
 

  

Abstract—Civil aircraft represent intricate technical systems, 

and their flight test is a system engineering process. This 

process is essential for verifying their compliance with 

airworthiness regulations and operational requirements. In this 

process, planning flight test missions is a type of combinatorial 

optimization problem. The solution gives an optimal allocation 

plan adhering to operational constraints. Assigning flight test 

missions for civil aircraft involves numerous uncertainties and 

very often, requires unforeseen adjustments. The original 

missions need to be reassigned due to these adjustments in a 

scientific way. In this paper, considering the scenarios that 

emerged during real civil aircraft flight tests, a multi-objective 

flight test mission planning model is established based on the 

Flexible Job Shop Problem (FJSP) model. The model is 

specifically tailored to the flight text mission reassignment. 

Examples of flight test scenarios that require mission 

reassignments are addressed using the FJSP model proposed in 

this paper and optimized using the Particle Swarm 

Optimization algorithm. Two rounds of initial population 

updates were conducted to obtain overall extreme values. The 

results verify the feasibility of obtaining a viable solution for the 

flight test mission assignment problem under complex 

constraints derived from real engineering requirements. These 

solutions can be used to address similar types of engineering 

problems. 

Index Terms—Flight Test Mission, Mission Assignment, 

FJSP, PSO, Neighborhood Operations, Example Simulation 

 

I. INTRODUCTION 

light testing plays a pivotal role in scientific research and 

airworthiness evaluation. It involves a systematic 

compilation of flight test missions aimed at achieving testing 

objectives [1]. This process is crucial, especially in the 

development of new civil airplanes for advanced materials 

and technologies. Given its strategic significance, meticulous 

planning is imperative. 

Efficient flight test mission planning necessitates thorough 

sorting and analysis of test characteristics. Each flight test 

mission is meticulously broken down into its smallest units, 

utilizing basic logical relationships among civil aircraft flight 

test missions to devise optimized combinations. 

Subsequently, a comprehensive optimization method is 

designed. This method entails formulating aircraft model 

flight test plans and test mission lists. 
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A flight test subject comprises a minimal set of missions 

that independently describe specific flight performance and 

handling qualities of the aircraft, verify the functionality of 

aircraft system design indicators, and ensure compliance with 

relevant airworthiness requirements. 

The guiding principle of flight test planning is to align all 

flight test missions with aircraft development goals. This 

involves comprehensive consideration of various constraints 

based on available information and data, effective 

coordination of flight test resources, mitigation of potential 

uncertainties, and parallel assignment of missions to multiple 

test aircraft. 

For a specific model of civil aircraft, obtaining the Type 

Certificate (TC) and facilitating commercial operation by 

airlines necessitates completion of thousands of research 

studies, qualification review subjects, and a multitude of 

flight test missions. These missions encompass operational 

flight tests, functional reliability flight tests, and delivery 

flight tests, starting from the prototyping phase. Flight test 

mission planning is thus geared towards judiciously 

arranging these test subjects for flight testing across several 

prototype aircraft. 

In summary, flight test planning inherently falls within the 

realm of combinatorial optimization problems, known for 

their inherent complexity. Most scheduling problems, 

including flight test planning, are widely regarded as NP-hard 

problems. 

II. THE FJSP MODEL 

2.1 Flexible Job-shop Scheduling Problem 

The purpose of production scheduling is to systematically 

arrange the processing time of workpieces to optimize one or 

several scheduling objectives [2]. Traditional job shop 

scheduling problems (JSP) typically address scenarios where 

each process is executed on a predetermined machine, with a 

fixed processing plan established prior to job scheduling. 

These problems are designed to tackle scheduling challenges 

where each workpiece or process necessitates a specific 

processing machine, lacking flexibility. 

However, in real production environments, there often 

exist multiple machines capable of handling a particular 

mission, leading to what is known as the flexible job shop 

scheduling problem. This problem extends the traditional JSP 

by incorporating the machine assignment problem, which 

involves assigning each operation to several optional 

machines, thereby expanding the feasible solution space of 

the problem. Consequently, the flexible job shop scheduling 

problem presents a more intricate form of NP-hard problem 

compared to its classical counterpart. It is also referred to as 

the job shop scheduling problem with flexible processing 
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routes or machine flexibility [3, 4]. 

Formally, the flexible job shop scheduling problem (FJSP) 

can be defined as follows: a set of jobs, each comprising 

multiple operations, must be processed across a set of 

machines where each operation can be performed. The 

processing time for each operation on different machines 

may vary, and there are specific constraints that must be 

adhered to. The optimal scheduling plan for the job shop, 

which satisfies these constraints, involves allocating jobs and 

operations to machines based on a designated objective 

function. 

The actual FJSP has the following characteristics. 

a) Multi-objective; 

b) Multi-binding; 

c) Discrete; 

d) Uncertainty; 

e) Calculate complexity. 

In a typical FJSP, the processing time for different 

operations on various machines may vary. However, during 

actual flight tests, there is usually no significant disparity in 

the implementation time for different test subjects across 

different types of aircraft. As aircraft configurations and 

flight test technologies mature, the flight test intensity that 

test aircraft can endure may fluctuate, often escalating 

gradually throughout different phases of civil aircraft flight 

testing. 

The FJSP can be categorized into two types: the Total 

Flexible Job Shop Scheduling Problem (T-FJSSP) and the 

Partial Flexible Job Shop Scheduling Problem (P-FJSSP) [3]. 

If each operation can be processed by any machine, then it is 

a T-FJSSP. Conversely, if at least one operation can only be 

processed by specific machines, then it becomes a P-FJSSP. 

Thus, T-FJSSP can be viewed as a special case of P-FJSSP [5, 

6]. The dynamic scheduling of flight test missions aligns with 

the P-FJSSP problem type. 

For single-objective FJSP, existing literature [7] 

demonstrates that the relocation of critical processes can 

notably reduce completion time, and it has devised two 

neighborhood structures based on such critical process 

relocation, alongside an effective taboo search algorithm. 

Moreover, literature [8] devised a genetic algorithm (GA) 

employing a blend of two machine allocation rules and three 

operation sequencing rules to generate high-performance 

initial populations. Additionally, literature [9] proposed a 

dual-population distribution estimation algorithm, utilizing 

two sub-populations to independently adjust machine 

allocation and operation sequencing sequences, and 

leveraging the dominant population to construct a probability 

model for generating new individuals. Meanwhile, literature 

[10] introduced a bounded-depth diversification search 

algorithm, relying on a sorting heuristic strategy and 

employing block symbols to formulate neighborhood 

structures. 

