
 

  

Abstract— This research aims to create a double-moving 

average control chart for monitoring a change in process dispersion 

with a range of so-called DMAR chart and propose the explicit 

formulas of average run length (ARL) of DMAR chart. It compares 

the performance of the moving average control chart based on 

range (MAR chart). The proposed control chart is an effective 

alternative to the MAR chart using the double moving average 

based on the sample range. The coefficients for the control limits 

of the DMAR chart varying the sample sizes and the width for 

moving average calculation are presented. Comparison and 

application to real data sets show that the DMAR chart detects 

variations at all levels more effectively than the MAR chart. 

Furthermore, when the magnitudes of the variation changes are 

small, the DMAR chart becomes more effective as the width 

increases. 

 

Index Terms—Time-varying chart, Variation, Efficiency, 

Monitoring, Average run length 

 

I. INTRODUCTION 

CONTROL charts are effective tools used to control the 

quality of processes to ensure they are always effective. 

Control charts help track the progress of the production 

process to monitor data change trends until changes outside 

the control limit (out-of-control) are detected. Control charts 

can also assess the manufacturing process's efficiency and 

determine the cause of variations to reduce variation and 

improve production processes. Another important aspect is 

the standard configuration of the product to achieve the 

goal. It can also be used to improve the production process 

to meet the standards of manufacturers and consumers. The  
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quality control charts can be divided into two types: the 

control chart for variables consists of a variable control 

chart such as an average chart ( x chart), range chart (R 

chart), and standard deviation chart (S chart). The second 

type is control charts for attributes, which are control charts 

used for detecting the number of defects or the number of 

nonconformities which is counting data and is an integer. 

An example of this type of control chart is the defect 

proportion chart (p chart), the number of defect chart (np 

chart), and the number of nonconforming products per unit 

chart (u chart), etc [1]. 

In 1924, Shewhart proposed the Shewhart control chart 

(Shewhart chart), an effective control chart for detecting 

significant average changes [2]. However, the small mean 

change could not be detected. Subsequently, other quality 

control charts have been developed to detect small changes 

more efficiently than the Shewhart chart. For example, in 

1959, Roberts proposed an exponentially weighted moving 

average control chart (EWMA chart) based on taking data 

over time from observations in the collection process [3]. It 

was found that the EWMA chart outperformed the Shewhart 

chart when the magnitude of the change in the process mean 

was small. Later, in 2004, Khoo developed a moving 

average control chart (MA chart) using a simple idea to 

calculate the MA statistics by giving a width of average (w) 

[4]. This control chart is also easy to calculate and 

implement, as its efficiency suits small to moderate shifts 

[5-7]. Next, Khoo and Wong intensely studied and extended 

the MA chart, a double moving average control chart (DMA 

chart) whose ability to detect a small change in process is 

better than the former [8]. In 2016, Olatunde and Olaomia 

developed the MA chart for the detection of a change in 

variation based on a standard, namely the MA-S chart. They 

proposed explicit formulas to determine the average run 

length (ARL) and compare the results in detecting variation 

changes with the S chart [9-11]. Later, in 2019, Olatunde et 

al. proposed a DMA-S chart that enhanced the ability to 

detect changes in process variability, presented an explicit 

formula for finding the ARL [12], and compared the 

performance with the S chart, MA-S chart and the DMA-S 

chart outperform other charts, which is suitable for detecting 

small to moderate changes in the process variation when the 

process has a normal distribution [13]. Recently, Chananet 

et al. [14] designed a moving average based on range, 

namely MAR chart for detection process variation and 

suitable for small sample sizes (n<10). Process variance 

measurements, such as process consistency checks, are more 
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critical than process averages in some situations. Therefore, 

a process variability control chart must be developed to 

restore the process as smoothly as possible.  

The most commonly used control chart performance 

comparison is average run length (ARL), which is divided 

into two states: in-control average run length (ARL0) and 

out-of-control average run length (ARL1), see more details 

by [15-19]. The classical method for determining the ARL 

is generally used in the Monte Carlo simulation (MC) to 

estimate the ARL from a simulation under given 

circumstances. It is a simple and convenient method to 

validate the results obtained by other methods. However, 

such methods have limitations in processing results that 

vary in time consumption. Subsequently, an explicit formula 

method took less time to calculate. Nevertheless, it may 

only be found in some cases of the study. 

In this research, the DMA chart is developed to create a 

new control chart for detecting a change in variation based 

on range, namely the DMAR chart. In addition, the 

performance of the DMAR chart is compared with the MAR 

chart for detecting process variations and applying them to 

actual data. The control chart gives the lowest value, ARL1, 

indicating that the control chart is most effective in 

detecting variation changes.  

