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Abstract—A safe tracking control problem is investigated for
a class of nonlinear systems with unknown initial tracking
condition. The safe tracking control is independent of the
initial tracking condition with the help of a novel output
mapping. A secure boundary protection method (SBPM) based
on prescribed finite-time control and a new prescribed finite-
time performance function (PFTPF) is proposed. The SBPM
can guarantee the safe operation of the system when the
desired output violates the output constraint function. The
method can ensure the system satisfies both the tracking control
performance specified by the PFTPF and the actual output
constraints. It can effectively handle the abrupt changes of
actual output constraints. To solve the excessive control input
jitter problem caused by the sudden changes of the output con-
straints, a bidirectional filtering smoothing mechanism (BFSM)
is proposed. Finally, the effectiveness and superiority of the
proposed method are verified by simulations.

Index Terms—Safe tracking control, bidirectional filtering
smoothing mechanism, prescribed finite-time control, secure
boundary protection method, actual output constraint

I. INTRODUCTION

IN order to guarantee safe operation of nonlinear systems,
the states of some actual systems need to satisfy the

specific constraints. This problem has inspired the interest
of many scholars, and there have been a lot of research
results on the output constraint control [1-6]. The majority
of output constraint control studies make the assumption
that the desired trajectory always falls inside the output
constraint. Nevertheless, during system operation, the output
restriction in actuality could alter unpredictably. The desired
trajectory might breach the output constraint as a result of
the circumstances. Consequently, the conventional approach
to output constraint, like the barrier Lyapunov function
(BLF) method, is not relevant in this case. To address this
problem, [7] designed a safe tracking scheme to ensure that
the system output does not violate the output constraint by
tracking a new desired trajectory redesigned according to the
output constraint. References [8] and [9] further extended the
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approach in [7]. Nevertheless, in order to ascertain whether
the output constraint might be broken at the subsequent
sampling time, this approach must forecast the system output.
However, in these publications, figuring out the intended
trajectory is a somewhat involved task.

The control performance limitation is a significant concern
for nonlinear systems, in addition to the physical boundary
constraints. In [10], the prescribed performance control ap-
proach was initially put forward. By using a prescribed per-
formance function, the approach may ensure that the systems
perform as intended in both transient and steady-state scenar-
ios. At present, there have been many similar performance
functions. Especially, there is a kind of prescribed finite-
time performance functions (PFTPFs) which can ensure the
system to converge to a steady-state accuracy range within
a settling time [11]. Nowadays, a large number of results
on prescribed performance control have emerged [12-16].
However, the prescribed performance control method needs
to know the initial condition of the constrained variable.
The performance function must be designed according to
the initial condition. The traditional prescribed performance
control strategy cannot be applied in any other situation. The
references [17-19] suggested ways that are independent of the
beginning condition to tackle the problem. However, these
techniques are unable to address both the real output limits
and the tracking control performance at the same time.

According to the above analysis, this paper takes into
account the safe tracking problem for a class of nonlinear
systems with unknown initial tracking condition. A safe
tracking controller is designed by adopting a newly proposed
SBPM. This approach allows for the automatic adjustment
of the secure boundary based on the actual output constraint.
In contrast to the techniques in [7-9], the suggested method
assumes that the real output constraint are saltatory and time-
varying. The controller ensures the safety of the system even
in the event that the desired output conflicts with the output
restriction. A BFSM that may successfully lessen the signif-
icant control input jitter is proposed. In this study, the real
output constraint and the tracking performance constraint are
obtained simultaneously.

This is how the rest of the article is organized. Section
2 provides an overview of the system, includes preliminary
information, and describes the specifics of the SBPM. The
system’s stability analysis and controller design are presented
in Section 3. Section 4 displays the findings of the simulation
research results. The conclusion is found in Section 5.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. System description

Consider the following nonlinear system [6].
ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, 2, ..., n− 1

ẋn = fn(x̄n) + gn(x̄n)u,

y(t) = x1(t)

(1)

where x̄i = [x1, ..., xi]
T; u ∈ R, y ∈ R are the system

states, the control input and the system output, respectively.
fi(x̄i), gi(x̄i) (i = 1, 2, ..., n) are the nonlinear unknown
functions. The system’s tracking control and constraint con-
trol issue is taken into account.

Assumption 1[12] It is known the sign of gi (x̄i), but not
the function gi (x̄i). It is assumed, without losing generality,
that gi (x̄i) > 0, and that g

i
is an unknown constant, so that

0 ≤ g
i
< |gi (x̄i)| <∞,∀x ∈ Ω

Assumption 2[13] The expected output yd and its deriva-
tives y(i)d are bounded for i = 1, 2, ..., n.