In addressing the FJSP, literature [11] explored hybrid 

algorithms combining Particle Swarm Optimization (PSO) 

and Simulated Annealing (SA) to tackle machine allocation 

and process sequencing challenges. Furthermore, literature 

[12] proposed a Genetic Algorithm (GA) incorporating 

bottleneck drifting and local search techniques, while 

literature [13] introduced an effective hybrid PSO and Tabu 

Search (TS) method. 

In the realm of static scheduling problems within FJSP, it 

is assumed that all machines and jobs are initially in an 

accessible state. After the initial scheduling, the processing 

sequence for each job is established and remains unchanged 

during subsequent processing. However, real-world 

workshops inevitably face uncertain events such as machine 

failures or delayed material arrivals, necessitating dynamic 

scheduling to adapt to such contingencies. 

Additional literature [14] delves into the multi-objective 

allocation problem subject to multiple constraints. 

Meanwhile, literature [15] introduces the Multi-Objective 

Criteria Location Cuckoo Search (MOQOCS) algorithm 

employing a quasi-position-based learning mechanism. 

Literature [16] utilizes a Tabu search mechanism to solve 

combinatorial optimization problems. Lastly, literature [17] 

offers a comprehensive dynamic scheduling model for a 

multi-objective flexible job shop, considering objectives like 

completion time, machine load, weighted tardiness, and 

energy consumption, and utilizes the Pareto method to 

address the problem. 

2.2 Variables and Mathematical Symbols 
n : Total number of flight test mission modules; 
m : The total number of test aircraft. 

M : The set of total test aircraft,  1 2, , , mM M M ; 

J : The set of all flight test modules,  1 2, , , nJ J J ; 

O : The set of all flight test subjects,  11 12, , ,
nneO O O ; 

kM : The thk  flight test aircraft, 1,2, ,k m= ; 

in : Number of subjects in flight test mission module i ; 

ijO : Subject 
thj  of mission module i ; 

ijM : The set of test aircraft available for the subject ijO , 

ijM M ; 

,ij kP : The implementation time of the subject ijO  on test 

aircraft k ; 

,ij kt : The start time of the subject ijO  on test aircraft k  

(assuming that the start time of the subject is a discrete 

value); 

ijC : Completion Time of Subject ijO ; 

ie : The total number of subjects corresponding to the module 

iJ ; 

Z : Total number of subjects included in all modules, 

1

n

i

i

Z e
=

=  ; 

, ,ij k tx  indicates the judgment criteria executed during the test 

flight subject on the test aircraft at the time t . 

, ,

1, if operates on FTA at the moment 

0, else

ij

ij k t

O k t
x


= 


. 

III. Description of Planning and Optimization Scenarios for 

Civil Aviation Flight Test Missions. 

3.1 Flight Test Mission Planning Scenarios 

According to the "New Aircraft Access Management 

Requirements for Models," flight test planning should 

commence prior to the preliminary design phase. During the 

initial planning stage, conditions may be idealized, resulting 
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in static planning (job scheduling). At this stage, the initial 

state of all test aircraft and test missions is established, and 

the execution order of each mission workpiece is determined, 

yielding a set of flight test schemes. If there are no 

subsequent changes, this is referred to as completing static 

job scheduling. 

As development progresses on new aircraft types, our 

understanding of the associated technologies, systems, and 

materials also matures. Consequently, our comprehension of 

flight test missions evolves accordingly. Throughout this 

process, flight test missions may encounter modifications 

across various scenarios until the actual implementation of 

flight tests for the new aircraft. 

During the actual flight test planning process, several 

inevitable uncertainties arise, including adjustments to the 

number of test aircraft, discrepancies in aircraft configuration 

and status compared to the plan, aircraft malfunctions, and 

delays in modifications. When such events occur frequently, 

the predetermined planning scheme becomes impractical, 

necessitating the adoption of an appropriate method for 

rescheduling. This scenario is commonly referred to as the 

dynamic programming (scheduling) problem. 

3.2 Flight Test Mission Dynamic Planning Scenario 

In the dynamic programming problem of flight test 

missions, the execution of missions (including any changes in 

planning conditions before the first flight) is viewed as a 

dynamic process. Unlike traditional static scheduling, 

dynamic scheduling problems require not only considering 

the initial processing state of the workshop but also 

frequently incorporating dynamic factors such as inserting 

emergency missions. Hence, the performance indicators of 

dynamic scheduling problems surpass those of static 

scheduling. Alongside traditional scheduling performance 

indicators such as maximum completion time and average 

flow-through time, it is also crucial to assess the deviation 

degree of the new scheduling from the initial original 

scheduling. Consequently, dynamic scheduling typically 

involves multiple performance indicators, and the 

optimization goals may be contradictory or even 

incompatible with each other. In the context of civil aircraft 

test flights, the primary planning indicators predominantly 

focus on minimizing the maximum completion time and 

minimizing the initial allocation deviation, thereby framing a 

multi-objective flight test mission planning problem [3, 18]. 

Potential uncertainties that may arise during flight testing 

of civil aircraft are as follows: 

a) Inadequate aircraft configuration or unsuitable testing 

conditions may prevent the conduct of subject flight 

testing; 

b) Malfunctions of the test aircraft can affect the 

implementation of flight testing; 

c) New test subjects may be introduced; 

d) The implementation sequence of flight test subjects may 

be subjectively adjusted for certain reasons; 

e) Flight test subjects may need to be repeated if not 

completed. 

The preceding uncertain events have a high probability of 

occurring in real civil aircraft flight test missions, and 

therefore it is necessary to introduce dynamic reallocation 

(scheduling) methods to optimize and update planning 

schemes. The scenario designed in this paper considers that 

each test aircraft has a factory interval and cannot be put into 

flight test operations simultaneously, so a planning scheme 

for reallocation of the initial allocation is considered. 

IV. FLIGHT TEST MISSION PLANNING PROBLEM MODEL 

4.1 Logical Constraints in Flight Test Missions 

The FJSP model for the flight test mission planning 

problem is delineated as follows: The primary objective is to 

successfully complete a sequence of flight test modules 

utilizing a fleet of test aircraft. Each module comprises 

multiple flight test subjects that must be conducted in a 

specific order (referred to as subject logic), and each subject 

is exclusive to a single test aircraft. At any given time, each 

test aircraft is capable of executing only one flight test subject. 