 

II. MATERIALS AND METHODS 

In this research, a new control chart named "Double 

Moving Average of Range control chart (DMAR chart)" for 

detecting process variability is investigated, and the 

statistics of the control chart and the control limits are 

presented. The performance of the proposed control chart is 

compared with the performance of the DMAR chart. 

Generally, the R chart is more prevalent among quality 

control practitioners, especially when dealing with small 

sample sizes, because of the simplicity of calculating the 

range from each sample. Therefore, the study control charts, 

and related research are discussed in this section. 

 

A. Range control chart (R chart) 

 A range chart is a statistical process control (SPC) tool 

that displays the variation within a data set. It tracks the 

variation in a process over time and helps identify any 

changes in the process variance. It plots the range of the 

data in each subgroup, where the range is calculated from 

the difference between the highest and lowest values in each 

subgroup over time. The R chart is suitable if the sample 

sizes (N) are small ( )10 .N   For developing a quality 

control chart, it is essential to always consider this R chart in 

conjunction with the x-bar chart, which can be calculated to 

find the average of the range ( )R  as 
1

  /
m

j

j

R R m
=

= , where 

jR  is the difference between the highest value in sample j 

and the lowest value in sample j. The calculation of the 

upper control limit (UCL) and lower control limit (LCL) is 

divided into two cases: known and unknown parameters .  

For the latter case, the parameter must be estimated. 

Montgomery [1] stated that in the process variability, an 

unbiased estimator ,  is 
2

ˆ
R

d
 =  for the R chart and is 

4

ˆ
S

C
 =  for the S chart, respectively. Consequently, the 

control limits are as follows: 

 

1. Known   

 

2 3 2 2 3 1  3    and   3  UCL d d D LCL d d D     = + = = − =      (1) 

 

where the values from Equation (1), ( )1 2 33D d d= − and 

( )2 2 33 ,D d d= +  are coefficients for control limits and 

depend on the sample size (N).  

 

2. Unknown   

The estimate 
2

ˆ
R

d
 =  is then substituted ̂  into Equation 

(1) as follows: 

                                                           

3 3

4
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B. Moving average - range control chart (MAR chart) 

The moving average range (MAR) chart can detect a 

change in the process mean and variability [14]. The MAR 

chart is implemented to see a change in process variation 

based on the range value, which depends on the sample size 

(N). The MAR statistic of width w  at times i  is calculated as  

 

1 2

1 1

...
    ; 

...
 ; 

i

i i i

R

i i i w

R R R
i w

i
MA

R R R
i w

w

− −

− − +

+ + +


= 
+ + + 



                               (3) 

 

where
jR  is the range of each sample number j. 

The expectation of the MAR chart when i w  is presented 

in Equation (4), 

 

( ) 2

1 1

1
= = .

1
( )  = 

i i

R j j

j j

dE MA E R E R
ii


= =

 
 
 

                         (4)  

 

Also, the expectation of the MAR chart, when i w  shown 

in Equation (5), 

             

( ) 2

1 1

1
= = .

1
( )  = 

w w

R j j

j i w j i w

dE MA E R E R
w w


= − + = − +

 
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The variance of the MAR chart, when i w  is presented in 

Equation (6), 

 

( )
1 1

2

3

2

2
1

=
1

( )  = =  .
i i

R j j

j j

Var MA R Var R
d

Var
i ii



= =

 
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 

       (6) 

 

Also, the variance of the MAR chart, when i w  as shown 

on Equation (7), 
2 2

3

1

 = .
1

( )
i

R j

j i w

Var MA R
d

Va
w

r
w



= − +

 
= 

 
                       (7) 

 

Therefore, the upper control limit (UCL) and lower 

control limit (LCL) of the MAR chart can be calculated in 

two cases following: 

 

1. Known   

1.1 when ,i w  then  
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*3 3
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 they are the 

coefficients of control limits which are calculated and 

proposed in the next section. 

 

1.2 when ,i w  then 
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coefficients of control limits from the proposed chart. 

 

2. Unknown   

2.1 when ,i w  then 
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2.2 when ,i w  then 
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C. Double moving average - range control chart         

(DMAR chart) 

This research aims to construct a new control chart and 

the table of the coefficients of control limits, which depend 

on the sample size (N) to monitor changes in process 

variation, namely the Double Moving Average-Range chart 

(DMAR chart). This research implements the DMAR chart to 

detect a change in process variation based on the range 

value. This modified DMAR chart with the range value. The 

DMAR statistic of width w at times i  is calculated as 

 

1
...

