the coordinates of the person’s
square, identified as x1, y1, x2, y2, and the RGB histogram file
of the person. The symbols ”S” and ”PRI” are designated as
reserved fields for ciphertext operation. Each field in the edge
node is assigned a distinct column key, denoted as ck. The
edge node then uses the produced n to acquire a ciphertext
value, represented as Ve, for each field. The value of Vkey

is produced by the combination of ckA and ri, as shown in
Formula (2).

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



TABLE I: COMPARISON OF COMMUNICATION
OVERHEAD OF THE CIPHERTEXT MODEL.

Field V ck Ve

id 1 NULL NULL
cam id 1 (1,3) 389

timestamp 00001 (2,2) 1642
x1 21 (3,3) 2549
y1 93 (2,5) 1041
x2 172 (2,7) 811
y2 469 (9,10) 495

histogram xxx,npy NULL NULL
S 1 (2,3) 2514

PRI 3 (1,5) 387

Vkey = g (r, (x, y)) = xprymodϕ(n)modn (2)

Next, Ve is produced by combining Vkey with the plaintext
V. Ve represents the encrypted data value, as shown by
Formula (3).

Ve = E (V, Vkey) = V V −1keymodn (3)

The term V −1key refers to the modular inverse of Vkey .

VkeyV
−1
keymodn = 1 (4)

The secured structured data includes the derived structured
information, including a person’s coordinates. The histogram
provides the essential data for identifying individuals, pre-
sented as a document. The edge node must transmit solely
the encrypted value Ve along with the individual’s histogram
document to the cloud service layer for subsequent storage
and processing by the cloud server. In scenarios where edge
nodes have limited storage capabilities, they may only be able
to retain minimal original video data, or in some instances,
may not be able to store any original video data at all.
Moreover, by utilizing the RabbitMQ message queue for the
transfer of data between the cloud service layer and the edge
layer, the data is retained at the edge node during periods
of weak or absent network connectivity. As soon as net-
work connectivity is reestablished, the data transmission will
proceed without incurring any losses attributed to network
interruptions.

B. Ciphertext Model of Cloud Service Layer

Each edge node supplies frame data for the cloud server’s
use. Owing to delays inherent in network transmission, the
identical frame data from different nodes is not simultane-
ously deliverable to the cloud server. Given the inherent
delays in network transmission, frame data from multiple
edge nodes cannot be simultaneously conveyed to the cloud
server. Consequently, due to the network latency, the frame
data from disparate edge nodes cannot be synchronized
in their transmission to the cloud server. Frame sequence
numbers are used to synchronize frame data across devices.
TABLE I shows that the frame sequence number is saved in
plaintext, which simplifies cloud service data synchronization
and avoids decrypting data each time.

Once the cloud server has synchronized the frames, the
system matches the observed entities with the reference set,
employing technology for re-identifying entities to acquire

movement paths of subjects under surveillance. Upon syn-
chronization of the frames by the cloud server, the system
engages in a comparison of the observed entities with a refer-
ence set, applying re-identification techniques to ascertain the
movement trajectories of individuals captured by the camera.
Post the synchronization of frames on the cloud server, the
system then leverages character re-identification technology
[20] to extract the trajectory data of the individuals within the
camera’s view, which is subsequently encrypted and securely
stored.

TABLE II: A SAMPLE OF THE DATA ORGANIZATION
FOR ENTITY MOVEMENT RECORD IN THE
CLOUD-BASED SYSTEM (n = 2907, p = 1).

Field V ck Ve

id 1 NULL NULL
cam id 1 (1,3) 389

timestamp 00001 (2,2) 1642
x1 21 (3,3) 2549
y1 93 (2,5) 1041
x2 172 (2,7) 811
y2 469 (9,10) 495

histogram xxx,npy NULL NULL
S 1 (2,3) 2514

PRI 3 (1,5) 387

The cloud service layer maintains the confidentiality and
accuracy of the entity movement records by safely storing
the encrypted data within the cloud infrastructure. Owing to
the implementation of homomorphic encryption within the
data framework, the data proprietor can promptly perform the
requisite computations on the encrypted data without com-
promising the security of the information. When it becomes
essential to access the data, the data owner may decode the
data to acquire the corresponding plaintext information.