The key decision revolves around the optimal sorting of 

subjects for the group of test aircraft to streamline the mission 

assignment plan. 

It's noteworthy that the assertion "Each subject can only be 

executed on one test aircraft" implies that each subject can be 

designated for missions on a single test aircraft or potentially 

reassigned to another test aircraft. However, the 

responsibility for executing the mission remains solely with 

one test aircraft. 

The aforementioned considerations can be encapsulated in 

the model description as follows: 

If there are n  flight test mission modules and M  flight 

test aircraft available, each module  ( )1,2, ,i i N  

contains ( )1i in n   subjects that must be implemented 

following a specified logic.  

The subject  ( )1,2, , ij j n  of the module i  is 

represented by ijO , and the set of test aircraft able to perform 

the subject j  of the module i  is represented by ijM , 

and ijM M . Each subject ijO  can be implemented on any 

of the 
ijM  test aircraft with implementation capabilities on 

test aircraft , k ijM M ,  1,2, ,k m , and test aircraft 
kM  

can perform multiple subjects of different flight test mission 

modules. 

The mission execution time of ijO  in test aircraft 
kM  is 

represented by ,ij kt . During the implementation process, each 

subject ijO  is not allowed to be interrupted, and the same test 

aircraft can perform only one test flight at a time. 

If the completion time of the planned mission is not 

consistent with the estimated completion time, the project is 

weighed in terms of cost based on the difference in 

magnitude and direction (positive for early completion and 

negative for delays), and the optimization target set as 

minimizing the cost of early/late completion. 

The goal of using the FJSP model for flight test mission 

planning and optimization is to select an aircraft 
kM  for each 

subject ijO , and to arrange the sequence of various modules 

or subjects assigned to the test aircraft 
kM  to determine the 

start time of their implementation and obtain the best solution 

that balances all decision-making indicators. 

Assumptions are given: 

a) All test aircraft are available from the initial moment of 
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the first flight, 0t = ; 

b) There are logical constraints between subjects regarding 

the order of implementation, with one subject having to 

be carried out only after the completion of a preset 

subject. Suppose that the subject b  in module a , abO , 

is the prerequisite of the subject h  in module g , ghO . 

Thus, assume that the completion time of abO  is abC , 

that of the ghO  is ghC . 

, ,gh ab ab k ab kC C P x−                        (1) 

c) Given any time t , each subject can only be carried out 

by one test aircraft simultaneously (test aircraft 

constraint I).  

, ,

1

1
m

ij k t

k

x
=

=                                  (2) 

d) Given any time t ,simultaneously, a test aircraft can 

only perform one subject(test aircraft constraint II)； 

, ,

1 1

1
ien

ij k t

i j

x
= =

                                (3) 

e) The ongoing subject is not allowed to be interrupted 

(continuity constraint). 

( ), ,
, , , , 1

1
ij k ij k

ij k t ij k t
x x

+
+                           (4) 

or 

, , ,ij k ij k ij kC t P− =                              (5) 

f) As there is a logical relationship between the subjects, 

the flight test mission module follows the logical 

relationship of the subjects. 

g) Some subjects can only be implemented within a limited 

time frame (window period restrictions). 

4.2 Dynamic Programming for Flight Test Missions 

Dynamic job scheduling entails the allocation and 

adjustment of flight test missions amidst changing conditions, 

including shifts in the implementation time of flight test 

subjects and equipment failures. In response to unexpected 

circumstances such as configuration changes, equipment 

malfunctions, or shortages of spare parts from suppliers, 

timely and appropriate redistribution and adjustments of 

flight test missions can be executed based on the mission 

capabilities of the test aircraft. This ensures the maintenance 

of an optimal or sub-optimal allocation plan throughout the 

execution of flight test missions. 

Dynamic programming essentially involves reassigning 

the globally optimal allocation solution obtained under initial 

conditions. It primarily comprises event-driven rescheduling, 

periodic-driven rescheduling, and mixed rescheduling, which 

integrates both periodic and event-driven processes. 

Event-driven rescheduling entails immediate adjustment 

when an event occurs that alters the system's state, while 

periodic rescheduling occurs at regular production intervals. 

Mixed rescheduling incorporates predictive capabilities and 

the ability to address unexpected events [19,20]. Given the 

practical context of flight test projects, the problem addressed 

in this paper primarily focuses on event-driven rescheduling 

to tackle dynamic programming challenges. 

4.3 Model Building 

According to the problem description and assumptions of 

flight test mission planning, a objective function is 

formulated with logical relationship constraints, aircraft 

constraints, and continuity constraints. 

The objective function is described as follows [18]: 

a) The minimization of the maximum completion time: 

( )  1min min max if x C=                        (6) 

b) Minimum deviation in initial allocation: 

2min min j j j k

j N k M

f p R 

 

 
= − + 

 
               (7) 

In the realm of dynamic scheduling, the deviation from the 

initial schedule serves as a metric to gauge the stability of the 

dynamic schedule. Considering the intricacies and 

complexities inherent in civil aircraft test flight projects, 

scheduling a specific subject to be conducted on a test aircraft 

entails a broad spectrum of factors encompassing 

modifications, airport facilities, equipment availability, and 

personnel allocation associated with that subject. When 

dynamic rescheduling occurs, the revised start time for the 

rescheduled subject triggers a redistribution of these 

aforementioned conditions and resources. Although these 

factors may not be explicitly accounted for at the planning 

stage, they are inherently linked to the flight test subject 

within the project and are adjusted in real-time as planning 

alterations unfold. 

In dynamic scheduling, the objective is to retain the initial 

start time of the test subjects and the assigned test aircraft to 

the greatest extent possible, thereby minimizing the deviation 

from the initial scheduling plan.  For each process 
iJ   of the 

initially assigned program artifacts, the Subject Deviation 

Cost (SDC) is defined as [18]: 

SDC j j j

j N

p  



= −                      （8） 

Where j  represents each subject in the mission module 

that has not been implemented in the initial allocation plan; 

N  represents the total number of subjects in the 

unimplemented module; jp  represents the penalty 

coefficient assigned to the subject j  due to changes in 

implementation time, with  0,1jp  ; j  and j
 

respectively represent the start time of the initial allocation 

and re-allocation of the subject j . 