− +
+ + +

= i i i w

i

R R R

R

MA MA MA
DMA

w
 for .i w                (12) 

 

Note that the moving average of the subgroup standard 

deviation, 
iRMA  of span w at time i is computed using (12) 

when .i w  For period ,i w  the DMAR statistic is 

calculated to be the average of all moving average standard 

deviations up to period i. That is,  

 

1
.
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i
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=
=
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                                                    (13) 

 

The mean of the DMAR statistic based on an in-control 

process where the underlying assumption follows a normal 

distribution, 2( , ) N  for the period, i w  is given as 
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The variation of DMAR is given as follows for 2,w   
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The calculation of the upper control limit (UCL) and 

lower control limit (LCL) of the DMAR chart is divided into 

three cases as follows: 

 

1. Known    

     1.1 when ,i w  
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2. Unknown   

     2.1 when ,i w  
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D.  Average run length (ARL) 

The control chart's effectiveness is gauged through the 

Average Run Length (ARL), categorized into two states: in-

control and out-of-control processes. Refer to Montgomery's 

details [1] under normal circumstances, in-control processes 

should yield high ARL values, whereas out-of-control 

processes should result in minimal values. Historically, 

various analytical methods have been employed to compute 

ARL, with Monte Carlo (MC) simulation emerging as the 

most widely used and accurate technique. Nonetheless, this 

method faces limitations in handling large datasets and time 

constraints. The calculation for ARL using Monte Carlo is 

outlined as follows. 

 

1

T

i

i

ARL RL T
=

=                                                   (22) 

 

In this context, RLi signifies the sample being analyzed 

before the process surpasses the control limits for the initial 

occurrence. In the ith simulation round, N denotes the count 

of experiment repetitions. 

Moreover, various approaches are available; the Markov 

chain approach (MCA) is a widely adopted and effective 

technique that applies matrix inversion to the principles of 

Markov chains. While there is no theoretical impact on 

accuracy, the results are compared with Monte Carlo (MC) 

simulations [15]. The integral equation (IE) also represents 

a contemporary method utilizing fundamental mathematical 

formulas and the central limit theorem. This approach is 

another method capable of accurately assessing the 
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performance of a control chart [16]. Although the 

mentioned techniques are suitable for evaluating the 

efficiency of control charts, they may only be optimal for 

optimizing some control charts as the process changes. 

Furthermore, an explicit formula is suggested for assessing 

ARL see [5 - 7] and [9 - 14] for additional details. 

III. RESULTS AND DISCUSSION 

In this section, the results of this new control chart design 

can be described as follows: The First Part determines the 

control chart, and the Second Part finds the explicit formula 

of the DMAR chart. Next, the Third Part compares the 

control chart, and the Final Part applies to actual data. 

 

A. Coefficient of the DMAR Chart 

 This section showed the factor of control limits for the 

known and unknown parameters ( ). Adjust the width (w) 

of the DMAR chart to 5. When the parameters ( ) are 

identified, their explanation can be provided as follows. 

Table I indicates the coefficient of control limits of the 

DMAR chart for w = 1, 2, 3, 4, and 5, which is calculated 

from (16) .i w  Next, Table II illustrates the coefficient of 

control limits of the DMAR chart for w = 6, 7, and 8 when 

2 1w i w  −  computed from (17). Later, Table III 

specifies that the coefficient of control limits of the DMAR 

chart for w = 9, 10, 15, and 20 when 2 1i w −  found from 

(18). In addition, unknown parameters ( ) can be explained 

as such: Table IV shows the coefficient of control limits of 

the DMAR chart for w = 1, 2, 3, 4, and 5, which is calculated 

from (19), while .i w  Table V illustrates that the 

coefficient of control limits of the DMAR chart for w = 6, 7, 

and 8 when 2 1w i w  −  compute from (20). Finally, 

Table VI specifies that the coefficient of control limits of 

the DMAR chart for w = 9, 10, 15, and 20 when 

2 1i w − found from (21). Therefore, the coefficient of 

control limits tables is very useful and prompt for practitioners. 

 

B. Explicit formulas ARL of the DMAR Chart 

The efficiency of the control chart is measured from the 

average run length, which can be obtained from the explicit 

formula of DMAR as Equation (23). The detail of the ARL is 

shown in the appendix. 
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TABLE I 

