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Abstract—This study seeks to establish connections between
Ramanujan-type Eisenstein series and Borweins’ cubic theta
functions, employing the (p, k)-parametrization method intro-
duced by Alaca. Furthermore, the derived identities are applied
to provide a novel representation for the evaluation of the
discrete convolution sum

∑
2l+3m=n δ(i)δ(j).

Index Terms—Cubic Theta Functions, Eisenstein Series, Con-
volution Sum, Digital Signal Processing.

I. INTRODUCTION

CONVOLUTION, is a fundamental mathematical oper-
ation used extensively in various fields of science and

engineering. Essentially, it merges two datasets to generate
a third, illustrating how one dataset influences the other’s
form. This entails multiplying corresponding elements of the
two sets and aggregating these products, culminating in the
convolution outcome.

In practical terms, convolution is often applied to vectors
or matrices representing signals, images, or other forms of
data. It’s a crucial concept in fields such as numerical linear
algebra, probability theory, numerical analysis, deep learning,
and signal processing.

In signal processing, convolution plays a key role in
designing finite impulse response (FIR) filters, which are
used to modify or enhance signals in various applications
such as audio processing, image filtering, and communication
systems. By convolving an input signal with the impulse
response of a filter, one can achieve desired effects like noise
reduction, signal smoothing, or frequency manipulation.

Moreover, convolution serves as a foundational concept
in digital signal processing (DSP), forming the theoretical
backbone for understanding and implementing various signal
processing algorithms and techniques. In communication
systems, convolution is employed in coding and modulation
schemes, enabling efficient transmission and reception of
data over noisy channels.

Overall, convolution is a versatile and powerful tool that
underpins many aspects of scientific and engineering dis-
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ciplines, contributing to advancements in technology and
enabling a wide range of practical applications.

In mathematics, particularly in the realm of number theory
and special functions, researchers often utilize various tools
and techniques to explore and derive properties of mathemat-
ical objects. One such area of interest involves convolution
sums, which arise in the study of modular forms and related
structures.

Mathematicians often leverage a diverse toolkit, incorpo-
rating Ramanujan’s discriminant function, Gaussian hyper-
geometric series, quasi-modular forms, and Ramanujan-type
Eisenstein series to dissect convolution sums. These analyti-
cal instruments offer valuable insights into the characteristics
and behaviors of such sums, empowering mathematicians to
unveil fresh identities and correlations.

In this article, the focus is on investigating identities
involving Eisenstein series and Borweins’ cubic theta func-
tions. These identities are explored using parameters intro-
duced by Alaca, allowing for a deeper understanding of the
connections between these mathematical objects. Notably,
the article presents expressions for Ramanujan-type Eisen-
stein series as products of cubic theta functions, offering new
perspectives on their structure and properties.

Furthermore, this article applies these formulations to
derive a novel representation for a specific type of discrete
convolution sum, represented as

∑
2l+3m=n δ(i)δ(j). This

representation is valid for all positive integers l, providing a
valuable contribution to the study of convolution sums and
their applications.

In essence, this article enhances comprehension of convo-
lution sums through the adept utilization of diverse mathe-
matical tools and methodologies, yielding fresh perspectives
and outcomes within the domain of number theory and
special functions.

Section 2 provides essential groundwork for the research’s
main objectives. It likely includes fundamental definitions,
theorems, and lemmas necessary to understand and approach
the subsequent analysis. These preliminary results set the
stage for the exploration of more advanced concepts in later
sections.

In Section 3, we delve into unveiling captivating iden-
tities, characterized by their novelty, as they haven’t been
documented in prior literature. The intricate connections
investigated are likely to involve Ramanujan-style Eisenstein
series and Borweins’ cubic theta functions.

In Section 4, a pioneering method for assessing discrete
convolution sums is unveiled. This novel approach proposes
an alternative representation, signaling a departure from
conventional methods and offering a distinct framework for
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comprehending and scrutinizing these sums. Such innova-
tive perspective holds promise for uncovering fresh insights
or applications within the realm of convolution sums and
associated fields of inquiry.

Overall, these sections collectively contribute to the ad-
vancement of knowledge in the field by building on existing
results, introducing new identities, and offering innovative
perspectives on mathematical concepts.

II. PRELIMINARIES

The genesis of the arithmetic-geometric mean iteration
finds its roots in the realms of elliptic functions and theta
functions. Pioneering this connection, the Borwein broth-
ers [9], [10] unearthed a set of multidimensional theta
functions, which form an essential foundation for further
exploration.

a(q) :=
∞∑

r,s=−∞
qr

2+rs+s2 .

b(q) :=
∞∑

r,s=−∞
ωr−sqr

2+rs+s2 .

c(q) :=
∞∑

r,s=−∞
q

(
r+ 1

3

)2
+
(
r+ 1

3

)(
s+ 1

3

)
+
(
s+ 1

3

)2

.

for |q| < 1, where q represents complex numbers, and ω =
exp(2πi/3) is the principal cube root of unity, the given
expressions for two-dimensional theta functions reveal that
when q = 0, the values become a(q) = 1, b(q) = 1, and
c(q) = 0.

Euler’s binomial theorem provides a method for expanding
expressions of the form (1+x)n where n is any real number.
The Borwein siblings, who are renowned mathematicians,
have used this theorem as a foundational concept in their
work. They have derived representations for two functions,
b(q) and c(q), by expressing them as infinite products.

By utilizing Euler’s binomial theorem, the Borwein sib-
lings have likely found a way to express b(q) and c(q) as
products involving terms derived from binomial expansions,
potentially with coefficients that follow certain rules or pat-
terns. These representations are likely to have mathematical
significance and may offer insights into the behavior or
properties of the functions b(q) and c(q).