When conducting flight tests on a test aircraft, there are 

additional attributes to consider, such as aircraft 

configuration and test modifications. When adjusting the 

allocation scheme for flight test subjects, it becomes crucial 

to consider the implications of these adjustments. This entails 

evaluating whether to maintain the initial assignment of the 

test aircraft for conducting the flight test missions. This paper 

introduces the concept of "test aircraft anchoring" and 

proposes two allocation strategies for redistributing flight test 

missions on the test aircraft based on the requirements of 

flight test engineering: "arbitrary allocation of test aircraft" 

and "test aircraft anchoring." 

For each flight test subject ijO , its completion time ijC  

and the assigned test aircraft 
kM : 

The function ( ), ,a kZ t T M  determines whether the 

specified subject ijO  has already been completed on the 

designated test aircraft 
kM  before the reallocation of the 

start time. 
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Where 
aT  denotes the redistribution start time (anchoring 

time), which is a specific moment in a test flight cycle. Flight 

test subjects completed prior to this point are in a frozen state 

and will no longer be considered for subsequent optimization. 

t  denotes the completion time of the test flight subject 
ijO . 

The function ( ),k s aR T T  denotes the reordering of subjects 

to be allocated after the anchoring time, but it is confined to 

the initial allocation of the test aircraft. Here, 
sT  represents 

the current attributes of the flight test subject, which 

encompasses the subject itself, the assigned test aircraft, and 

the start and end times. 

The function ( )* ,k s aR T T  denotes the re-sorting of subjects 

that require reallocation after the anchoring time, permitting 

it to be executed on any available test aircraft. 

The determination of aircraft anchoring is indicated as 

follows: 

( )
1, if

, ,
0, else

ij a

a k

C T
Z t T M


= 


 

The test aircraft anchoring rescheduling is expressed as: 

( )

 the initially ass n

,

1,if a an ig ed trial aircr ft is d

0,else

k

k s a

ij a

R T

M

T

C T
= 



(9) 

In the rescheduling of flight test missions, an 

appropriate aircraft allocation strategy can be chosen 

based on the demands of flight test engineering, ensuring 

alignment with the engineering requirements for 

rescheduling flight test missions. 

4.4 PSO algorithm 

In 1995, Kennedy and Eberhart introduced the Particle 

Swarm Optimization (PSO) algorithm, drawing inspiration 

from the collective behavior of birds in search of optimal 

habitats. This algorithm has subsequently undergone 

adaptations for navigating problem-solving spaces [21, 

22].The PSO algorithm, rooted in population evolution 

algorithms, begins by initializing a set of random solutions 

known as particles. Each particle possesses a fitness value 

determined by the optimization function and a velocity 

dictating its direction and distance of movement [23, 

24].Over iterative epochs, particles dynamically adapt their 

positions by tracking both their own best solution (individual 

extremum) and the best solution found by the entire 

population in the current iteration (global extremum) [23, 

24]. 

Notably, the PSO algorithm stands out due to its parallel 

processing capability and robustness, enabling it to 

effectively achieve global optima with high probability while 

demonstrating superior computational efficiency in contrast 

to traditional stochastic methods. Moreover, its ease of 

implementation, rapid convergence, and solid theoretical 

foundation make it suitable for both theoretical inquiries and 

practical engineering applications [21, 25]. Fundamental 

concepts within particle swarm optimization algorithms 

encompass particle, population, particle velocity, fitness 

value, individual extremum, and global extremum. 

The typical description of the particle swarm algorithm is 

as follows: 

a) Particle 

Particles are the fundamental units in PSO, representing a 

feasible solution in the search space. Given a solution vector 

with d  dimensions, at the iteration t  of the algorithm, the 
thi  particle ( )ix t  is represented as 

( ) ( ) ( ) ( )1 2, , ,i i i idx t x t x t x t=    . ( )ikx t  represents the 

position of the thi  particle in the thk  dimension of the search 

space. 

b) Population 

The population represents a set of n  particles, indicating 

n  candidate solutions. The population formed after t  

iterations is denoted as 

( ) ( ) ( ) ( ) ( )1 2, , , ,i npop t x t x t x t x t=    , where ( )ix t  is 

the thi  particle in the population. 

c) Particle velocity 

Particle velocity represents the position change of particles 

during a single iteration, expressed as 

( ) ( ) ( ) ( )1 2, , ,i i i idv t v t v t v t=    , where ( )ikv t  is the 

velocity of the thi  particle in the thk  dimension. 

d) Fitness value 

The fitness value corresponds to the objective function. 

The variable representing the optimal solution, possessing 

the highest fitness value at the conclusion of the iteration, is 

regarded as the optimal solution for the ongoing phase of the 

optimization search. 

e) Individual extremum 

The thi  particle I has achieved the optimal fitness value 

from the start of the search to the current iteration and is 

denoted as ( )1 2, , ,i i i idp p p p= . 

f) Global extremum 

The optimal solution for the fitness value of the entire 

population from the start of the search to the current iteration 

is denoted as ( )1 2, , ,i i i idg g g g= . 

In the PSO algorithm, particles are initially assigned 

velocities and positions. During each generation, the fitness 

function values of the particles are computed, enabling the 

identification of optimal values for both individual particles 

and the entire population. Subsequently, the velocity and 

position of each particle i  in the thk  dimension are updated 

according to equations (10) and (11), respectively. 

Assume a search in an N -dimensional space where the 

information of i  is represented by two N -dimensional 

vectors describing the particle's position and velocity, as 

defined in the previous text. 

The speed and position of the particle are updated as 

follows: 

( )

( )

1

1 1

2 2

k k k k

id id id id

k k

id id

v v c rand pbest x

c rand pbest x

+ =  +   −

+   −
          (10) 

1 1k k k

id id idx x v+ += +                              (11) 

In equation (10) and equation (11), k

idv  represents the 

velocity of the particle i  in the thd dimension in the thk  

iteration, k

idx  represents the position of the thd  dimension in 

the thk  iteration,   represents the inertia weight, 
1c  and 

2c  

represent the learning factor, 
1rand  and 

2rand  represent 
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random numbers between [0,1], k

idpbest  represents the 

position of the individual extremal point of the particle i  in 

the thd dimension, and k

dgbest  represents the position of the 

particle swarm at the global extremal point of the thd  

dimension. 

The article addresses the dynamic planning problem of test 

flight missions by employing a rescheduling method to 

optimize and update the initial allocation plan. Initially, the 

PSO algorithm is utilized for single-objective optimization, 

focusing on minimizing the maximum completion time, 

thereby yielding an optimal solution with a tendency towards 

stability. Subsequently, this solution serves as the initial 

population for the second round of PSO algorithm 

optimization, incorporating new constraints. Consequently, 

the multi-objective dynamic planning global optimal solution 

with minimum deviation from the initial solution is attained. 