C. User Authentication and Key Transmission in Application
Layer

The application layer comprises entities such as service
providers and end-users. The service providers, who are the
custodians of cloud server assets, adopt a security integration
methodology at the edge nodes. Within the application layer,
service providers, who possess cloud server assets, imple-
ment a security consolidation strategy on the edge nodes to
ensure data protection and seamless operation. The database
key (containing n, p, p1, p2, and column key ck) is sent
and stored in a secure database, functioning as a trusted
third party (TTP) to authenticate data owners accessing
their own data. Data owners may also keep edge node key
information and develop their own encryption and decryption
client applications. This strategy also protects cloud service
provider data. Due to expense, small data owners generally
don’t have a security key database or a powerful data firewall
like cloud service providers. The model in this section solely
considers the service provider keeping the key.

Users must receive the decryption key from the service
provider to access plaintext data. User authentication verifies
identity and provides keys. Cloud servers and TTP are SP
resources. The user logs in to TTP and requests an access
token (AT) with its identifying information. TTP returns user-
generated AT after identification verification. The system
requests database key information from SP when the user
approves AT for the client application. Once AT is verified,

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



Fig. 3: User authentication and key transmission model
diagram.

SP sends the database key information (e.g., n, p, ϕ(n), ck)
to the client application. The client application utilizes AT to
request the ciphertext from SP’s cloud server after obtaining
the key information. The cloud server sends the database
ciphertext to the client application after verifying AT. After
decrypting using the database key, the client application
delivers the plaintext data. Fig. 3 shows the full ciphertext
acquisition procedure.

D. Data Analysis and Application

1) Ciphertext Data Operation in Cloud Service Layer:
The strategy for integrated security entails initial data pro-
cessing from IoT end-devices at the edge, followed by
the secure transmission to the cloud for secure storage in
encrypted form. The data, once uploaded, is stored securely
in the cloud in an encrypted format, enabling the data owner
to perform operations on the cloud-hosted data and receive
corresponding encrypted results. Upon the cloud’s successful
re-identification of individuals in each frame of the transmit-
ted data, it proceeds to calculate the individual’s position
relative to the camera, utilizing this data to generate a map
illustrating the person’s movement path. To perform this
operation, the ciphertext values x1 and x2 of the coordinate
data must be added together to produce the ciphertext result.
Then, the ciphertext must be decrypted by the data owner to
determine the character’s relative location on the x-axis of the
video. The UdesMec system is compatible with the majority
of SQL statement operators. Initially, this text presents the
implementation of encrypted query for addition, subtraction,
and multiplication operators.

(1) multiplication operator
The data table T has two columns, A and B, which are

encrypted. The column has secret keys ckA = 〈xA, yA〉 and
ckB = 〈xB , yB〉, respectively. If the product of A and B
yields column C, then the column key of column C may be
represented as ckC = 〈xC , yC〉. In order to determine the
value of C based on the values of A and B, it is necessary
to compute Ce and ckC . The user-side protocols, mul x and
mul y, from the Custom Protocol Stack are run to get ckC
in the following manner.

ckC = 〈xC , yC〉 = 〈xAyB , xA + yB〉 (5)

Perform the mul y ce protocol on the cloud database in
order to get the value of ce in the following manner.

Ce = AeBemodn (6)

Formulas (2) to (4) provide the following equation.

Ckey = xC · pryC = Akey ·Bkey (mod n) (7)

Thus, it can be shown that

C = Ce ·Ckey = A ·A−1key ·B ·B
−1
key ·Akey ·Bkey = A ·B (8)

(2) Addition and subtraction operators
To perform multiplication, the result column may be

acquired by multiplying the values of Ae and Be. Similarly,
ckC can be produced by multiplying the values of ckA
and ckB . In order to enable the addition and subtraction
operators, the key update operation, denoted as U, as well
as two auxiliary columns, S and PRI, must be inserted to
complete the operation.

Each row in column S has a constant value of 1, whereas
each value in PRI is a randomly generated prime number.
The key update operation U may produce a new column,
denoted as C, by applying the operation to the input column
A and the coordinates < xC , yC >. The resultant column,
denoted as C, is obtained by updating column A using the
operator U (C=A). Additionally, the starting value of ckC
is set to a specified value based on the requirements of
the operation. The inverse of Skey , denoted as Se, may be
derived using Formula (3). Declare two temporary variables,
j and k, then instruct the user to do the specified actions to
acquire the values of j and k.

j = y−1S (yC − yA)mod ϕ (n) (9)

k = xAx
j
Sx
−1
C (10)

Once the values of j and k are obtained, they are sent to
the cloud database. The cloud database does the following
operations.

Ce = k ·Ae · Sj
e (11)

Upon doing the computation, it is evident that the value in
column C is equivalent to the value in column A, as shown
by the following proof.