Utilizing Euler’s binomial theorem as a starting point,
the Borwein siblings have formulated representations for
both b(q) and c(q) in the form of infinite products, as
demonstrated below:,

b(q) =
(q; q)3∞
(q3; q3)∞

= R(q),

c(q) =
3q

1
3 (q3; q3)3∞
(q; q)∞

,

where

(a; q)∞ =
∞∏
i=0

(1− aqi).

The function a(q) can be expressed as follows (J.M.
Borwein & P. B. Borwein [9]) and Berndt [7]:

a(q) = (−q; q2)2∞(q2; q2)∞(−q3; q6)2∞(q6; q6)∞

+4q
(q4; q4)∞(q12; q12)∞
(q2; q4)∞(q6; q12)∞

.

Or in other words,

a(q) = S(q) + 4T (q),

where

S(q) =(−q; q2)∞(−q3; q6)2∞(q2; q2)∞(q6; q6)∞ and

T (q) =q
(q4; q4)∞(q12; q12)∞
(q2; q4)∞(q6; q12)∞

.

Besides that, they have established the fundamental relation-
ship between a(q), b(q) and c(q) which is a basic cubic
identity given by,

a3(q) = b3(q) + c3(q).

Definition II.1. In his second notebook [15], Srinivasa
Ramanujan elucidated the definitions of the Eisenstein Series
L(q) and M(q) as outlined below:

L(q) := 1− 24
∞∑
r=1

rqr

1− qr
:= 1− 24

∞∑
r=1

δ1(r)q
r,

M(q) := 1 + 240
∞∑
r=1

r3qr

1− qr
:= 1 + 240

∞∑
r=1

δ3(r)q
r.

Definition II.2. For any complex c and d, Ramanujan[7,
p.35] documented a general theta function,

f(c, d) :=

∞∑
m=−∞

cm(m+1)/2dm(m−1)/2

:= (−c; cd)∞(−d; cd)∞(cd; cd)∞,

where

(c; q)∞ :=
∞∏

m=0

(1− cqm), |q| < 1.

The special case of theta function defined by Ramanujan[7,
p.35],

φ(q) := f(q, q) =

∞∑
m=−∞

qm
2

= (−q; q2)2∞(q2; q2)∞.

In their noteworthy publication, Alaca et al. [1] intro-
duced the (p, k) parametrization of theta functions. This
parametrization holds particular significance in the formu-
lation of the duplication and triplication principles, leading
to the derivation of specific sum-to-product identities. The
parameters p and k are precisely defined as follows:

p := p(q) =
φ2(q)− φ2(q3)

2ϕ2(q3)
.

k := k(q) =
φ3(q3)

φ(q)
.

Since φ(0) = 1, it clear that p(0) = 0 and k(0) = 1.

Lemma II.3. [1] Concerning the previously mentioned
Eisenstein series [9], [10], the expressions for M(q), M(ql),
L(q)− lL(ql), where (l = 2, 3, 4, 6, 12), as well as L(−ql)−
rL(qr), where l ∈ 1, 3 and r ∈ 1, 2, 3, in terms of the
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parameters p and k, are articulated as follows:

M(q) = (1 + 124p(1 + p6) + 964p2(1 + p4) + 2788p3(1

+ p2) + 3910p4 + p8)k4,

M(q2) = (1 + 4p(1 + p6) + 64p2(1 + p4) + 178p3(1 + p2)

+ 235p4 + p8)k4,

M(q3) = (1 + 4p(1 + p6) + 4p2(1 + p4) + 28p3(1 + p2)

+ 70p4 + p8)k4,

M(q6) = (1 + 4p(1 + p6) + 4p2(1 + p4)− 2p3(1 + p2)

− 5p4 + p8)k4,

M(q12) = (1 + 4p(1 + p)− 2p3(1 + p2)

− 5p4 + p6(1 + p)/4 + p8/16)k4,

L(−q)− L(q) = 3(8p+ 12p2 + 6p3 + p4)k2,

L1,2 (q) = (L(−q)− L(q))/48 = (p/2 + 3p2/4

+ 3p3/8 + p4/16)k2,

L1,2(q
3) = (L(−q3)− L(q3))/48 = p3(2 + p)k2/16,

L(−q)− 2L(q2) = −(1− 10p− 12p2 − 4p3 − 2p4)k2,

L(q)− 2L(q2) = −(1 + 14p(1 + p2) + 24p2 + p4)k2,

L(q)− 3L(q3) = −(1 + 8p(1 + p2) + 18p2 + p4)k2,

L(q)− 6L(q6) = −(5 + 22p(1 + p2) + 36p2 + 5p4)k2,

L(q2)− 3L(q6) = −2(1 + 2p(1 + p2) + 3p2 + p4)k2,

L(q3)− 2L(q6) = −(1 + 2p(1 + p2) + p4)k2,

L(q)− 4L(q4) = −3(1 + 6p+ 12p2 + 8p3)k2,

L(q)− 12L(q12) = −(11 + 34p+ 36p2 + 16p3 + 2p4)k2.