 

 
Fig 1.  PSO flow chart for solving the dynamic planning problem of the flight 

test mission 

 

The flowchart diagram depicting the PSO algorithm's 

application to solve the dynamic programming problem of 

the flight test mission is illustrated in Figure 1. 

V. EXAMPLE DESIGN 

5.1 Problem Description 

During the implementation of flight tests for civil aircraft, 

it is essential to consider the logical relationships between 

various mission requirements. These relationships, derived or 

summarized from practical flight test engineering practice, 

adhere to the safety, accuracy, and efficiency of flight tests. 

Specifically, the logical relationship between flight test 

subjects discussed in this paper pertains to the mandatory 

execution sequence, known as pre-condition logic. This logic 

serves as a crucial constraint in determining the assignment 

order of flight test missions. Various flight test subjects 

exhibit interdependent relationships. For instance, before 

conducting flight tests for stall speed, maneuvering 

characteristics, lateral-directional stability and control, and 

handling qualities, it is imperative to first complete flight 

tests for airspeed system calibration and total air temperature 

calibration. Adhering to these dependencies ensures the 

formation of a planning scheme that aligns with the rules 

governing aircraft flight tests. 

As an example, consider partial flight test subjects of a 

specific type of aircraft. Figure 2 illustrates the preconditions, 

where O21 represents the atmospheric data system 

calibration test item, serving as a prerequisite for numerous 

flight test items. 

 

 
Fig 2.  Example of the logical relationship between some test flight subjects 

of a certain type of aircraft 
 

In the flight test mission planning scenario, five mission 

modules were chosen for a specific type of aircraft, 

encompassing a total of 64 test flight subjects distributed 

among five test aircraft for execution. For instance, flight test 

subjects O11 to O16 within the first flight module J1 denote 

the maiden flight and flight envelope expansion of the five 

test aircraft. The pre-relationships of each subject and the 

description of optional test aircraft are detailed in Table 1. 
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TABLE I 

DYNAMIC PROGRAMMING PROBLEM DESCRIPTION FOR A 5*5 FLIGHT TEST MISSION (WHICH CAN BE CONDUCTED WITH THE SPECIFIC SUBJECT ON A 

DESIGNATED TEST AIRCRAFT). 

 

Module Subjects Preceding Subject Hours (h) 
Test aircraft serial number 

M1 M2 M3 M4 M5 

J1 

O11 O12 20 1 0 0 0 0 

O12 N/A 5 1 0 0 0 0 

O13 N/A 5 0 1 0 0 0 

O14 N/A 5 0 0 1 0 0 

O15 N/A 5 0 0 0 1 0 

O16 N/A 5 0 0 0 0 1 

J2 

O21 O11 20 1 1 1 1 1 

O22 O33 50 1 0 1 0 1 

O23 O22, O211 40 1 1 1 1 1 

O24 O22, O211, O34 50 1 0 0 0 0 

O25 O22, O211, O34 20 0 0 1 1 0 

O26 O22, O211, O34 10 1 1 1 1 1 

O27 O21, O32 45 0 0 0 0 1 

O28 O22, O27 15 0 0 1 1 1 

O29 O21 20 1 0 0 0 1 

O210 N/A 10 0 1 1 0 1 

O211 O22 20 1 1 1 0 0 

O212 O34 20 1 0 0 1 1 

O213 O22, O34 30 1 0 0 1 1 

O214 O22, O27 40 1 1 0 0 0 

O215 O21, O27 30 1 1 1 1 1 

O216 N/A 25 0 1 1 1 0 

O217 N/A 50 1 1 1 1 1 

J3 

O31 O21, O22, O32 60 1 1 1 1 1 

O32 O11 50 0 1 0 1 0 

O33 O21 60 0 0 1 0 0 

O34 O21, O22, O32, O33, O37 40 1 1 1 1 1 

O35 O11 30 1 1 0 1 0 

O36 O21 20 1 1 1 0 1 

O37 O21, O33 60 1 1 1 0 1 

O38 O21, O33 40 1 1 1 1 1 

O39 O21, O33 50 1 1 1 1 1 

O310 O21 30 1 0 0 1 0 

O311 O21, O33 45 1 1 1 1 1 

O312 N/A 20 0 1 0 0 1 

O313 O21, O33 40 1 1 1 1 1 

O314 O21, O33 40 1 1 1 1 1 

O315 O22, O32, O33 50 1 1 1 1 1 

O316 O22, O34, O39 70 1 1 1 1 1 

O317 O22, O31, O33, O37, O39 50 1 1 1 1 1 

O318 
O22, O31, O33, O37, 

O39, O317 
50 1 1 1 1 1 

J4 

O41 N/A 10 0 0 1 1 1 

O42 N/A 20 1 0 1 0 0 

O43 O21 20 1 1 0 1 0 

O44 O21 20 1 0 0 0 1 

O45 O21 15 1 1 1 0 0 

O46 O21 25 1 1 0 1 1 

O47 O21 35 1 1 0 0 1 

O48 O21 10 1 1 1 1 1 

O49 O21 25 1 0 1 0 1 

O410 O21 20 1 0 1 1 1 

O411 N/A 20 0 1 0 0 1 

O412 O22 30 0 1 1 0 1 

O413 N/A 20 1 1 1 1 0 

O414 O41 15 1 0 0 1 1 

O415 N/A 15 1 0 0 1 1 

O416 N/A 10 1 0 1 1 0 

J5 

O51 O11 10 0 1 0 1 1 

O52 O11 20 1 1 0 1 0 

O53 O21 40 1 1 1 1 1 

O54 O21 20 0 0 1 1 1 

O55 O21 20 1 1 1 1 1 

O56 N/A 5 1 0 1 0 0 

O57 N/A 10 0 0 0 1 1 
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In the table, the "Module" denotes categories for flight test 

subjects based on profession or system, such as the First 

Flight module, Performance module, Maneuverability and 

Stability module, Structural Strength module, and Overall 

Aircraft Environment module. The term "Subjects" refers to 

specific flight test subjects, including Flight Envelope 

Expansion, Air Data System (ADS) Calibration, Stall Speed, 

Takeoff Performance, Abuse Takeoff, Climb Performance, 

Simulated Icing, Three-axis Control, and Flutter, among 

others. "Preceding Subject" indicates flight test subjects that 

must be completed before a certain test, e.g., O22 requires 

completion of O33 beforehand. In actual civil aircraft flight 

tests, O22 represents the stalling speed for flight test subjects, 

while O33 represents the stall characteristics and stall 

warning for flight test subjects. "Hours (h)" signifies the time 

needed to complete each flight test mission. "Test aircraft 

serial number" represents the serial number of the test aircraft 

conducting the flight test; "1" denotes capability, while "0" 

indicates incapability.  