C = CeCkey = xA · xjS ·Ae ·
(
S−1key

)j

· pryC = A (12)

When it comes to completing the operation, the key update
operation U provides assistance to other operators. Despite
the fact that the key update operation U is intended to assure
the secure functioning of these operators, it is essential that
its own security be maintained.

Consider C=A+c, where c is a constant, as with multipli-
cation. Calculate A+ (S · c), where S is a constant column.
To finish the procedure, compute C= A+B. Metadata in the
edge node database includes n = 3127, p = 2, p1 = 53, and
p2= 59. The coordinate values x1 = 23 (ckx1

= 〈2,2〉) and x2
= 194 (ckx2

= 〈1,3〉) are encrypted in Formula (4).

Vkey = g (r, (x, y)) = xprymodϕ(n)modn (13)

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



Fig. 4: Flow of ciphertext acquisition.

The ciphertext values, denoted as vex1
= 2739 and vex2

= 806, are derived from the same frame data. The pair of
encrypted values is stored inside the cloud service layer.
The cloud is not required to acquire the information but
simply needs to execute the key update operation based on
the provided formula.

j = y−1S (yC − yA)modϕ (n) (14)

k = xAx
j
Sx
−1
C (15)

Next, using Formula (16), the ciphertext is combined (vex1

and vex2
) in the cloud, resulting in the temporary ciphertext

ve = 834.

ve = v′ex1
+ v′ex2

(16)

Using Formula (17), the ciphertext value 834 corresponds
to a plaintext value of 217, which matches the result obtained
by directly adding the plaintext values.

V = D (Ve, Vkey) = VeVkeymodn (17)

The transient encrypted data, denoted as ve= 834, may be
kept on the cloud server according to the user requirements,
awaiting retrieval by the application layer or for further
processing. The cloud is able to perform calculations on
encrypted data without the need for decryption, thanks to
the use of the homomorphic encryption technique. This ca-
pability effectively addresses the majority of data processing
and analysis requirements.

2) User Layer Data Application: The data proprietor
conducts an analysis of the encrypted data at the application
tier, delegating computational and storage responsibilities to
the cloud infrastructure. The individual who owns the data
performs an in-depth analysis of the encrypted data at the
application tier, while entrusting the cloud infrastructure with
the execution of computational processes and data storage.
After scrutinizing the encrypted data at the application layer,
the data owner then delegates the associated computational
and storage tasks to the cloud service layer. It just requires
ciphertext retrieval and decryption. The edge layer’s edge n-
ode keeps just its unique database key to prevent privacy data
from leaking to other edge nodes if acquired by an attacker.
However, the attacker cannot pass TTP user authentication

but may obtain edge node database key data. Only TTP-
authenticated users may access cloud service layer ciphertext.

A comprehensive model of the whole security integration
model that has been implemented in the system application
is shown in Fig. 4. A re-identification of the human being is
performed, and then the encrypted trajectory data of person
1 is stored on the cloud server.

Video data from each camera is pre-processed and encrypt-
ed at the edge node. Data with extracted character features
is encrypted. The cloud server collects and processes the
secured data, which is then transformed into an encrypted
format to yield the secured trajectory information for each
entity, encompassing details such as the individual’s coor-
dinate location, relative positioning, and associated camera
identifier. Once the data has been encrypted and stored on
the cloud server, the data proprietor is required to verify their
identity with the service provider to acquire the decryption
key for the edge node, and subsequently either decrypt or
encrypt the cloud data within the surveillance framework
to extract the outcome data. The service provider ensures
the secure management of decryption keys across all edge
nodes, thereby eliminating the need for the data owner to
retain all key details at the application layer. Offerings may
encompass a centralized login mechanism and tailored ap-
plication systems catering to diverse user cohorts, alongside
hardware resource orchestration and allocation, empowering
data owners to oversee edge nodes and IoT devices without
the overhead of software application maintenance.

E. Security Proof

In this section, we mainly discuss the possible attack ways
against UdesMec system. For the data model, the scope of
the attack is shown in Fig. 6. The data base management
system (DBMS) on the data owner (DO) side has fields ck,
n and p, and the DBMS on the cloud data base (CDB) side
has fields E(r) and Ve. The following describes two possible
attack modes against UdesMec system.

1) Chosen-plaintext Attack: A known-plaintext attack (K-
PA) occurs when the attacker has access to both the cipher-
text and associated plaintext values in the cloud database.
Chosen-plaintext attack (CPA) allows the attacker to choose
a specific plaintext and have the database encrypt it to obtain
the corresponding ciphertext. Attackers can choose a specific
plaintext to encrypt in CPA, making it more dangerous than
KPA and able to extract more information about the key.