COEFFICIENT OF DMAR CONTROL LIMIT FOR THE KNOWN PARAMETER   WHEN i w  

Sample    w =1 w =2 w =3 w =4 w =5 

(N) 
2d  3d  

*

13D  
*

14D  
*

13D  
*

14D  
*

13D  
*

14D  
*

13D  
*

14D  
*

13D  
*

14D  

2 1.128 0.853 0.000 3.687 0.000 2.695 0.000 2.283 0.205 2.051 0.355 3.343 

3 1.693 0.888 0.000 4.357 0.062 3.324 0.491 2.895 0.732 2.654 0.888 3.950 

4 2.059 0.88 0.000 4.699 0.442 3.676 0.868 3.251 1.106 3.012 1.261 4.260 

5 2.326 0.864 0.000 4.918 0.739 3.913 1.156 3.496 1.391 3.261 1.543 4.459 

6 2.534 0.848 0.000 5.078 0.976 4.092 1.386 3.682 1.616 3.452 1.765 4.604 

7 2.704 0.833 0.205 5.203 1.174 4.234 1.576 3.832 1.802 3.606 1.949 4.922 

8 2.847 0.82 0.387 5.307 1.341 4.353 1.737 3.957 1.959 3.735 2.104 5.199 

9 2.97 0.808 0.546 5.394 1.486 4.454 1.876 4.064 2.095 3.845 2.237 5.436 

10 3.078 0.797 0.687 5.469 1.614 4.542 1.999 4.157 2.215 3.941 2.355 5.645 

11 3.173 0.787 0.812 5.534 1.727 4.619 2.107 4.239 2.321 4.025 2.459 5.829 

12 3.258 0.778 0.924 5.592 1.829 4.687 2.205 4.311 2.416 4.100 2.553 5.994 

13 3.336 0.77 1.026 5.646 1.921 4.751 2.293 4.379 2.503 4.170 2.638 6.145 

14 3.407 0.762 1.121 5.693 2.007 4.807 2.375 4.439 2.582 4.232 2.716 6.283 

15 3.472 0.755 1.207 5.737 2.085 4.859 2.450 4.494 2.655 4.289 2.787 6.408 

16 3.532 0.749 1.285 5.779 2.156 4.908 2.518 4.546 2.721 4.343 2.853 6.524 

17 3.588 0.743 1.359 5.817 2.223 4.953 2.582 4.594 2.784 4.392 2.914 6.633 

18 3.64 0.738 1.426 5.854 2.284 4.996 2.641 4.639 2.841 4.439 2.971 6.734 

19 3.689 0.733 1.490 5.888 2.342 5.036 2.697 4.682 2.896 4.483 3.024 6.828 

20 3.735 0.729 1.548 5.922 2.396 5.074 2.748 4.722 2.949 4.524 3.074 6.917 

25 3.931 0.709 1.804 6.058 2.629 5.234 2.971 4.891 3.164 4.699 3.288 7.296 
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TABLE II 

COEFFICIENT OF DMAR CONTROL LIMIT FOR THE KNOWN PARAMETER   WHEN 2 1w i w  −  

 Sample  w =6 w =7 w =8 

(N) 
2d  3d  

*

15D  
*

16D  
*

15D  
*

16D  
*

15D  
*

16D  

2 1.128 0.853 0.408 3.112 0.475 2.823 0.528 2.593 

3 1.693 0.888 0.943 3.678 1.013 3.337 1.068 3.064 

4 2.059 0.880 1.316 3.966 1.385 3.598 1.440 3.305 

5 2.326 0.864 1.597 4.151 1.664 3.766 1.718 3.460 

6 2.534 0.848 1.818 4.286 1.885 3.889 1.938 3.572 

7 2.704 0.833 2.001 4.597 2.066 4.189 2.118 3.865 

8 2.847 0.820 2.155 4.867 2.219 4.451 2.270 4.120 

9 2.970 0.808 2.288 5.099 2.351 4.677 2.402 4.340 

10 3.078 0.797 2.405 5.303 2.468 4.875 2.517 4.533 

11 3.173 0.787 2.509 5.483 2.570 5.050 2.620 4.704 

12 3.258 0.778 2.601 5.644 2.662 5.206 2.711 4.857 

13 3.336 0.770 2.686 5.792 2.746 5.350 2.794 4.997 

14 3.407 0.762 2.764 5.926 2.823 5.481 2.871 5.125 

15 3.472 0.755 2.835 6.050 2.894 5.600 2.941 5.242 

16 3.532 0.749 2.900 6.163 2.958 5.711 3.005 5.350 

17 3.588 0.743 2.961 6.269 3.019 5.813 3.065 5.450 

18 3.640 0.738 3.017 6.367 3.075 5.909 3.121 5.543 

19 3.689 0.733 3.070 6.460 3.128 5.999 3.173 5.631 

20 3.735 0.729 3.120 6.547 3.177 6.083 3.222 5.713 

25 3.931 0.709 3.332 6.918 3.388 6.443 3.432 6.065 

 