Lemma II.4. Alaca et al. [1] have derived the parametric
representations of a(qr), b(qr), c(qr) for r ∈ 1, 2, 4, 6, as
well as a(−q), b(−q), c(−q), expressed in terms of the
parameters p and k, and are presented below.

a(−q) = (1− 2p− 2p2)k,

a(q) = (1 + 4p+ p2)k,

a(q2) = (1 + p+ p2)k,

a(q4) = (1 + p− 1

2
p2)k,

a(q6) =
(p2 + p+ 1 + 21/3((1− p)(2 + p)(1 + 2p))2/3)k

3
,

b(−q) = 2−
1
3 ((1− p)(1 + 2p)4(2 + p))

1
3 k,

b(q) = 2−
1
3 ((1− p)4(1 + 2p)(2 + p))

1
3 k,

b(q2) = 2−2/3((1− p)(1 + 2p)(2 + p))
2
3 k,

b(q4) = 2−
4
3 ((1− p)(1 + 2p)(2 + p)4)

1
3 k,

c(−q) = −2
1
3 3(p(1 + p))

1
3 k,

c(q) = 2−
1
3 3(p(1 + p)4)

1
3 k,

c(q2) = 2−
2
3 3(p(1 + p))

2
3 k. ,

c(q4) = 2−
4
3 3(p4(1 + p))

1
3 k,

c(q6) =

(
p2 + p+ 1− 2−2/3((1− p)(2 + p)(1 + 2p))2/3

)
k

3
.

III. THE INTERPLAY BETWEEN RAMANUJAN’S
EISENSTEIN SERIES AND CUBIC THETA FUNCTIONS: A

COMPREHENSIVE EXPLORATION OF THEIR
MATHEMATICAL CONNECTIONS AND APPLICATIONS

In Ramanujan’s notebook [15], he documented intriguing
series involving L, M , and N , which led to a multitude
of notable identities for infinite series encompassing theta
functions. Computational methods, as detailed by Xia et al.
[24], were utilized to unveil elegant mathematical identities
involving both Eisenstein series and cubic theta functions.
These identities, primarily in the form L(q)−rL(qr), where
r takes on values from the set {2, 3, 4, 6, 12}, were further
expanded upon by Shruti and Srivatsakumar B.R. [16], who
also evaluated convolution sums.

More recently, Vidya H. C. and Ashwath Rao B. [20], as
well as Vidya H. C. and Smitha G. Bhat [21], and Smitha G.
Bhat et al. [18], contributed additional identities, particularly
those involving L(−ql)−L(ql), where l ∈ {1, 3}. Vidya H.
C. and Ashwath Rao B. [12] extended these investigations
to deduce relationships among theta functions.

In this paper, we present specific identities connecting
Ramanujan-type Eisenstein series and cubic theta functions,
with a focus on Eisenstein series M(qn), where n ranges
over {1, 2, 3, 6, 12}. Notably, these connections were estab-
lished without the aid of computer assistance. Furthermore,
we leverage these findings to evaluate convolution sums.

Theorem III.1. The connection between an infinite series
and theta functions is as follows:

(i) 1− 12

∞∑
r=1

[
3rq2r

1− q2r
− 4rq4r

1− q4r
− 9rq6r

1− q6r
+

12rq12r

1− q12r

]
= a(q)a(−q). (1)

(ii) 1 +
3

2

∞∑
r=1

[
3r(−q)3r

1− (−q)3r
+

2rqr

1− qr
− 2rq2r

1− q2r
+

3rq3r

1− q3r

+
2rq4r

1− q4r
− 18rq6r

1− q6r
− 6rq12r

1− q12r

]
=

b(q4)b(q2)

b(q)
. (2)

Proof: Let us persume that,

C1L1,2(q
3) + C2[L(q)− 6L(q6)] + C3[L(q

2)− 3L(q6)]

+ C4[L(q
3)− 2L(q6)] + C5[L(q

4)− 3L(q12)]

= a(q)a(−q). (3)

The equation above undergoes transformation through (p, k)
parametrization using Lemma II.3. This leads to the deriva-
tion of a system of non-homogeneous linear equations,
where the coefficients of terms involving k2, pk2, p2k2,
p3k2 and p4k2 in the left-hand side are equated with their
corresponding terms in the right-hand side. These equations
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must then be solved to find the unknown values.

0 −5 −2 −1 −2

0 −22 −4 −2 −4

0 −36 −6 0 0

1

8
−22 −4 −2 2

1

16
−5 −2 −1 −1

2





C1

C2

C3

C4

C5


=



1

2

−9

−10

−2


.

On solving the above system, we get,

C1 = 0, C2 = 0, C3 =
3

2
, C4 = 0 and C5 = −2.

Upon replacing the previously mentioned statistics into (3)
and subsequently streamlining the process with the help of
Definition II.1, we arrive at equation (1). Likewise, employ-
ing the same approach, we deduce the following identities.
Altering the right-hand side of (1) and subsequently using
(3), results in equations (i).

(i) − 9L1,2(q
3)− 1

8
[L(q)− 6L(q6)] +

1

8
[L(q2)− 3L(q6)]

− 3

8
[L(q3)− 2L(q6)]− 1

8
[L(q4)− 3L(q12)]

=
b(q4)b(q2)

b(q)
.

After applying the definition of Eisenstein series and simpli-
fying, we arrive at equations (2).