In this study, we assume that five test aircraft conduct 

flight tests simultaneously. Past experience from previous 

model flight test projects suggests that the flight test intensity 

of a new aircraft is unevenly distributed throughout the test 

period. After the initial flight, the test aircraft M1 operates at 

a rate of 30 hours/month for the first 180 flight hours, and 40 

hours/month thereafter (six months later). This forms an 

optimized flight test mission allocation plan with the goal of 

minimizing the maximum completion time (Scheme I).  

Due to aircraft manufacturing capacity limitations, the 

second through fifth prototype aircraft need to be 

sequentially delayed by one month before commencing flight 

tests, necessitating dynamic scheduling adjustments to the 

initial plan. A series of optimal flight test mission allocation 

plans (Scheme II) is required to maximize completion time 

and minimize initial deviation. 

5.2 Definition of Particle Swarm Optimization Parameters 

It is advisable to determine the values of inertia weight, 

inertia weight decay coefficient, learning factor, and velocity 

upper and lower limits based on prior experiences. 

The roles of these parameters are as follows: 

a) Inertia weight: It dictates how much a particle should 

retain its current velocity during updates. 

b) Inertia weight decay coefficient: This coefficient, 

applied to the inertia weights after each iteration, influences 

how much the inertia weights decrease over time. 

c) Learning factor: This factor governs the impact of a 

particle's personal best position and the global best position 

on its velocity update. 

Incorporating the inertia weight decay coefficient 

enhances both global and local search capabilities, 

preventing premature or delayed convergence and 

dynamically adjusting the search process. 

Utilizing the inertia weight decay coefficient allows for the 

adoption of various search strategies throughout the 

optimization process. Initially, it reinforces global search 

efforts, transitioning to local search as the optimization 

progresses. This adaptive strategy enables PSO to thoroughly 

explore discovered solution regions while maintaining 

efficiency, thus increasing the likelihood of discovering 

high-quality solutions. 

5.3 Initializing Populations 

Based on the above encoding mechanism, an initial 

population is generated. In this paper, we set the number of 

particles to P=50, which means we generate 50 feasible 

solutions as the initial population. We use an inertia weight of 

1w = , inertia weight decay coefficient 0.99dampw = ,learning 

factors 
1 1.5c =  and 

2 2.0c = , and conduct a total of 500 

iterations. 

5.4 Encoding and Decoding Mechanism 

Opting for Particle Swarm Optimization (PSO) for the 

Flexible Job Shop Scheduling Problem (FJSP) and encoding 

particle positions is a crucial step. This paper addresses the 

correlation between test subjects and aircraft in the encoding 

process, drawing inspiration from the correlation between 

artifacts and processes. Consequently, the encoding utilizes 

two Z-dimensional vectors, denoted as x  and y , where Z 

equals the total number of flight test subjects (given as 64 in 

the input), thus Z = 64, and m  represents the number of test 

aircraft. 

The encoding and decoding rules for x  are: 

a) Encodings 

x  is a vector containing real values where the real values 

are between 0 and 1. These values implicitly represent the 

priority of the test mission, with smaller values indicating 

higher priority. 

Here, "implicit" means that the priority of test flight 

missions is not defined by explicit labels or assigned numbers, 

but rather by real values in the vector x . These real values 

fall between 0 and 1. When sorting the vector x , smaller real 

values are placed at the beginning, indicating that test flight 

missions associated with these smaller values will be 

executed earlier. 

Although no priority number is explicitly assigned to each 

flight test mission, an execution sequence is implicitly 

defined by sorting the real values of the x -vector, which in 

turn determines their priority. 

The mathematical expression is: 

 1 2, , , nx x x x=  

Where, floating-point encoding  0,1ix  , Z  is the 

number of test missions. 

b) Decoding 

1) The sort function is used to sort the values in x to 

obtain the execution sequence of the flight test. The 

sort function sorts based on the magnitude of the 

values in x and returns the index that indicates the 

mission order based on these values. 

2) By sorting, we have obtained a sequence of missions, 

in which the missions placed at the beginning have 

higher priority and should be executed earlier. 

3) Finding the next mission whose predecessors have all 

been completed, ensures that any selected mission is 

immediately available to start, and also means that a 

mission whose predecessors have not yet been 

completed is never started, thus ensuring that the 

logical constraints between the flight test missions are 

satisfied. 

4) Through the above steps, it is possible to decode the 

actual execution sequence of the test flight mission 

from the original x encoding. 

The encoding and decoding rules for y  are: 
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a) Encoding 

The vector y is composed of integers, where each integer 

denotes the aircraft number designated for particular flight 

test missions. Each value in y corresponds to the aircraft 

assigned to carry out its respective mission. 

The mathematical expression is  1 2, , , ny y y y= , where, 

 1,2, ,iy m , m  represents the number of test aircraft 

and Z  represents the number of test flight missions. 

b) Decoding 

Each element 
iy  of y  represents the aircraft identifier 

associated with the corresponding mission 
ix  in x . This 

identifier determines which aircraft will execute the 

corresponding test flight mission. Therefore, when decoding 

y  based on the sorting order of x , the following steps are 

followed: 

1) For each flight test mission ix , check that the 

aircraft with its associated number iy  meets the 

requirements of the mission. 

2) For each flight test mission ix , verify whether the 

aircraft associated with the code iy  meets the 

requirements of the mission. 

3) If iy  meets the requirements of ix , then iy  

remains unchanged. 

4) If iy  does not meet the requirements of ix , then 

find an aircraft that can meet the requirements of 

ix  and update iy  to the identification number of 

this aircraft. 

5) Through the above steps, the decoding process of 

y  ensures that each mission ix  is associated with 

an aircraft numbered iy  that meets its 

requirements. 