TABLE III 

COEFFICIENT OF DMAR CONTROL LIMIT FOR THE KNOWN PARAMETER   WHEN 2 1i w −  

Sample   w =9 w =10 w =15 w=20 

(N) 
2d  3d  

*

17D  
*

18D  
*

17D  
*

18D  
*

17D  
*

18D  
*

17D  
*

18D  

2 1.128 0.853 0.844 0.803 0.872 1.384 0.957 1.299 1.000 1.256 

3 1.693 0.888 1.397 1.370 1.427 1.959 1.515 1.871 1.560 1.826 

4 2.059 0.88 1.766 1.865 1.795 2.323 1.883 2.235 1.927 2.191 

5 2.326 0.864 2.038 2.237 2.067 2.585 2.153 2.499 2.196 2.456 

6 2.534 0.848 2.251 2.531 2.280 2.788 2.364 2.704 2.407 2.661 

7 2.704 0.833 2.426 2.772 2.454 2.954 2.537 2.871 2.580 2.829 

8 2.847 0.82 2.574 2.976 2.601 3.093 2.683 3.011 2.724 2.970 

9 2.97 0.808 2.701 3.152 2.728 3.212 2.808 3.132 2.849 3.091 

10 3.078 0.797 2.812 3.307 2.839 3.317 2.919 3.237 2.958 3.198 

11 3.173 0.787 2.911 3.444 2.937 3.409 3.016 3.330 3.055 3.291 

12 3.258 0.778 2.999 3.566 3.025 3.491 3.102 3.414 3.141 3.375 

13 3.336 0.77 3.079 3.678 3.105 3.567 3.182 3.490 3.221 3.452 

14 3.407 0.762 3.153 3.781 3.178 3.636 3.255 3.559 3.293 3.521 

15 3.472 0.755 3.220 3.874 3.246 3.699 3.321 3.623 3.359 3.585 

16 3.532 0.749 3.282 3.960 3.307 3.757 3.382 3.682 3.420 3.644 

17 3.588 0.743 3.340 4.041 3.365 3.811 3.439 3.737 3.477 3.699 

18 3.64 0.738 3.394 4.115 3.419 3.861 3.492 3.788 3.529 3.751 

19 3.689 0.733 3.445 4.186 3.470 3.909 3.542 3.836 3.579 3.799 

20 3.735 0.729 3.492 4.251 3.516 3.954 3.589 3.881 3.626 3.844 

25 3.931 0.709 3.695 4.532 3.718 4.144 3.789 4.073 3.825 4.037 

 

C. The comparison of performance of the DMAR chart 

 This section shows the performance of the DMAR 

chart compared with the MAR chart for monitoring process 

variability. The control chart with the smallest ARL1 is the 

most efficient. The width ( )w  parameter for MAR and 

DMAR charts are set to 2, 3, 5, 10, and 15 and given ARL0 = 

370. The shift sizes of the process variation ( )1 0/  =  

where 0 1 = , the process are from Normal (0,1) were 1.02, 

1.04, 1.06, 1.08, 1.10, 1.25, 1.75, 2.00, 2.50 and 3.00. The 

ARL calculations for MAR and DMAR charts yield results 

that can be categorized into three cases. Table VII shows the 

ARL of DMAR and MAR charts for n = 5. The result shows 

that when the magnitudes of changes  are small to moderate 

( < 2), the proposed chart's detection efficiency is better than 

the MAR chart. Otherwise, there are no significant differences 

for all case studies. Table VIII presents the ARL for MAR and 

DMAR charts for a subgroup size of 10. The findings reveal 

that when  are less than 1.75, DMAR charts demonstrate 

greater effectiveness in detecting changes than MAR chart. 

Conversely, when  exceed 2.00, MAR chart outperform 

DMAR chart. Finally, Table IX presents the ARL for MAR 

and DMAR charts with a subgroup size 15. The results 

suggest that when  are below 2.00, DMAR charts exhibit 

greater effectiveness in detecting changes than MAR charts 

in all cases. On the other hand, when  =2.5, DMAR charts 

prove to be as adept at capturing process changes as MAR 

chart. By calculating ARL values, the MAR and DMAR 

charts reveal an interesting trend: as the magnitude of shifts 

() increases, the width ( )w decreases. 
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TABLE IV 