Theorem III.2. The connection between an infinite series
and theta functions is as follows:

(i) 1− 12

∞∑
r=1

[
r(−q)r

1− (−q)r
− 3r(−q)3r

1− (−q)3r
+

rqr

1− qr

− 3rq2r

1− q2r
− 3rq3r

1− q3r
+

9rq6r

1− q6r

]
= a(q)a(−q). (4)

(ii) 1− 3

∞∑
r=1

[
8rqr

1− qr
− 2rq2r

1− q2r
− 9rq3r

1− q3r
+

18rq6r

1− q6r

]
= b(q)b(q2). (5)

(iii) 1− 3

4

∞∑
r=1

[
r(−q)r

1− (−q)r
− 9r(−q)3r

1− (−q)3r
− 3rqr

1− qr

− 2rq2r

1− q2r
− 9rq3r

1− q3r
+

54rq6r

1− q6r

]
=

b(q4)b(q2)

b(q)
. (6)

Proof: Let us persume that,

C1L1,2(q) + C2L1,2(q
3) + C3[L(q)− 6L(q6)] + C4[L(q

2)

− 3L(q6)] + C5[L(q
3)− 2L(q6)] = a(q)a(−q). (7)

Utilizing the (p, k) parametrization according to Lemma II.3,
the given equation undergoes a transformation. This trans-
formation results in the formulation of a system of non-
homogeneous linear equations, where the coefficients of
terms containing k2, pk2, p2k2, p3k2, and p4k2 on the left-
hand side are equated with their respective counterparts on

the right-hand side. The subsequent task involves solving
these equations to determine the unknown values.

0 0 −5 −2 −1

1

2
0 −22 −4 −2

3

4
0 −36 −6 0

3

8

1

8
−22 −4 −2

1

16

1

16
−5 −2 −1





C1

C2

C3

C4

C5


=



1

2

−9

−10

−2


.

On solving the above system, we get,

C1 = 24, C2 = −72, C3 = 1, C4 = −3

2
and C5 = −3.

Upon replacing the previously mentioned statistics into (7)
and subsequently streamlining the process with the help of
Definition II.1, we arrive at equation (4). Similarly, employ-
ing a parallel methodology, we derive the ensuing identities.
Modifying the right-hand side of (4) and subsequently ap-
plying (7) yields the expressions denoted as equations (i) and
(ii).

(i)
1

8
[L(q)− 6L(q6)]− 1

4
[L(q2)− 3L(q6)]− 9

8
[L(q3)

− 2L(q6)] = b(q)b(q2).

(ii)
3

2
L1,2(q)−

27

2
L1,2(q

3)− 1

16
[L(q)− 6L(q6)]

− 1

16
[L(q2)− 3L(q6)]− 9

16
[L(q3)− 2L(q6)]

=
b(q4)b(q2)

b(q)
.

Upon simplification utilizing the Eisenstein series definition,
we arrive at equations (5) through (6).

Theorem III.3. The relationship linking an infinite series
and theta functions can be expressed as:

(i) 1 +
3

2

∞∑
r=1

[
r(−q)r

1− (−q)r
+

3rqr

1− qr
− 8rq2r

1− q2r
+

6rq4r

1− q4r

− 18rq12r

1− q12r

]
=

b2(q4)b(q2)

b(q)
. (8)

(ii) 1 + 4

∞∑
r=1

[
2r(−q)r

1− (−q)r
+

rq2r

1− q2r
− 6rq3r

1− q3r
− 3rq6r

1− q6r

]

=
b2(q)c2(−q)

3.2
4
3 b(q2)c(q2)

. (9)

(iii) 1 +
4

3

∞∑
r=1

[
2r(−q)r

1− (−q)r
+

2rqr

1− qr
− 9rq2r

1− q2r
+

8rq4r

1− q4r

+
3rq6r

1− q6r
− 24rq12r

1− q12r

]
=

c2(−q)c2(q)

2
4
3 c2(q2)

. (10)
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Proof: Let us persume that,

C1[L(−q)− 2L(q2)] + C2[L(q)− 6L(q6)] + C3[L(q
2)

− 3L(q6)] + C4[L(q
3)− 2L(q6)] + C5[L(q

4)− 3L(q12)]

=
b2(q4)b(q2)

b(q)
. (11)

The equation above undergoes a transformation through the
(p, k) parametrization, utilizing Lemma II.3. This trans-
formation results in a system of non-homogeneous linear
equations, where the coefficients of terms containing k2, pk2,
p2k2, p3k2, and p4k2 on the left-hand side are set equal to
their respective terms on the right-hand side. Subsequently,
these equations need to be solved to determine the unknown
values.



−1 −5 −2 −1 −2

10 −22 −4 −2 −4

12 −36 −6 0 0
4 −22 −4 −2 2

2 −5 −2 −1 −1

2





C1

C2

C3

C4

C5


=



1

7

2

15

4

13

8

1

4



.

On solving the above system, we get,

C1 = −1, C2 = 0, C3 = −5

2
, C4 = 3 and C5 = 0.

Upon replacing the previously mentioned statistics into (11)
and subsequently streamlining the process with the help of
Definition II.1, we arrive at equation (8). Similarly, employ-
ing a parallel methodology, we derive the ensuing identities.
Modifying the right-hand side of (8) and subsequently ap-
plying (11) yields the expressions denoted as equations (i)
and (ii).

(i) − [L(−q)− 2L(q2)]− 5

2
[L(q2)− 3L(q6)] + 3[L(q3)

− 2L(q6)] =
b2(q)c2(−q)

2
4
3 b(q2)c(q2)

.

(ii) − 1

9
[L(−q)− 2L(q2)]− 1

9
[L(q)− 6L(q6)] +

5

18
[L(q2)

− 3L(q6)]− 4

9
[L(q4)− 3L(q12)] =

c2(q)c2(−q)

2
4
3 c2(q2)

.

Upon simplification through the utilization of the Eisenstein
series definition, equations (9) through (10) are obtained.