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



Fig. 5: Application system graph based on security integration model.

Fig. 6: Possible attack modes and data fields involved in the UdesMec model.

Assuming that the attacker can obtain the ciphertext value
Ve stored on the CDB side, and the attacker has obtained
the plaintext value V corresponding to its ciphertext Ve, the
known-plaintext attack can be realized. The attacker pretends
to be an ordinary UdesMec user, uploads the plaintext data
value V, and observes their ciphertext value Ve, and can carry
out chosen-plaintext attack.

Theorem: The column key of column A is ckA=<xA,yA>.
Given the row key set of column A, it contains several
Vkey and pr corresponding to each row. The attacker cannot
calculate yA in column key ckA=<xA,yA>.

Proof : When an attacker performs a CPA attack, he gets
Ve and V. According to Formula (3), Ve can be calculated. In
the UdesMec data model, the model generates a large prime
number n through RSA algorithm. Its public key is defined as
<e, n>. If the attacker has the knowledge obtained by CPA
attack, he can obtain any ciphertext V

′
= V mod n of any

plaintext value V. Then the attacker’s goal is to obtain the
private key <d, n>, v = v

′dmodn. The attacker can design
three steps to achieve this goal. First, a random value p is
generated, which is called P̂ . Then, select a row at random
P̂ and v = P̂ r̂. Finally, v

′
= ve is calculated. Assuming

that v is the row key and the value of pr is p
′
. The attacker

can repeat the second and third steps repeatedly until they
have enough data pairs, and then crack UdesMec encryption

algorithm according to the column key <x=l, y=d>. The
attacker gets the value of d, and finally get the RSA private
key and crack the RSA algorithm. It can be proved that the
algorithm strength of UdesMec is the same as that of RSA.

Therefore, it can be concluded that even if the attacker
obtains Vkey and ciphertext column values, it still cannot
obtain the plaintext value of the column.

2) Key Update Security: Suppose that the attacker can
obtain the ciphertext value and j, k, ckA in CDB, as shown
in Fig. 13. It can be proved here that the attacker cannot
infer ckC and ckS from these data.

Theorem: Given j, k and ckA of key update operation, it
can be guaranteed that there is no less than ϕ(ϕ(n)) possible
combinations of ckC and ckS .

Proof : After the attacker has j, k and ckA, the calculation
is constructed first as follows.

j = y−1S (yC − yA)modϕ (n) ,∀ŷS ∈ [1, ϕ (n)] (18)

gcd (ŷS , ϕ (n)) = 1,∃ŷC = yA + pŷSmodϕ (n) (19)

Since ys and ϕ(n) are mutually prime numbers, it can
be concluded that there are more than ϕ(ϕ(n)) possibilities
for ŷS and ŷC . And ϕ(n) is the Euler function, which is

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



generated by two large prime numbers P1 and P2. It is
difficult for attackers to infer the results, and its security
is guaranteed by RSA.

IV. EXPERIMENTS

The system with the suggested security model (UdesMec)
stores and processes user privacy data in the form of cipher-
text. We primarily assess the system’s feasibility and then
confirm that the proposed system can ensure data security
and privacy. The experiment employs a cloud-based server
equipped with an Intel Xeon processor e3-1270 operating
at 3.40GHz for performing encrypted data computations, in
conjunction with four separate personal computers acting in
the capacity of edge computing units.

These machines are equipped with an Intel Core i5-
6200U@2.3GHz CPU and an NVIDIA GeForce GTX 760
2GB graphics card. The camera records videos at a resolution
of 640×480 and a maximum frame rate of 3 frames per
second. We created a system for tracking and predicting hu-
man trajectories in a multi-camera environment. The system’s
prototype program is coded in Python.

A. Analysis of Communication Cost of System

This section is principally dedicated to scrutinizing the
communicational load that comes with the execution of a
security protocol. Furthermore, an analysis is conducted to
compare the proposed encryption technique with other state-
of-the-art techniques. The methodologies for comparison are
detailed subsequently.

AggBPE [21]: The ciphertext is represented as ve =
gmrnmodn2 and stored as two distinct ciphertext values,
denoted as xi and xi2. Suppose the experimental parameters
encompass 1024 bits and the number of bits squared equals
2048, the necessary storage capacity for data generated by
N IoT devices is 4096N bits.