Designing a safe tracking controller with specified finite-
time performance based on the SBPM is the control ob-
jective. When the desired output remains inside the real
constraint bounds, the system output tracks the desired
trajectory and satisfies the inequality, for all t ≥ Tp,
−ϕ(t) < x1(t) − yd(t) < ϕ(t). On the other hand,
when the intended path crosses the constraint boundary, the
system output follows the secure boundary constraints and
ρ2 ≤ kdown < x1 < kup ≤ ρ1 for all t ≥ Tp.

B. Preliminaries

Definition 1[20] If a time-varying function ϕ(t) has the
four properties:

1) ϕ(t) is a Cn function;
2) lim

t→T
ϕ(t) = l, when t ≥ T , ϕ(t) = l;

3) ϕ(t) > 0;
4) ϕ̇(t) ≤ 0.
Then ϕ(t) is a PFTPF. l > 0 is a design parameter, T >

0 represents the settling time. The function that follows is
utilized as a PFTPF in this work.

ϕ(t) =

{(
T−t
T

)q
K + l, 0 ≤ t < T
l, t ≥ T

(2)

where the design parameters are q ≥ n+ 1 and K > 0.
A RBFNN is used to estimate a continuous function

f(Z) ∈ Ω : Rq → R

f(Z) = θ∗Tφ(Z) + w(Z), Z ∈ ΩZ ⊂ Rq (3)

here θ∗ ∈ Rκ represents the vector of the ideal weights , κ >
1 represents the neural network node number, w(Z) denotes
the approximation error with w(Z) ≤ W , W > 0 is an
unknown constant, Z ∈ ΩZ ⊂ Rq denotes the input vector,
φ(Z) = [φ1(Z), φ2(Z)..., φκ(Z)]

T ∈ Rκ is the Gaussian
basis function vector which is defined as

φi(Z) = exp

(
−∥Z − ωi∥2

2ν2i

)
, i = 1, 2, . . . , κ (4)

where vi is the width of the Gaussian function and ωi =
[ωi1, ωi2, ..., ωiq] is the receptive field center.

Lemma 1 [21] Denoting the neural network radial basis
functions as φ(x̄n) = [φ1(x̄n), ..., φκ(x̄n)]

T and the input
vectors of the radial basis function neural network (RBFNN)
as x̄n = [x1, ..., xn]

T, we affirm that for the positive constants
o and l satisfying o ≤ l, The inequality listed below is met.

||φ(x̄l)||2 ≤ ||φ(x̄o)||2 (5)

C. Secure boundary protection method(SBPM)

We presume that ρ1(t) and ρ2(t) are the two output con-
straint functions. We usually assume that the desired output
yd falls within this range, satisfying ρ2(t) < yd <ρ1(t),
for the system’s output constraint, which is often expressed
as ρ2(t) < x1< ρ1(t). However, in real-world scenarios, a
number of variables could cause the actual physical limitation
border to abruptly alter. This sudden change may lead to a
difference between the desired output yd and the physical
constraint, which could put the system’s output in danger.
We will examine the output constraint control problem in
this subsection and offer an SBPM-based solution.

We consider the following output constraint functions for
analysis in this context.

ρ1(t) =

{
ρ11(t), t < TA
ρ12(t), t ≥ TA

(6)

ρ2(t) =

{
ρ21(t), t < TB
ρ22(t), t ≥ TB

(7)

where the lower constraint is ρ2 and the upper constraint
is ρ1. The smooth functions are ρ11, ρ12, ρ21, ρ22. TA and
TB are the sudden changes moments in the constraints. The
output must meet the next performance restriction in order
to meet the control objective.

k̄down(t) < x1(t) < k̄up(t), t ≥ Tp (8)

where the designable time parameter Tp and the desired
boundaries are specified as

k̄up(t) = yd(t) + ϕ(t) (9)

k̄down(t) = yd(t)− ϕ(t) (10)

ϕ(t) is used to represent the PFTPF. the x1(t) will naturally
be strictly constrained within the required bounds if inequal-
ity (8) is satisfied, and the PFTPF can accurately adjust the
convergence rate. If the required limits are outside of the
actual output restrictions, they will be adaptive adjusted to
give two secure bounds. The secure boundaries will alter
right away to prevent a violation of the output constraint
since the bounds of the actual output constraint may change
abruptly. Right now, the secure borders will yield an un-
smooth point. The control input will jitter excessively as a
result of this circumstance. This study proposes the BFSM
method to suppress the high jitter in the control input and
create smooth secure boundaries that do not stray from the
planned trajectory.