5.5 Adaptive Fitness Function 

The adaptive function serves to modify the search 

direction and velocity of particles. For the FJSP, heuristic 

evaluation functions are commonly employed to assess the 

fitness of each particle. Typically, this evaluation function 

comprises both the objective function and constraints. In this 

paper, the adaptive fitness function is defined as minimizing 

both the minimum-maximum completion time and the initial 

allocation deviation. Consequently, particles with lower 

fitness values are closer to optimal solutions. 

5.6 Neighborhood Operations 

The particles generated during initialization comprise two 

components, x  and y . In each iteration, neighborhood 

operations are applied separately to x  and y  Three types of 

neighborhood operations are performed randomly for x . 

a) Swap 

This operation randomly selects two distinct positions 

within the solution vector and exchanges the elements at 

these positions. It involves a straightforward element 

exchange process. 

The mathematical expression for this operation is as 

follows: 

, if

, if

, else

i

new j

k

x j k

x x i k

x

 =


= =



 

Where i  and j  are randomly selected two positions, 

while K is a position traversed from the solution vector x . 

The specific operation is to randomly select two positions i  

and j  in the solution x . In the new solution 
newx , the 

element 
ix  at position i  is replaced with 

jx , and the 

element 
hx  at position j  is replaced with 

ix , while all other 

elements remain unchanged. 

b) Reversion 

This operation randomly chooses two positions within the 

solution vector and then reverses the order of all elements 

between these positions, inclusive of the selected positions 

themselves. It can be viewed as the reversal of a subsequence. 

The mathematical expression for this operation is as 

follows: 

 , if , and

, else

i l

new

k

x k i l l j k
x

x

+
  = −

= 


 

Where  ,i j  is a randomly selected contiguous 

subsequence, and k  is the position traversed from the 

solution vector x . The specific operation is to select a 

random contiguous subsequence  ,i j  in the solution x . In 

the new solution 
newx , the elements in this subsequence are 

reversed. That is, the element at position i  becomes the 

element at position j  in 
newx , the element at position 1i +  

becomes the element at position 1j − , and so on. 

c) Insertion 

This operation randomly selects two distinct positions 

within the solution vector. Subsequently, the element at the 

first position is removed and inserted after the second 

position, with the order of the remaining elements adjusted 

accordingly. 

The mathematical expression for this operation is as 

follows: 

1

, if 1

, if

, else

i

new k

k

x k j

x x i k j

x

+

= +


=  



 

Where i  is the randomly selected position, while j  is the 

new position after the insertion of element i , and k  is the 

position traversed from the solution vector x . The specific 

operation is to randomly select a position i  in the solution x , 

and then choose a position j  as the new position for element 

ix . In the new solution 
newx , the element 

ix  is moved to 

position 1j +  (i.e., after jx ), and all elements between 

positions i  and j  are shifted one position forward. 

These neighborhood operations are frequently utilized in 

various heuristic search and optimization algorithms, 

particularly when addressing combinatorial optimization 

problems like the FJSP. 

For the portion related to y , execute the mutation 

operation. 

d) Mutation 
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Mutation is a technique employed to introduce novel 

solution spaces for exploration and uphold diversity within a 

population. By introducing minor, random alterations to 

individuals or solutions, mutation aids algorithms in escaping 

local optima and potentially discovering superior global 

optima. 

The mathematical description of this operation is as 

follows: 

Let y  be an integer vector of length Z , where Z  

represents the number of flight test missions, and each 

element of y  takes values in the range  1, m , with m  being 

the number of aircraft. The mutation operation is applied to 

the vector y  by modifying two randomly selected elements. 

1) Random Selection: Two independent positions, 

1ind  and 
2ind , are randomly selected from the set 

of integers  1, Z . This is mathematically 

represented as ( )1 2, 1,ind ind U Z , where ( ),U a b  

represents a uniform distribution over the interval 

 ,a b . 

2) Random Modification: For each selected position 

iind , replace its corresponding element  iy ind  

with a new random integer in the range  1, m . 

Mathematically, it is represented as 

  ( )1,iy ind U m , 1,2i = . 

After the procedure mentioned above, the original 

y -vector has now undergone mutations, with two of its 

elements randomly altered. 

5.7 Velocity and Position of a Particle 

In Particle Swarm Optimization (PSO), individual 

particles serve as representations of potential solutions, 

where each particle's position reflects the current state of a 

solution. Additionally, the particle's velocity embodies both 

the direction and magnitude of the solution's search process. 

In the specific context of allocating subjects to test aircraft, 

each particle encapsulates a feasible allocation scheme. Here, 

the particle's position denotes the aircraft allocation and the 

implementation sequence for each subject within the scheme. 

Concurrently, the particle's velocity indicates its traversal 

speed and direction during the search process, representing 

the trajectory of improvement for the current solution. In 

FJSP, the velocity typically consists of two components: the 

global best solution and the individual best solution. The 

global best solution signifies the historically optimal 

scheduling solution among all particles, while the individual 

best solution represents the historically optimal scheduling 

solution for the current particle. The formula for updating 

velocity often incorporates these factors along with 

adjustment parameters such as the learning factor and inertia 

factor. 

When evaluating the fitness function, if the current value 

surpasses the historical best for an individual particle (pBest), 

an update to pBest occurs. Similarly, if the current fitness 

function value exceeds the historical best across all particles 

(gBest), a global update to gBest is executed. 

5.8 The "Boundary Checking and Velocity Reflection" 

Strategy 

When tackling optimization problems, encountering 

bounded solution spaces is common, wherein solutions 

cannot exceed specified boundaries. In the PSO algorithm, 

particles update their positions based on their velocities. 

However, these new positions may extend beyond the 

boundary, leading to exploration of invalid or infeasible 

solutions. 

To mitigate this issue, a strategy called "boundary 

checking and velocity reflection" is employed to ensure 

particles remain within the valid search space. Through this 

strategy, when a particle approaches or surpasses the 

boundary, it is not only brought back within the boundary but 

also its velocity is adjusted to "reflect" back into the search 

space. 

This approach offers the advantage of confining particles 

within the effective search space while preserving their 

exploration capability, represented by their velocity. For 

positions beyond the boundary, the opposite of their velocity 

is considered. Thus, if a particle was initially on the verge of 

exceeding the boundary, it would now move in the opposite 

direction. 

The "boundary check and velocity reflection" strategy 

enhances the effectiveness and robustness of the PSO 

algorithm, ensuring particles consistently explore within the 

valid search space and fully leverage their exploration 

dynamics. 