LPDA [22]: The algorithm combines the values of
xi and xi2 into a ciphertext represented as cis =[
1 + n× aj ×

(
xi × α0 + x2i

)]
modn2. As a result, the LP-

DA stores a total of 2048×N bits.
TPCS [22]: The approach employs a pseudonym and a

Paillier password technique to guarantee the confidentiality
of the processors. It further establishes three authentication
techniques to guarantee that only the genuine processor can
successfully carry out the authentication procedure.

Table III presents the communication overhead of the three
kinds, which varies depending on the quantity of equipment.
The security paradigm outlined in this section offers distinct
benefits compared to current encryption methods in terms of
communication overhead.

B. Analysis of System Performance Execution Cost

This section focuses on data encryption overhead’s effect
on model application performance. Develop TPCS, LPDA,
and AggBPE prototype programs to start the experiment.
To assure experiment fairness, we standardized all model
parameters to the same number of bits and encrypted the
plaintext value. The average value of the 50-run experiment
is taken. The experimental findings are in Figures 7 and 8.
The suggested method and three alternative models perform
worse than plaintext operations, according to experiments.

TABLE III: ANALYSIS OF NETWORK
COMMUNICATION BURDEN IN ENCRYPTED

SCHEMES

IoT device number AggBPE LPDA TPCS UdesMec
0 0 0 0 0

100 0.45 0.28 0.37 0.19
200 0.75 0.46 0.69 0.28
300 1.21 0.58 1.12 0.39
400 1.58 0.76 1.38 0.41
500 2.08 1.1 1.76 0.5
600 2.43 1.22 2.18 0.56
700 2.78 1.43 2.34 0.69
800 3.18 1.54 2.83 0.73
900 3.58 1.69 3.07 0.93

1000 4.05 2.01 3.29 1.1

Fig. 7: Average encryption cost per frame.

This study presents a ciphertext model with reduced com-
putational cost and better performance than the other three
solutions at the edge and in the cloud.

The model processes structured data in a unified edge
computing environment. To determine how much the ci-
phertext model costs for various data processing tasks, we
examine its average time cost under common operators. The
results are in Table IV. It illustrates how the three operations
generally operate slower on ciphertext than plaintext. In the
encryption model, adding and subtracting are multiplications.
The encryption model includes a key updating mechanism
that slows the procedure. Addition and subtraction don’t
tax modern computer hardware. System overhead makes the
ciphertext model unacceptably sluggish, even if it adds and
subtracts 50 times faster than plaintext in 0.0087 ms and
0.0084 ms per frame.

Fig. 8: Average encryption cost per frame.

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



TABLE IV: THE MULTIPLE OF OPERATION COST OF
DATA CIPHERTEXT OPERATOR RELATIVE TO

PLAINTEXT COST

Operation Multiply Add subtract
Average Time Cost 9.86× 58.19× 51.86×

C. System Feasibility Assessment

This section is dedicated to evaluating the system’s capa-
bility when integrated with a security framework, focusing
on its ability to ensure a processing time within acceptable
limits. The objective here is to illustrate the feasibility of
the model presented in this study within a practical edge
computing scenario. In the experimental setup, a network
of nine cameras is utilized to simulate a camera network,
where the cameras continuously collect raw video footage,
capturing images at a frequency of three frames per second.

The procured images are then processed to identify and
catalog the motion and color profile of individuals present
within the footage by leveraging the YOLO algorithm [23].
The interaction between the cloud service and edge layers is
facilitated through socket communication, employing TCP/IP
protocol for data exchange. As soon as the frame data is
procured, it is promptly dispatched to the cloud server, which
performs instantaneous encrypted data processing on the
received information to ascertain encrypted details regarding
the person’s relative location. The calculation formula for
the relative position rp of the person along the x-axis of the
camera in the experiment is based on the assumption that
the camera resolution has a width of Camw and a length of
Camh.

rp =
(x1 + x2) /2− Camw/2

Camw/2
(20)

The formula shown above indicates that in order to obtain
the relative position rp, it is essential to perform a multi-
plication operation that is not an integer on the encrypted
value. It is important to note that the data included inside
the data model of the system can only be calculated within
the boundaries of integer values. Therefore, in the event
that the user demands the final unencrypted result when
performing operations with decimal numbers, a compromise
technique must be used in order to maintain the encrypted
value of x1+x2 and decrypt it at the application layer. In
scenarios that occur in the real world, code designs may be
modified to accommodate certain computing requirements.
For the purpose of validating the latency of the system, the
experiment uses two different scenarios.