It is well known that the filtered curve will get smoother
when first-order filtering is used. Furthermore, when smooth-
ness improves, filtering error will also rise. As a result, the
BFSM is presented in this study.

Remark 1 Both inverse and conventional first-order filter-
ing are referred to as bidirectional filtering in this context.
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The function that needs to be filtered is referred to as the
input in the former, and the filtered function along with its
derivatives are the outputs. The exact reverse of the former
is known as inverse filtering.

The BFSM operates on the following principle. To create
the virtual security boundaries and virtual output constraints,
the inverse filtering is first applied to the intended bound-
aries and actual output constraints. Then, the self-adjustment
legislation (SAL), which is discussed later, ensures that
the virtual output constraints are not broken by the virtual
security barriers. Filtering forward the virtual secure borders
finally yields the secure boundaries with upper and lower
boundaries. The above-mentioned analysis shows that even
though the virtual secure borders do not break the virtual
output requirements, the secure boundaries will form the
intended bounds if the forward and inverse filtering use the
same filtering settings; when the virtual secure boundaries
break the virtual output restrictions and the secure boundaries
become smooth, the secure boundaries cannot also break the
actual output constraint. The filtering parameter determines
the degree of smoothness. Here is a description of the BFSM.

First, using inverse filtering, we create the subsequent
virtual output limitations.

ρ̂1 =

{
σρ̇11 + ρ11 = ρ̂11, t < TA
σρ̇12 + ρ12 = ρ̂12, t ≥ TA

(11)

ρ̂2 =

{
σρ̇21 + ρ21 = ρ̂21, t < TB
σρ̇22 + ρ22 = ρ̂22, t ≥ TB

(12)

where the virtual output constraints are denoted by ρ̂1, ρ̂2,
and σ is a filter constant. Next, the inverse filtering creates
the subsequent virtual secure boundaries.

k̂up = σ ˙̄kup + k̄up (13)

k̂down = σ ˙̄kdown + k̄down (14)

where the virtual secure boundaries are denoted by k̂up
and k̂down. The virtual secure boundaries by ρ̂1, ρ̂2 are
checked with a SAL to make sure they don’t go against the
virtual output constraints. The virtual security borders can be
forward filtered to acquire the genuine secure boundaries.

k̇up =
k̂up − kup

σ
(15)

k̇down =
k̂down − kdown

σ
(16)

where the actual secure boundaries are kup, kdown,
kup, kdown, k̇up, k̇down can be created by (15), (16).

This is how the SAL is expressed. Only the situation where
the upper constraint barrier is broken at TA is taken into
consideration for the sake of simplicity in explanation.

Case 1 k̂up(TA) ≤ ρ̂1(TA), t ≥ TA is satisfied, the SAL
is as follows.

when k̂up(t) ≥ ρ̂1(t){
k̂up = ρ̂1,

k̂down = ρ̂1 − 2ϕ(t)

else{
k̂up = k̂up,

k̂down = k̂down

(17)

Case 2 We consider the possibility that the system can
learn about abrupt changes in the real physical boundaries
before the tm moment. When t ≥ TA−tm, if the inequalities
k̂up(TA − tm) ≤ ρ̂1(TA), k̂up(TA) > ρ̂1(TA) are fulfilled,
one possesses

when k̂up(t) ≥ ρ̂11(t){
k̂up = ρ̂11,

k̂down = ρ̂11 − 2ϕ(t)

else{
k̂up = k̂up,

k̂down = k̂down

(18)

Case 3 Unlike Cases 1 and 2, here the SAL must permit
the kup to return to the constraint range before to t = TA
because when t ≥ TA − tm, the following inequalities hold
true: k̂up(TA − tm) > ρ̂1(TA), k̂up(TA) > ρ̂1(TA).

In order to accomplish this, we establish k̃up(t) =
k̂up(TA − tm) − ωt and a function ρ̃1i(t). The search
algorithm in Fig. 1 determines ω, ρ̃1i(t), which are used
for the SAL. The search step sizes are ρm, ωm, see Fig.1,
and the positive design constants are ωmax, ω0.

Fig.1. Selection process of ρ̃1i and ω

In Case 3, the ρ̂1 at TA is smaller than the k̂up at TA−tm.,
where the actual constraint boundary changes suddenly at
TA. This suggests that the virtual output constraint will be
broken by the virtual secure border. At TA − tm. ω and ρ̃1i
can be adjusted to guarantee that the k̂up is always inside
the ρ̂1. The search algorithm shown in Fig. 1 can help with
this.