Theorem III.4. The relation amongst an infinite series and
theta functions holds:

(i)

(
1− u− 4v

)
+ 48

(
u+ v

) ∞∑
r=1

[
r3qr

1− qr

]
− 3

(
1

+ 64u

) ∞∑
r=1

[
r3q2r

1− q2r

]
− 864v

∞∑
r=1

[
r3q3r

1− q3r

]

+ 243

∞∑
r=1

[
r3q6r

1− q6r

]
+ u

[
− 1− 24

∞∑
r=1

[
rqr

1− qr

− 2rq2r

1− q2r

]]2
+ v

[
− 2− 24

∞∑
r=1

[
rqr

1− qr

− 3rq3r

1− q3r

]]2
= a(q2)b3(q2). (12)

(ii)

(
1− u− 4v

)
− 3

(
1 + 16u+ 32v

) ∞∑
r=1

[
r3qr

1− qr

]

− 192u

∞∑
r=1

[
r3q2r

1− q2r

]
+ 3(81− 288v)

∞∑
r=1

[
r3q3r

1− q3r

]

+ u

[
− 1− 24

∞∑
r=1

[
rqr

1− qr
− 2rq2r

1− q2r

]]2

+ v

[
− 2− 24

∞∑
r=1

[
rqr

1− qr
− 3rq3r

1− q3r

]]2
= a(q)b3(q). (13)

(iii)

(
1− u− 4v

)
+ 6

(
3− 8u− 16v

) ∞∑
r=1

[
r3qr

1− qr

]

− 48(1 + 4u)

∞∑
r=1

[
r3q2r

1− q2r

]
− 6(27

+ 144v)

∞∑
r=1

[
r3q3r

1− q3r

]
+ 432

∞∑
r=1

[
r3q6r

1− q6r

]

+ u

[
− 1− 24

∞∑
r=1

[
rqr

1− qr
− 2rq2r

1− q2r

]]2

+ v

[
− 2− 24

∞∑
r=1

[
rqr

1− qr
− 3rq3r

1− q3r

]]2
= a3(q)a(q2). (14)

(iv)

(
1− u− 4v

)
+ 24

(
1− 2u− 2v

) ∞∑
r=1

[
r3qr

1− qr

]

− 192u

∞∑
r=1

[
r3q2r

1− q2r

]
+ 216(1− 4v)

∞∑
r=1

[
r3q3r

1− q3r

]
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+ u

[
− 1− 24

∞∑
r=1

[
rqr

1− qr
− 2rq2r

1− q2r

]]2

+ v

[
− 2− 24

∞∑
r=1

[
rqr

1− qr
− 3rq3r

1− q3r

]]2
= (3a(q3)− 2b(q))4. (15)

(v)

(
− 2− u− 4v

)
− 24

(
1− 2u− 4v

) ∞∑
r=1

[
r3qr

1− qr

]

+ 192(1− u)

∞∑
r=1

[
r3q2r

1− q2r

]
− 216(3 + 4v)

∞∑
r=1

[
r3q3r

1− q3r

]
+ u

[
− 1− 24

∞∑
r=1

[
rqr

1− qr

− 2rq2r

1− q2r

]]2
+ v

[
− 2

− 24

∞∑
r=1

[
rqr

1− qr
− 3rq3r

1− q3r

]]2
+ 3

[
1

− 24

∞∑
r=1

[
3rq3r

1− q3r
− 2rq2r

1− q2r

]]2
=

b8(q)

b4(q2)
. (16)

(vi)

(
− 1

1728
− u− v

)
+ 48

(
u+ 2v

) ∞∑
r=1

[
r3qr

1− qr

]

+
1

18
(1 + 3456u)

∞∑
r=1

[
r3q2r

1− q2r

]
− 1

12
(1− 10368v)

∞∑
r=1

[
r3q3r

1− q3r

]
+

1

6

∞∑
r=1

[
rq6r

1− q6r

]
+ u

[
− 1

− 24

∞∑
r=1

[
rqr

1− qr
− 2rq2r

1− q2r

]]2
+ v

[
− 2− 24

∞∑
r=1

[
rqr

1− qr
− 3rq3r

1− q3r

]]2
+

1

1728

[
1

− 24

∞∑
r=1

[
3rq3r

1− q3r
− 2rq2r

1− q2r

]]2
=

c8(q2)

81c4(q)
. (17)

(vii)

(
1294

945
− u− v

)
+ 8

(
1− 6u− 12v

) ∞∑
r=1

[
r3qr

1− qr

]

− 960

135
(5 + 27u)

∞∑
r=1

[
r3q2r

1− q2r

]
− 8

3
(31 + 324v)

∞∑
r=1

[
r3q3r

1− q3r

]
+

512

15

∞∑
r=1

[
rq6r

1− q6r

]
+ u

[
− 1− 24

∞∑
r=1

[
rqr

1− qr
− 2rq2r

1− q2r

]]2
+ v

[
− 2− 24

∞∑
r=1

[
rqr

1− qr
− 3rq3r

1− q3r

]]2
+

1

27

[
1− 24

∞∑
r=1

[
3rq3r

1− q3r
− 2rq2r

1− q2r

]]2
=

c8(q2)

81c4(q)
. (18)

Proof:

C1M(q) + C2M(q2) + C3M(q3) + C4M(q6) + C5M(q12)

+ C6{L(q)− 2L(q2)}2 + C7{L(q)− 3L(q3)}2

+ C8{3L(q3)− 2L(q2)}2 = a(q2)b3(q2). (19)

We utilize the (p, k) parametrization as described in
Lemma II.3 to modify the given equation. This transforma-
tion results in a set of non-homogeneous linear equations.
By equating coefficients of terms involving various powers
of k and p, such as k4, pk4, p2k4, and so on, on both sides
of the equation, we generate these equations. Solving for the
unknown values becomes necessary to find solutions for the
system.