TABLE V: TWO CONFIGURATIONS CONSTRUCTED
FOR EXPERIMENTAL EVALUATION

Scene Camera Cloud Server Edge Node
No. 1 2 2 2
No. 2 9 2 4

Figures 9 and 10 show the output of the experiment
that was conducted. Within the first scenario, the typical
amount of time required to process each frame is around
0.35 seconds, while the greatest amount of delay is 0.37
seconds. This occurs due to the fact that the amount of data
gathered rises proportionally with the number of cameras,

Fig. 9: Delay analysis in real time processing (1 camera).

Fig. 10: Delay analysis in real time processing (9 camera).

and the cloud server and edge nodes need more time in order
to analyze this data.

Nevertheless, the edge nodes bear the computing burden
resulting from the additional cameras, while the cloud server
is simply required to handle uncomplicated formatted data. In
the second situation, the average processing time per frame
is only increased by 0.02 seconds compared to the scenario
with just one camera. For video with a frame rate of 3
frames per second (FPS), it takes about 0.334 seconds to
create frame data. In both instances, the security integrated
system may show the character track data to the user in
near real time, before the current time point. Employing the
edge computing approach within an extensive network of
dispersed cameras allows for the deployment of additional
edge nodes, which augments the performance of video data
processing. Furthermore, there is potential to augment the
cloud server capabilities or refine its settings to ensure the
proficiency of aggregated data processing, thereby ensuring
the system’s capacity for expansion.

D. Query Performance

Through the use of TPC-H (TPC Benchmark-H) [14], the
primary objective is to assess the capacity of certain queries
to provide decision assistance. The benchmark includes the
simulation of the database operation in the decision support
system, the testing of the response time of complicated
queries in the database system, and the use of the number
of queries run per hour as the measurement index. In the
experiment, TPC-H is used to test the system in order to
conduct a study of the performance of queries. All query
operators that are routinely used as well as sophisticated
queries are included in the TPC-H test. Generally speaking,
TPC-H indicates that the database is capable of supporting

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



normal usage as well as dealing with certain difficult busi-
ness situations. MONOMI [24] and CryptDB [14] are two
others that have been extensively researched algorithms for
encrypting database models. This comparison is made with
the aforementioned algorithms.

All the claims of TPC-H can be implemented accurately in
the experiment. Tables VI to VIII show the ratio between the
execution time of the 22 sentences of UdesMec running TPC-
H and the execution time of the plaintext query. The clauses
Q4, Q11, Q12, Q13, Q16, and Q21 are absent from UdesMec
since they do not pertain to procedures using ciphertext. The
CryptDB and MONOMI models are incapable of handling
queries Q13, Q15, and Q16. UdesMec demonstrates superior
efficiency compared to CryptDB in terms of execution time
for most statements, approaching that of MONOMI.

V. CONCLUSION

This paper presents a comprehensive model for encrypting,
storing, and processing data in edge computing. The model
is designed to handle the large number of edge nodes and
the different characteristics of the network. The use of secret
sharing and homomorphic encryption techniques is employed
to handle IoT terminal data in ciphertext, as a result of
the constrained computational power and restricted storage
capacity of the edge nodes. This transfers a substantial part
of the computational burden to the cloud service layer. The
approach minimizes the computational and storage burden
on edge computing nodes by transferring the majority of
the processing to the cloud service layer. The approach
minimizes the computational and storage burden on edge
computing nodes, while guaranteeing efficient gathering and
processing of device data via encryption techniques. The
security integration model incorporates an authentication
technique at the application layer to safeguard the privacy of
data owners. Providers possess the capability to amalgamate
their server capacities to render services to diverse user
communities within an integrated technological framework,
utilizing an access control protocol to confine user access
to personal data. The experimental analysis quantified the
expenses related to the models communicative and computa-
tional aspects, and appraised its viability for implementation
in practical scenarios.

Our work not only contributes to the broader discourse
on the transformative potential of IoT and 5G in healthcare
but also directly addresses the pressing challenges associated
with processing and utilizing massive amounts of health-
related data at the network edge, ultimately enhancing the
ability of healthcare providers to predict, prevent, and man-
age complex medical crises more effectively.

REFERENCES

[1] S. B. Basapur, B. Shylaja et al., “Constraints-relaxed functional de-
pendency based data privacy preservation model.” Engineering Letters,
vol. 31, no. 1, pp. 19–34, 2023.

[2] Linzhi, Jiang, Liqun, Chen, Thanassis, Giannetsos, Bo, Luo, Kaitai,
and Liang, “Toward practical privacy-preserving processing over en-
crypted data in iot: An assistive healthcare use case,” IEEE Internet
of Things Journal, vol. 6, no. 6, pp. 10 177–10 190, 2019.