COEFFICIENT OF DMAR CONTROL LIMIT FOR THE UNKNOWN PARAMETER   WHEN i w  

Sample   w =1 w =2 w =3 w =4 w =5 

(N) 
2d  3d  

*

19D  
*

20D  
*

19D  
*

20D  
*

19D  
*

20D  
*

19D  
*

20D  
*

19D  
*

20D  

2 1.128 0.853 0.000 3.269 0.000 2.389 0.000 2.024 0.181 1.819 0.143 1.857 

3 1.693 0.888 0.000 2.574 0.036 1.964 0.290 1.710 0.432 1.568 0.406 1.594 

4 2.059 0.88 0.000 2.282 0.215 1.785 0.421 1.579 0.537 1.463 0.516 1.484 

5 2.326 0.864 0.000 2.114 0.318 1.682 0.497 1.503 0.598 1.402 0.579 1.421 

6 2.534 0.848 0.000 2.004 0.385 1.615 0.547 1.453 0.638 1.362 0.621 1.379 

7 2.704 0.833 0.076 1.924 0.434 1.566 0.583 1.417 0.667 1.334 0.651 1.349 

8 2.847 0.82 0.136 1.864 0.471 1.529 0.610 1.390 0.688 1.312 0.674 1.326 

9 2.97 0.808 0.184 1.816 0.500 1.500 0.632 1.368 0.706 1.295 0.692 1.308 

10 3.078 0.797 0.223 1.777 0.524 1.476 0.649 1.351 0.720 1.280 0.706 1.293 

11 3.173 0.787 0.256 1.744 0.544 1.456 0.664 1.336 0.732 1.269 0.719 1.281 

12 3.258 0.778 0.284 1.716 0.561 1.439 0.677 1.323 0.742 1.259 0.729 1.271 

13 3.336 0.77 0.308 1.692 0.576 1.424 0.688 1.313 0.750 1.250 0.738 1.262 

14 3.407 0.762 0.329 1.671 0.589 1.411 0.697 1.303 0.758 1.242 0.746 1.253 

15 3.472 0.755 0.348 1.652 0.601 1.400 0.706 1.294 0.765 1.235 0.754 1.246 

16 3.532 0.749 0.364 1.636 0.610 1.390 0.713 1.287 0.770 1.230 0.760 1.240 

17 3.588 0.743 0.379 1.621 0.620 1.380 0.720 1.280 0.776 1.224 0.765 1.235 

18 3.64 0.738 0.392 1.608 0.628 1.373 0.726 1.275 0.781 1.219 0.770 1.230 

19 3.689 0.733 0.404 1.596 0.635 1.365 0.731 1.269 0.785 1.215 0.775 1.225 

20 3.735 0.729 0.415 1.586 0.641 1.359 0.736 1.264 0.789 1.211 0.779 1.221 

25 3.931 0.709 0.459 1.541 0.669 1.331 0.756 1.244 0.805 1.1952 0.796 1.204 

 

 

TABLE V 

COEFFICIENT OF DMAR CONTROL LIMIT FOR THE UNKNOWN PARAMETER  WHEN 2 1w i w  −  

Sample   w =6 w =7 w =8 

(N) 
2d  3d  

*

21D  
*

22D  
*

21D  
*

22D  
*

21D  
*

22D  

2 1.128 0.853 0.362 1.638 0.421 1.579 0.468 1.532 

3 1.693 0.888 0.557 1.443 0.598 1.402 0.631 1.369 

4 2.059 0.880 0.639 1.361 0.673 1.327 0.699 1.301 

5 2.326 0.864 0.686 1.313 0.716 1.284 0.739 1.261 

6 2.534 0.848 0.718 1.282 0.744 1.256 0.765 1.235 

7 2.704 0.833 0.740 1.260 0.764 1.236 0.783 1.217 

8 2.847 0.820 0.757 1.243 0.779 1.221 0.797 1.203 

9 2.970 0.808 0.770 1.230 0.792 1.208 0.809 1.191 

10 3.078 0.797 0.781 1.218 0.802 1.198 0.817 1.182 

11 3.173 0.787 0.791 1.209 0.810 1.190 0.825 1.174 

12 3.258 0.778 0.798 1.201 0.817 1.183 0.832 1.168 

13 3.336 0.770 0.805 1.195 0.823 1.177 0.838 1.162 

14 3.407 0.762 0.811 1.189 0.829 1.171 0.843 1.157 

15 3.472 0.755 0.816 1.184 0.833 1.165 0.847 1.153 

16 3.532 0.749 0.821 1.179 0.838 1.162 0.851 1.149 

17 3.588 0.743 0.825 1.175 0.841 1.159 0.854 1.146 

18 3.640 0.738 0.829 1.171 0.845 1.155 0.857 1.143 

19 3.689 0.733 0.832 1.168 0.848 1.152 0.860 1.140 

20 3.735 0.729 0.835 1.165 0.851 1.150 0.863 1.137 

25 3.931 0.709 0.848 1.152 0.862 1.138 0.873 1.127 

 

 

D. Applied to real application 

 

1. Application I 

 

This section presents the utilization of the application for 

the control chart. The observation of real data is five 

samples and 45 subgroups [1]. Determine the ARL of MAR, 

and DMAR charts in detecting data changes. The statistics of 

the MAR, versus the DMAR chart are shown in Fig. 1(a) and 

1(b), respectively. The results show that the first sample 

outside of the control limit of the DMAR chart is sample 

no.18, respectively while the MAR chart cannot detect any 

changes. Therefore, the DMAR chart is the best control chart 

for detecting the process variation change. 