1 1 1 1 1 1 4 1

124 4 4 4 4 28 64 4

964 64 4 4 4 244 400 28

2788 178 28 −2 −2 700 1216 52

3910 235 70 −5 −5 970 1816 154

2788 178 28 −2 −2 700 1216 52

964 64 4 4
1

4
244 400 28

124 4 4 5
1

4
28 64 4

1 1 1 1
1

16
1 4 1





C1

C2

C3

C4

C5

C6

C7

C8



=



1

4

13

4

−17

4

−8

−17

4

13

4

4

1



.

We note that, the system results in an infinitely many
solutions,

C1 = −u

5
− 2v

5
, C2 = − 1

80
− 4u

5
, C3 = −18v

5
,

C4 =
81

80
, C5 = 0, C6 = u, C7 = v, C8 = 0.

Substituting these values in (19) yields, (12). Similarly,
altering the right-hand side of (12) and subsequently using
(19), results in equations (i) to (vi).
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(i)

(
− 1

80
− u

5
− 2v

5

)
M(q)− 4u

5
M(q2) +

(
81

80

− 18v

5

)
M(q3) + u{L(q)− 2L(q2)}2 + v{L(q)

− 3L(q3)}2 = a(q)b3(q).

(ii)

(
3

40
− u

5
− 2v

5

)
M(q)−

(
1

5
− 4u

5

)
M(q2)−

(
27

40

+
18v

5

)
M(q3) +

9

5
M(q6) + u{L(q)− 2L(q2)}2

+ v{L(q)− 3L(q3)}2 = a3(q)a(q2).

(iii)

(
1

10
− u

5
− 2v

5

)
M(q)− 4u

5
M(q2) +

(
9

10
− 18v

5

)
M(q3) + u{L(q)− 2L(q2)}2 + v{L(q)− 3L(q3)}2

= (3a(q3)− 2b(q))4.

(iv)

(
1

10
− u

5
− 2v

5

)
M(q) +

(
4

5
− 4u

5

)
M(q2)−

(
27

10

+
18v

5

)
M(q3) + u{L(q)− 2L(q2)}2 + v{L(q)

− 3L(q3)}2 + 3{3L(q3)− 2L(q2)}2 =
b8(q)

b4(q2)
.

(v)

(
− u

5
− 2v

5

)
M(q)−

(
1

4320
+

4u

5

)
M(q2) +

(
1

2880

− 18v

5

)
M(q3)− 1

1440
M(q6) + u{L(q)− 2L(q2)}2

+ v{L(q)− 3L(q3)}2 + 1

1728
{3L(q3)− 2L(q2)}2

=
c8(q2)

81c4(q)
.

(vi)

(
1

30
− u

5
− 2v

5

)(
1

10
− u

5
− 2v

5

)
M(q)−

(
4

27
+

4u

5

)
M(q2)−

(
31

90
+

18v

5

)
M(q3) +

64

45
M(q6) + u{L(q)

− 2L(q2)}2 + v{L(q)− 3L(q3)}2

+
1

27
{3L(q3)− 2L(q2)}2 =

c8(q)

81c4(q2)
.

Upon employing the definition of Eisenstein series and
simplifying, equations (13) to (18) emerge.

Theorem III.5. The relation amongst an infinite series and
theta functions holds:

(i)

(
1− 4u

)
− 96u

∞∑
r=1

[
r3qr

1− qr

]
− 3

∞∑
r=1

[
r3q2r

1− q2r

]

− 864u

∞∑
r=1

[
r3q3r

1− q3r

]
+ 243

∞∑
r=1

[
r3q6r

1− q6r

]
+ u

[
− 2

− 24

∞∑
r=1

[
rqr

1− qr
− 3rq3r

1− q3r

]]2
= a(q2)b3(q2). (20)

(ii)

(
1− 4u

)
− 3(1 + 32u)

∞∑
r=1

[
r3qr

1− qr

]
+ 27(9− 32u)

∞∑
r=1

[
r3q3r

1− q3r

]
+ u

[
− 2− 24

∞∑
r=1

[
rqr

1− qr
− 3rq3r

1− q3r

]]2
= a(q)b3(q). (21)

(iii)

(
1− 4u

)
+ 6(3− 16u)

∞∑
r=1

[
r3qr

1− qr

]
− 48

∞∑
r=1

[
r3q2r

1− q2r

]
− 27(3 + 16u)

∞∑
r=1

[
r3q3r

1− q3r

]

+ 432

∞∑
r=1

[
r3q6r

1− q6r

]
+ u

[
− 2− 24

∞∑
r=1

[
rqr

1− qr

− 3rq3r

1− q3r

]]2
= a3(q)a(q2). (22)

(iv)

(
1− 4u

)
+ 24(1− 4u)

∞∑
r=1

[
r3qr

1− qr

]
+ 216(1

− 10u)

∞∑
r=1

[
r3q3r

1− q3r

]
+ u

[
− 2− 24

∞∑
r=1

[
rqr

1− qr

− 3rq3r

1− q3r

]]2
= (3a(q3)− 2b(q))4. (23)

(v)

(
− 2− 4u

)
− 24(1 + 4u)

∞∑
r=1

[
r3qr

1− qr

]
+ 192

∞∑
r=1

[
r3q2r

1− q2r

]
− 216(3 + 4u)

∞∑
r=1

[
r3q3r

1− q3r

]

+ u

[
− 2− 24

∞∑
r=1

[
rqr

1− qr
− 3rq3r

1− q3r

]]2
=

b8(q)

b4(q2)
.