[3] A. Murugesan, B. Saminathan, F. Al-Turjman, and R. L. Kumar, “Anal-
ysis on homomorphic technique for data security in fog computing,”
Transactions on Emerging Telecommunications Technologies, vol. 32,
no. 9, p. e3990, 2021.

[4] G. Srivastava, C. W. Lin, D. Pamucar, and S. Kotsiantis, “Editorial:
Applications of fuzzy systems in data science and big data,” IEEE
Transactions on Fuzzy Systems, vol. 29, no. 1, pp. 1–3, 2021.

[5] H. Miyajima, N. Shigei, H. Miyajima, and N. Shiratori, “Secure
learning systems using vertically partitioned data with iot,” IAENG
International Journal of Computer Science, vol. 49, no. 1, pp. 61–68,
2022.

[6] J. Liu, X. Wang, S. Shen, G. Yue, S. Yu, and M. Li, “A bayesian
q-learning game for dependable task offloading against ddos attacks
in sensor edge cloud,” IEEE Internet of Things Journal, vol. 8, no. 9,
pp. 7546–7561, 2020.

[7] V. Stephanie, M. Chamikara, I. Khalil, and M. Atiquzzaman, “Privacy-
preserving location data stream clustering on mobile edge computing
and cloud,” Information Systems, vol. 107, p. 101728, 2022.

[8] S. Shen, H. Ma, E. Fan, K. Hu, S. Yu, J. Liu, and Q. Cao, “A
non-cooperative non-zero-sum game-based dependability assessment
of heterogeneous wsns with malware diffusion,” Journal of Network
and Computer Applications, vol. 91, pp. 26–35, 2017.

[9] H. Zhou, S. Shen, and J. Liu, “Malware propagation model in wire-
less sensor networks under attack–defense confrontation,” Computer
Communications, vol. 162, pp. 51–58, 2020.

[10] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras,
and H. Janicke, “Blockchain technologies for the internet of things:
Research issues and challenges,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2188–2204, 2018.

[11] H. Tabrizchi and M. Kuchaki Rafsanjani, “A survey on security
challenges in cloud computing: issues, threats, and solutions,” The
journal of supercomputing, vol. 76, no. 12, pp. 9493–9532, 2020.

[12] H. Liu, P. Zhang, G. Pu, T. Yang, S. Maharjan, and Y. Zhang,
“Blockchain empowered cooperative authentication with data trace-
ability in vehicular edge computing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 4, pp. 4221–4232, 2020.

[13] D. Zheng, G. Shen, X. Cao, and B. Mukherjee, “Towards optimal
parallelism-aware service chaining and embedding,” IEEE Transac-
tions on Network and Service Management, vol. 19, no. 3, pp. 2063–
2077, 2022.

[14] J. Feng, F. R. Yu, Q. Pei, J. Du, and L. Zhu, “Joint optimization of
radio and computational resources allocation in blockchain-enabled
mobile edge computing systems,” IEEE Transactions on Wireless
Communications, vol. 19, no. 6, pp. 4321–4334, 2020.

[15] M. Hartmann, U. S. Hashmi, and A. Imran, “Edge computing in smart
health care systems: Review, challenges, and research directions,”
Transactions on Emerging Telecommunications Technologies, vol. 33,
no. 3, p. e3710, 2022.

[16] J. Srinivas, A. K. Das, N. Kumar, and J. J. Rodrigues, “Tcalas: Tem-
poral credential-based anonymous lightweight authentication scheme
for internet of drones environment,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 7, pp. 6903–6916, 2019.

[17] Q. Jiang, J. Ma, and F. Wei, “On the security of a privacy-aware au-
thentication scheme for distributed mobile cloud computing services,”
IEEE systems journal, vol. 12, no. 2, pp. 2039–2042, 2016.

[18] N.-W. Lo and J.-L. Tsai, “An efficient conditional privacy-preserving
authentication scheme for vehicular sensor networks without pairings,”
IEEE Transactions on Intelligent Transportation Systems, vol. 17,
no. 5, pp. 1319–1328, 2015.

[19] J. Kim, S. Camtepe, W. Susilo, S. Nepal, and J. Baek, “Identity-based
broadcast encryption with outsourced partial decryption for hybrid
security models in edge computing,” in Proceedings of the 2019 ACM
Asia conference on computer and communications security, 2019, pp.
55–66.