 

 

 

2. Application II 

 

The second dataset is derived from Adeoti and Olaomi. The 

data set represents the five groups and 20 subgroups [9]. 

Fig. 2(a) and 2(b) show the statistics of the MAR, and DMAR 

charts, respectively. The results show that the DMAR chart 

can quickly detect a change in the early process 

(observation no.3rd) while the MAR chart cannot detect 

process variation. Consequently, the DMAR chart is superior 

to the MAR chart, confirming both the results obtained from 

the explicit formulas and two real data sets. 

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1465-1475

 
______________________________________________________________________________________ 



 

TABLE VI 

COEFFICIENT OF DMAR CONTROL LIMIT FOR THE UNKNOWN PARAMETER  WHEN 2 1i w −  

Sample    w =9 w =10 w =15 w=20 

(N) 
2d  3d  

*

23D  
*

24D  
*

23D  
*

24D  
*

23D  
*

24D  
*

23D  
*

24D  

2 1.128 0.853 0.748 1.252 0.773 1.227 0.849 1.151 0.887 1.113 

3 1.693 0.888 0.825 1.175 0.843 1.157 0.895 1.105 0.921 1.079 

4 2.059 0.880 0.858 1.142 0.872 1.128 0.915 1.086 0.936 1.064 

5 2.326 0.864 0.876 1.124 0.889 1.111 0.926 1.074 0.944 1.056 

6 2.534 0.848 0.888 1.111 0.300 1.100 0.933 1.067 0.950 1.050 

7 2.704 0.833 0.897 1.103 0.908 1.092 0.938 1.062 0.954 1.046 

8 2.847 0.820 0.904 1.096 0.914 1.086 0.942 1.058 0.957 1.043 

9 2.970 0.808 0.909 1.091 0.918 1.082 0.946 1.054 0.959 1.041 

10 3.078 0.797 0.914 1.086 0.922 1.078 0.948 1.052 0.961 1.039 

11 3.173 0.787 0.917 1.083 0.926 1.074 0.950 1.050 0.962 1.037 

12 3.258 0.778 0.920 1.080 0.928 1.072 0.952 1.048 0.964 1.036 

13 3.336 0.770 0.923 1.077 0.931 1.069 0.954 1.046 0.965 1.034 

14 3.407 0.762 0.925 1.075 0.933 1.067 0.955 1.045 0.966 1.034 

15 3.472 0.755 0.927 1.072 0.935 1.065 0.957 1.044 0.967 1.033 

16 3.532 0.749 0.929 1.071 0.936 1.064 0.958 1.042 0.968 1.032 

17 3.588 0.743 0.931 1.069 0.938 1.062 0.959 1.041 0.969 1.031 

18 3.640 0.738 0.932 1.068 0.939 1.061 0.959 1.041 0.970 1.030 

19 3.689 0.733 0.934 1.066 0.940 1.060 0.960 1.040 0.970 1.030 

20 3.735 0.729 0.935 1.065 0.941 1.059 0.961 1.039 0.971 1.029 

25 3.931 0.709 0.940 1.060 0.946 1.054 0.964 1.036 0.973 1.027 

 

TABLE VII 

COMPARISON OF ARL1 FOR THE CONTROL CHART WHEN ARL0 = 370 AND N = 5 

  w  = 2 w = 3 w = 5 w = 10 w =15 

DMAR MAR DMAR MAR DMAR MAR DMAR MAR DMAR MAR 

0.00 370.398 370.398 370.398 370.398 370.398 370.398 370.398 370.398 370.398 370.398 

1.02 290.447 319.555 273.193 314.007 229.241 304.019 130.491 282.870 80.933 265.274 

1.04 212.792 255.354 175.363 240.908 110.442 217.391 43.235 176.262 33.628 149.109 

1.06 150.990 195.440 108.341 175.868 55.322 147.285 24.066 105.638 27.029 83.235 

1.08 106.552 147.121 68.049 126.663 31.160 99.515 18.703 65.437 25.079 49.986 

1.10 75.963 110.748 44.414 91.811 19.932 68.604 16.689 42.826 23.523 32.867 

1.25 11.687 20.059 6.799 14.864 6.585 10.481 9.0740 8.685 8.4523 9.861 

1.75 2.197 2.521 2.344 2.397 2.451 2.646 2.4333 3.273 2.4333 3.461 

2.00 1.775 1.851 1.871 1.877 1.887 2.097 1.8851 2.339 1.8851 2.363 

2.50 1.399 1.391 1.421 1.445 1.421 1.532 1.42105 1.564 1.4210 1.564 

3.00 1.233 1.225 1.239 1.260 1.239 1.291 1.239 1.297 1.239 1.296 

     Note: the bold number gives the minimum of ARL1 

 