(24)

(vi)

(
− 1

1728
− 4u

)
− 96u

∞∑
r=1

[
r3qr

1− qr

]

− 1

8

∞∑
r=1

[
r3q2r

1− q2r

]
+

1

12
(1− 10368u)

∞∑
r=1

[
r3q3r

1− q3r

]

− 1

6

∞∑
r=1

[
r3q6r

1− q6r

]
+ u

[
− 2− 24

∞∑
r=1

[
rqr

1− qr

− 3rq3r

1− q3r

]]2
+

1

1728

[
− 1− 24

∞∑
r=1

[
2rq2r

1− q2r

− 3rq3r

1− q3r

]]2
=

c8(q2)

81c4(q)
. (25)

(vii)

(
− 1

27
− 4u

)
− 8(1− 12u)

∞∑
r=1

[
r3qr

1− qr

]
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− 320

9

∞∑
r=1

[
r3q2r

1− q2r

]
− 8

3
(31 + 324u)

∞∑
r=1

[
r3q3r

1− q3r

]

+
3072

9

∞∑
r=1

[
r3q6r

1− q6r

]
+ u

[
− 2− 24

∞∑
r=1

[
rqr

1− qr

− 3rq3r

1− q3r

]]2
+

1

27

[
− 1− 24

∞∑
r=1

[
2rq2r

1− q2r

− 3rq3r

1− q3r

]]2
=

c8(q)

81c4(q2)
. (26)

Proof:

C1M(q) + C2M(q2) + C3M(q3) + C4M(q6) + C5M(q12)

+ C6{L(q)− 3L(q3)}2 + C7{L(q)− 4L(q4)}2

+ C8{3L(q3)− 2L(q2)}2 = a(q2)b3(q2). (27)

By employing the (p, k) parametrization according to
Lemma II.3, we modify the given equation. This results
in a set of non-homogeneous linear equations, achieved by
equating coefficients of terms involving k4, pk4, p2k4, p3k4,
p4k4, p5k4, p6k4, p7k4, and p8k4 on the left-hand side with
their corresponding terms on the right-hand side. The subse-
quent step involves solving for the unknown values.



1 1 1 1 1 4 9 1

124 4 4 4 4 64 108 4

964 64 4 4 4 400 540 28

2788 178 28 −2 −2 1216 1440 52

3910 235 70 −5 −5 1816 2160 154

2788 178 28 −2 −2 1216 1728 52

964 64 4 4
1

4
400 576 28

124 4 4 5
1

4
64 0 4

1 1 1 1
1

16
4 0 1





C1

C2

C3

C4

C5

C6

C7

C8



=



1

4

13

4

−17

4

−8

−17

4

13

4

4

1



.

It’s worth observing that the system yields an infinite set of
solutions.

C1 = −2u

5
, C2 = − 1

80
, C3 = −18u

5
, C4 =

81

80
,

C5 = 0, C6 = u, C7 = 0, C8 = 0.

Substituting these values in (27) yields, (20). Similarly,
altering the right-hand side of (20) and subsequently using
(27), results in equations (i) to (vi).

(i)

(
− 1

80
− 2u

5

)
M(q) +

(
81

80
− 18

5

)
M(q3) + u{L(q)

− 3L(q3)}2 = a(q)b3(q). (28)

(ii)

(
3

40
− 2u

5

)
M(q)− 1

5
M(q2)−

(
27

40
+

18u

5

)
M(q3)

+
9

5
M(q6) + u{L(q)− 3L(q3)}2 = a3(q)a(q2).

(29)

(iii)

(
1

10
− 2u

5

)
M(q) +

(
9

10
− 18u

5

)
M(q3) + u{L(q)

− 3L(q3)}2 = (3a(q3)− 2b(q))4. (30)

(iv)

(
− 1

10
− 2u

5

)
M(q) +

4

5
M(q2)−

(
27

10
+

18u

5

)
M(q3)

+ u{L(q)− 3L(q3)}2 + 3{3L(q3)− 2L(q2)}2

= a(q2)b3(q2). (31)

(v) − 2u

5
M(q)−

(
1

4320

)
M(q2) +

(
1

2880
− 18u

5

)
M(q3)

− 1

1440
M(q6) + u{L(q)− 3L(q3)}2 + 1

1728
{3L(q3)

− 2L(q2)}2 =
c8(q2)

81c4(q)
. (32)

(vi)

(
1

30
− 2u

5

)
M(q)− 4

27
M(q2)−

(
31

90
+

18u

5

)
M(q3)

+
64

45
M(q6) + u{L(q)− 3L(q3)}2 + 1

27
{3L(q3)

− 2L(q2)}2 =
c8(q)

81c4(q2)
. (33)

By applying the definition of Eisenstein series and simplify-
ing, we derive equations (21) to (26).

IV. EVALUATION OF CONVOLUTION SUM∑
r=2i+3j δ(i)δ(j)

Consider the set of natural numbers denoted as N. For any
k, r ∈ N, we establish the following definition:

δk(r) =
∑
d/r

dk.

here, d traverses the non-negative integral divisors of r.
For i, j, r ∈ N with i ≤ j, the convolution sum is expressed
as:

Wi,j(r) :=
∑

il+jk=r

δ(l)δ(k).

Alaca et al.[1], [2], [3], [4], [5], [6], H. C. Vidya, and B.
R. Srivtasa Kumar [19], Williams et al.[22], [23], as well
as E. X. W. Xia and O. X. M. Yao [24], have extensively
and explicitly computed the convolution

∑
li+kj=r

δ(i)δ(j) for

a range of i and j values across all r.
The assertions made by J. W. L. Glaisher [11] provide
support and validation for our proof.