[20] L. Jing, T. Qiu, C. Wen, K. Xie, and F. Q. Wen, “Robust face
recognition using the deep c2d-cnn model based on decision-level
fusion,” Sensors, vol. 18, no. 7, p. 2080, 2018.

[21] X. Li, F. Li, and M. Gao, “Flare: A fast, secure, and memory-
efficient distributed analytics framework,” Proceedings of the VLDB
Endowment, vol. 16, no. 6, pp. 1439–1452, 2023.

[22] M. Gheisari, H. E. Najafabadi, J. A. Alzubi, J. Gao, G. Wang, A. A.
Abbasi, and A. Castiglione, “Obpp: An ontology-based framework
for privacy-preserving in iot-based smart city,” Future Generation
Computer Systems, vol. 123, pp. 1–13, 2021.

[23] Y. Zhang, R. Wang, M. S. Hossain, M. F. Alhamid, and M. Guizani,
“Heterogeneous information network-based content caching in the
internet of vehicles,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 10, pp. 10 216–10 226, 2019.

[24] L. Wiese, T. Waage, and M. Brenner, “Clouddbguard: A framework
for encrypted data storage in nosql wide column stores,” Data &
Knowledge Engineering, vol. 126, p. 101732, 2020.

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 



TABLE VI: THE PROPORTION OF EXECUTION TIME WITH PLAINTEXT (Q1∼Q7).

Methods Q1 Q2 Q3 Q4 Q5 Q6 Q7
CrptDB 38.17X 2.4X 4.6X 3.5X 3.45X 6.7X 2.8X

MONOMI 2.6X 2.5X 2.4X 2.1X 1.9X 2.2X 1.7X
UdesMec 11.29X 1.9X 1.9X NULL 1.89X 15.79X 1.68X

TABLE VII: THE PROPORTION OF EXECUTION TIME WITH PLAINTEXT (Q8∼Q14).

Methods Q8 Q9 Q10 Q11 Q12 Q13 Q14
CrptDB 5.6X 4.8X 4.94X 5X 4.95X NULL 6.1X

MONOMI 2.42X 2.45X 2.5X 2.54X 2.5X NULL 2.51X
UdesMec 2.48X 2.4X 2.45X NULL NULL NULL 2.43X

TABLE VIII: THE PROPORTION OF EXECUTION TIME WITH PLAINTEXT (Q15∼Q22).

Methods Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
CrptDB NULL NULL 5.65X 59.94X 5.64X 6.4X NULL 4.8X

MONOMI NULL NULL 2.51X 2.56X 2.5X 2.61X NULL 1.9X
UdesMec 5X NULL 2.45X 22.14X 2.45X 2.48X NULL 1.74X

Qi Li was born in Jiangsu, China, in 1987. He began his academic journey
at the prestigious Northwestern Polytechnical University, where he pursued
his passion for engineering and technology. In 2015, he completed his
Master of Science degree in Communication Engineering, demonstrating
his expertise in the field. He continued his commitment to higher education
and research. He remained at Northwestern Polytechnical University to
continue his studies. In 2019, he received his Doctor of Philosophy degree in
Computer Science, marking a significant milestone in his academic career.
He is currently employed at Shaoxing University, where he contributes his
knowledge and skills to the academic community. His research interests
include graph neural networks and network security.

Jian Huang was born in Shaoxing, China, in 1967. He received his Bachelor
of Agriculture degree in Economic Forestry from Zhejiang A&F University,
located in Hangzhou, Zhejiang Province, in 1987. He received the Master
of Economics degree in National Economics by Zhejiang University,a
prestigious university in Hangzhou, Zhejiang Province, in 2006. His research
interests include economics,image processing, machine learning,and data
mining.

Sihan Li was born in Wenzhou, China in 2002. He completed his un-
dergraduate studies at the University of Waterloo, Canada, in 2020, where
he received a Bachelor of Arts degree. He continued his education at the
University of Toronto, Canada, where he received a Master of Science degree
in Computer Science in 2023. Throughout his academic journey, he has
developed a strong interest in the fields of machine learning and knowledge
graphs.

Chenze Huang was born in 1970 in Wenzhou, China. he received his M.Sc.
degree in communication engineering from Shanghai Maritime University
in 1995, and he is currently pursuing his Ph.D. degree at Northwestern
Polytechnical University. His research interests include complex networks,
network security, and so on.

Date of modification: July 5, 2024
Brief description of the changes: Revise the biographies

of Qi Li and Huang Jian.

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1510-1520

 
______________________________________________________________________________________ 