TABLE VII 

COMPARISON OF ARL1 FOR THE CONTROL CHART WHEN ARL0 = 370 AND N = 10 

  w  = 2 w = 3 w = 5 w = 10 w =15 

DMAR MAR DMAR MAR DMAR MAR DMAR MAR DMAR MAR 

0.00 370.398 370.398 370.398 370.398 370.398 370.398 370.398 370.398 370.398 370.398 

1.02 275.620 308.364 244.922 298.694 179.247 281.683 79.116 247.763 49.266 221.846 

1.04 180.010 227.035 129.358 205.682 65.521 173.624 26.023 125.330 27.659 98.570 

1.06 112.907 158.374 67.883 134.105 29.030 102.586 18.158 64.611 24.818 48.236 

1.08 71.568 109.494 38.113 87.681 16.395 62.394 16.031 36.715 22.312 27.925 

1.10 46.825 76.679 23.266 58.812 11.363 39.876 14.733 23.263 18.808 18.981 

1.25 6.178 10.919 4.374 7.911 5.252 6.041 5.386 6.510 5.235 8.031 

1.75 1.666 1.712 1.711 1.759 1.712 1.920 1.712 2.006 1.712 2.008 

2.00 1.376 1.374 1.385 1.423 1.385 1.478 1.385 1.487 1.385 1.487 

2.50 1.136 1.134 1.137 1.148 1.137 1.153 1.137 1.153 1.137 1.153 

3.00 1.058 1.058 1.058 1.061 1.058 1.062 1.058 1.062 1.058 1.062 

       Note: the bold number gives the minimum of ARL1 

 

IV. DISCUSSION 

The proposed new chart is the DMAR chart for detecting 

process variability changes. The prompt coefficient tables for 

the DMAR charts are supplied for cases of known and unknown 

parameters ,  with different sample sizes (N) and width (w) 

values. The explicit formulas are derived and proved by the 

central limit theorem. The numerical results from the explicit 

formulas found that the performance of DMAR chart is superior 

to the MAR chart. Additionally, the explicit formulas are 

accurate, easy to calculate and have less time for calculation. 

Two real applications are shown: the performance comparison 

of the DMAR chart versus the MAR chart, in which the proposed 

chart is superior to the MAR chart for small and moderate shifts 

in process dispersion. Otherwise, the performance of MAR and 

DMAR charts are in the same manner. 
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TABLE VII 

COMPARISON OF ARL1 FOR THE CONTROL CHART WHEN ARL0 = 370 AND N = 15 

  w  = 2 w = 3 w = 5 w = 10 w =15 

DMAR MAR DMAR MAR DMAR MAR DMAR MAR DMAR MAR 

0.00 370.398 370.398 370.398 370.398 370.398 370.398 370.398 370.398 370.398 370.398 

1.02 264.538 300.234 225.565 287.724 151.237 266.179 59.807 225.170 40.034 195.669 

1.04 159.397 208.829 105.454 184.149 48.207 149.055 21.664 100.760 26.315 76.588 

1.06 92.737 137.426 50.887 112.185 20.893 81.586 16.799 48.406 23.578 35.862 

1.08 55.477 90.454 27.285 69.566 12.425 47.097 15.102 26.831 19.748 21.154 

1.10 34.827 60.913 16.404 44.858 9.244 29.144 13.475 17.182 15.209 15.122 

1.25 4.592 7.848 3.727 5.785 4.465 4.812 4.320 5.769 4.300 7.007 

1.75 1.458 1.464 1.469 1.519 1.469 1.589 1.469 1.603 1.469 1.603 

2.00 1.223 1.221 1.224 1.247 1.224 1.259 1.224 1.259 1.224 1.259 

2.50 1.060 1.060 1.060 1.063 1.060 1.063 1.060 1.063 1.060 1.063 

3.00 1.019 1.019 1.019 1.020 1.020 1.020 1.019 1.019 1.020 1.019 

      Note: the bold number gives the minimum of ARL1 

 

 
(a) 

 

 
(b) 

 

Fig. 1. (a) The statistics of the MAR chart and (b) The 

statistics of the DMAR chart for real application I 

 

 
(a) 

 

 

 

 
(b) 

 

Fig. 2. (a) The statistics of the MAR chart and (b) The 

statistics of the DMAR chart for real application II 

 

Also, the DMAR chart performs better for small and large 

sample sizes for small shifts in process variability. The mixed 

control charts are an alternative effective to detecting a very 

small change in process dispersion, which is currently an 

extensive study. 
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APPENDIX 

 

Let ARL = n, then the ARL with 2w is computed as 
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Let A1, A2 and A3 be as follows: 
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When substituting A1, A2 and A3 in Equation (a1), then 
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The explicit formulas of ARL can be calculated as in (a2)   
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The explicit formulas of the DMAR chart can be written as 
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