L2(q) = 1 +
∞∑
r=1

(240δ3(r)− 288rδ1(r))q
r. (34)
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Theorem IV.1. For every r ∈ N and u ∈ R−0, the following
holds:∑
2i+3j=r

δ(i)δ(j) =

(
1

24
− r

6

)
δ1

(
r

2

)
+

(
1

24
− 3r

8

)
δ1

(
r

3

)

−
(

7

3456

)
δ3(r) +

(
65

432

)
δ3

(
r

2

)
+

(
37

128

)
δ3

(
r

3

)
−
(

1

48

)
δ3

(
r

6

)
+

1

20736
(B(r)−A(r)) , (35)

where 1 +

∞∑
r=1

A(r)qr =

(
S(q2) + 4T (q2)

)
R3(q2) and

1 +

∞∑
r=1

B(r)qr =

(
S(q) + 4T (q)

)3(
S(q2) + 4T (q2)

)
Proof: Consider (29).

(
3

40
− 2u

5

)
M(q)− 1

5
M(q2)−

(
27

40
+

18u

5

)
M(q3)

+
9

5
M(q6) + u{L(q)− 3L(q3)}2 = a3(q)a(q2).

which yeilds,

(
3

40
− 2u

5

)[
1 +

∞∑
r=1

240δ3(r)q
r

]
− 1

5

[
1 +

∞∑
r=1

240δ3

(
r

2

)
qr
]
−
(
27

40
+

18u

5

)[
1 +

∞∑
r=1

240δ3

(
r

3

)
qr
]
+

9

5

[
1

+
∞∑
r=1

240δ3

(
r

6

)
qr
]
+

∞∑
r=1

[
240δ3(r)− 288ruδ1(r)

+ 2160uδ3

(
r

3

)
− 2592ruδ1

(
r

3

)]
qr + 4u+ 144u

∞∑
r=1

δ1(r)q
r + 144u

∞∑
r=1

δ1

(
r

3

)
qr − 3456u

∑
i+3j=r

δ(i)δ(j)qr

= a3(q)a(q2).

On simplifying,

∑
i+3j=r

δ(i)δ(j) =

∞∑
r=1

[(
1

24
− r

12

)
δ1(r) +

(
1

24
− 3r

4

)

δ1

(
r

3

)
+

(
1

1924
+

1

24

)
δ3(r)−

(
1

72u

)
δ3

(
r

2

)
−
(

3

64u

− 3

8

)
δ3

(
r

3

)
+

(
1

8u

)
δ3

(
r

6

)
−
(

1

3456u

)
B(r)

]

Utilizing Definition II.1 on equation (31) and rearranging,

we derive:

−
[
1

10
+

2u

5

][
1 + 240

∞∑
r=1

δ3(r)q
r

]
+

[
4

5

][
1 + 240

∞∑
r=1

δ3

(
r

2

)
qr
]

−
[
27

10
+

18u

5

][
1 + 240

∞∑
r=1

δ3

(
r

3

)
qr
]
+ 4u

+ u

[
1 +

∞∑
r=1

[
240δ3(r)− 288rδ1(r) + 2160δ3

(
r

3

)
− 2592rδ3

(
r

3

)]
qr + 144u

∞∑
r=1

δ1(r)q
r + 144u

∞∑
r=1

δ1

(
r

3

)
qr

− 3456u
∑

r=i+3j

δ(i)δ(j)qr + 3 +
∞∑
r=1

[
6480δ3

(
r

3

)
− 7776rδ1

(
r

3

)
+ 2880δ3

(
r

2

)
− 3456rδ1

(
r

2

)]
qr

+ 864
∞∑
r=1

δ1

(
r

3

)
qr + 864δ1

(
r

2

)
qr

− 20736
∑

r=2i+3j

δ(i)δ(j)qr = 1 +
∞∑
r=1

A(r)qr,

Rearranging,

1 +
∞∑
r=1

[(
144u− 288ru

)
δ1(r)

]
qr +

∞∑
r=1

[(
864

− 3456r

)
δ1

(
r

2

)]
qr +

∞∑
r=1

[(
− 2592ru+ 144u

− 7776r + 864

)
δ1

(
r

3

)]
qr +

∞∑
r=1

[(
144u− 24

)
δ3(r)

+ 3072δ3

(
r

2

)]
qr +

∞∑
r=1

[(
1296u+ 5832

)
δ3

(
r

3

)]
qr

−
∞∑
r=1

[(
144u− 288ru

)
δ1(r) +

(
144u− 2592ru

)
δ1

(
r

3

)
+

(
18 + 144u

)
δ3(r)

]
qr +

∞∑
r=1

[
− 48δ3

(
r

2

)
+

(
1296u

− 162

)
δ3

(
r

3

)
+ 432δ3

(
r

6

)
−B(r)

]
qr

− 20736
∑

r=2i+3j

δ(i)δ(j)qr = 1 +
∞∑
r=1

A(r)qr.

Hence,∑
2i+3j=r

δ(i)δ(j) =

(
1

24
− r

6

)
δ1

(
r

2

)
+

(
1

24
− 3r

8

)
δ1

(
r

3

)

−
(

7

3456

)
δ3(r) +

(
65

432

)
δ3

(
r

2

)
+

(
37

128

)
δ3

(
r

3

)
−

(
1

48

)
δ3

(
r

6

)
+

1

20736
(B(r)−A(r)) ,
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where 1+

∞∑
r=1

A(r)qr = a(q2)b3(q2) and 1+

∞∑
r=1

B(r)qr =

a3(q)a(q2).
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