The mathematical expression of the "boundary check and 

velocity reflection" strategy is described as follows. 

a) Identifying which positions exceed the boundaries. 

Given a particle location X  and the search space 

boundaries LowerBound and UpperBound, which denote the 

lower and upper bounds of the solution space, respectively. It 

is possible to determine which elements or dimensions are 

beyond the boundaries. Define an indicator function I  : 

1, if

0,othe

r

rwis

o

e

i i

i

X XLowerBoun
I

d UpperBound 
= 


 

Where 
iX  is the thi  element of the position vector X , 

where 1iI =  indicates that the thi  dimension is out of 

bounds. 

b) Velocity reflection 

For positions that exceed the boundary, take the negative 

value of their velocity. The velocity V  of the particle can be 

updated as follows: 

'
, if 1

, if 0

i i

i

i i

V I
V

V I

− =
= 

=
 

Where 
iV  is the thi  element of velocity vector V , and '

iV  

is the updated velocity. 

c) Adjust the position to the boundary 

For dimensions beyond the boundary, they are adjusted 

back to the boundary. The position x  of the particle can be 

updated as 

'

, if

, if

, otherwise

i

i i

i

X

oX

LowerBound LowerBound

UpperB und UppeX

X

rBound




= 



 

Where '

iX  is the updated position. 

The mathematical expressions provided above offer a 

detailed explanation of how the "boundary check and 
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velocity reflection" strategy ensures that particle positions 

remain within the specified boundary and adjusts particle 

velocity to achieve a "reflection" effect when surpassing the 

boundary. This strategy proves highly beneficial in 

optimization problems, particularly when the solution space 

features clearly defined boundaries. 

5.9 Example Analysis 

5.9.1 Initial Planning Scenario (Scheme I)  

In the research on flight test mission assignment schemes, 

we initially considered a scenario where five test aircraft are 

simultaneously available at the start of the flight test period. 

This study compares the shortened flight test period between 

the original ordering obtained from the initial population and 

the optimized ordering using the Particle Swarm 

Optimization (PSO) algorithm. 

In the preliminary arrangement without optimization, the 

entire duration of the flight test period is 680 hours. This 

duration encompasses the entire period of flight testing, from 

the initiation of the first flight test mission to the completion 

of the last one. 

From the convergence curve, it's evident that a notable 

characteristic of the PSO algorithm is its clear signs of 

convergence after approximately 50 iterations. Subsequently, 

after 500 iterations, the optimized solution results in a 

significantly reduced flight test period, now at 430 hours. 

This indicates a considerable enhancement in flight test 

efficiency through the application of the PSO optimization 

method, as depicted in Figure 3-5. 

It's worth noting that despite the presence of unused time 

gaps between flight test missions across multiple aircraft, 

these gaps do not hinder the achievement of overall optimal 

results. These gaps are inherent to the complexities of flight 

testing and have become less significant in light of substantial 

improvements in overall optimization, resulting in a notable 

reduction in the total duration of flight testing, as 

emphasized. 

 

 
Fig. 3.  Scheme I iterative convergence curve 

 

 
Fig. 4.  Initial scheme under test flight conditions with 5 test aircraft starting 

simultaneously 

 

 
Fig. 5.  The optimized scheme under the conditions of the simultaneous start 

of test flights of 5 test aircraft (Scheme I). 
 

5.9.2 Planning Schemes with Varying Factory Interval 

Scenarios (Scheme II) 

In the actual process of civilian aircraft development, due 

to limitations in aircraft manufacturing capabilities, it is 

assumed that only the first aircraft is available for flight 

testing initially. Subsequently, starting from the first flight of 

the first aircraft, one test aircraft is added for flight testing 

every month thereafter. By the end of the fourth month, all 

five aircraft can be utilized for executing flight test missions. 

Taking into account the real conditions observed during 

civil aircraft flight tests, this case study applies dynamic 

programming to optimize civil aircraft flight testing missions 

and obtain a new optimized solution with additional 

constraints. Considering the differing manufacturing dates of 

each aircraft in the initial stage, there are intervals in the first 

flight times of the five aircraft. 

Without any optimization, the entire flight test period 

lasted for 635 hours, representing the overall duration of the 

entire flight test period, from the start of the first test flight 

mission to the completion of the last mission. 

Through the analysis of the results of the PSO algorithm, 

as depicted in Figures 6-8, the optimized solution 

significantly reduces the overall duration of the flight test 

period to 430 hours. The optimized flight test period is not 

only shorter but also greatly reduces idle windows between 

different missions, indicating that the optimized solution is 

more efficient and reasonable. 

 

 
Fig. 6.  Scheme II Iterative convergence curve 

 

 
Fig. 7.  Initial scheme under different factory interval conditions 
 

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1436-1447

 
______________________________________________________________________________________ 



 

 
Fig. 8.  Optimized scheme under different factory interval conditions 

(Scheme II) 

 

As evidenced by real-life flight test data from civil aircraft, 

flight test project decisions necessitate robust flight test 

planning support. In practical scenarios, utilizing the PSO 

comprehensive algorithm enables optimization for both static 

conditions of civil aircraft test flight mission allocation and 

reallocation with added constraints. This leads to the 

development of a reasonable planning scheme aligned with 

assumed conditions and engineering experience, requiring 

relatively few iterations to achieve convergence. 

For scenarios involving conditional reassignment, Scheme 

I is developed based on multi-objective optimization for 

reassignment. Under the given conditions, Scheme II is 

generated, which is deemed reasonable and feasible in terms 

of both results and iteration count. These schemes effectively 

meet the requirements of flight-testing planning for civil 

aircraft. 

VI. CONCLUSION 

The planning of flight test missions for civil aircraft is a 

sophisticated mission allocating a set of flight test subjects to 

a group of test aircraft using a combination allocation scheme. 

This process must adhere to a series of constraints on flight 

test activities. This paper develops an allocation method 

based on the FJSP model to address the complexity of 

planning flight test missions and the significant differences 

between this application and the standard conditions of the 

FJSP. A tailored model that aligns with the specificities of the 

flight test engineering problem is established. The PSO 

algorithm used in this paper solved the multi-objective flight 

test mission planning problem under both static and dynamic 

conditions. Through practical examples, the research 

demonstrates that the number of iterations and precision 

offered by the proposed approach can meet the engineering 

requirements. The results affirm the method's efficacy in 

addressing engineering-level challenges and lay the 

groundwork for future applications in dynamically allocating 

larger and more complex flight test missions. 
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