The SAL is as follows.

when k̃up(t) > ρ̃1i(t), t < TA{
k̂up = k̃up(t) = k̂up(TA − tm)− ωt,

k̂down = k̂up − 2ϕ(t)

when k̃up(t) ≤ ρ̃1i(t), t < TA{
k̂up = ρ̃1i(t),

k̂down = ρ̃1i(t)− 2ϕ(t)
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when k̂up(t) ≥ ρ̃1i(t), t ≥ TA{
k̂up = ρ̃1i(t),

k̂down = ρ̃1i(t)− 2ϕ(t)

else{
k̂up = k̂up,

k̂down = k̂down

(19)

Remark 2 In SBPM, the three scenarios that violate the
output constraints are taken into account. In Case 3, a virtual
output boundary ρ̃1i is established, which can be changed
with changes in the actual output constraints, to guarantee
that the secure boundary is as smooth as possible and does
not conflict with the real output boundary. Consequently,
a smooth boundary curve can be produced, preventing the
control signal from experiencing significant jitter.

Remark 3 We ought to select a lower value for the search
phase. The created curve is better the smaller the value.
However, calculations may get slower if the search step is too
small. As a result, the smallest search step should be selected
while maintaining computing speed as a prerequisite. An
overly big parameter could prevent usable value from being
obtained.

Fig.2. Implementation steps of the SBPM

A simulation demonstrating the efficacy of the BFSM is
shown. Fig. 3 presents a effect of the BFSM, the secure
boundary without filtering (SBWF), and the secure boundary
with first order filter (SBWFOF). The secure boundary
kup has a smoothing effect, as shown by the comparison
simulation results for the three approaches. Figure 3 shows
that the suggested BFSM is able to smooth the secure border
while also guaranteeing that it stays nearer to the yd without
breaking any of the constraints.

Remark 4 The study’s suggested SBPM has the potential
to manage the required performance as well as the output
limitations. If the yd does not clash with the actual output
restrictions, the SBPM indicates that the system output meets
−ϕ(t) < x1(t) − yd(t) < ϕ(t), t ≥ Tp, which is according
to the PFTPF. In the event that the yd conflicts with the
constraints, the secure boundary can ensure kdown < x1(t) <
kup. Stated otherwise, the methodology outlined in this

research is capable of simultaneously managing the output
restrictions and the required performance.

Remark 5 The core methodology of this paper, SBPM, is a
stand-alone design module that is independent of the system
characteristics and control design methods. The method is
able to handle systems with different characteristics such as
unmodelled dynamics, unknown control direction, time lag,
etc. and the scheme presented in this paper can be easily
integrated with other control schemes.

Fig.3. Secure boundaries created using various techniques

D. A novel output mapping

For the output y(t), kdown(0) < y(0) < kup(0) must
be met in traditional constraint control. However, in real-
world applications, it’s frequently challenging to collect
the prerequisite beforehand. In this research, we offer a
mapping function that allows the system to operate under any
beginning condition while satisfying the output constraint
and prescribed performance. We begin by defining a time-
varying tuning function.

ψ(t) =

{(
Tp−t
Tp

)r
, 0 ≤ t < Tp

0, t ≥ Tp
(20)

where Tp is the point at which y enters the constraint range
and r ≥ n+1 represents a design constant. In this case, ψ(t)
represents a Cn function as well. Create the new mapping
function that follows.

z1 = 0.5 ln
−kdown(1− ψ) + ψ(y2 + k) + y

kup(1− ψ) + ψ(y2 + k)− y
(21)

where k ≥ 1 is a design parameter.
Remark 6 The approach in [17] can fulfill the constraint

control under any initial state by applying a shifting function
to zero the constrained variable. However, it must meet the
requirements that kup(0) > 0 and kdown(0) < 0, that is,
The functions kdown and kup have to be strictly positive or
strictly negative. Unlike the approach in [17], kdown and kup
in (21) may reach the zero point and not always be positive or
negative definite functions. There is a wider selection of con-
straint functions. Furthermore, z1(t) = 0.5 ln (y(t)2+k)+y(t)

(y(t)2+k)−y(t)
is clearly defined at t = 0 and is not affected by the values
of kup, kdown. This is also evident from (21). Consequently,
there will be no requirement for the output’s constraint initial
condition. In addition, we may deduce from (21) that y is
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bounded if z1 is bounded and satisfies kdown < y < kup.
Theorem 1 is provided in order to eloquently illustrate this
concept.

Theorem 1 The resultant inequality holds irrespective of
the y(0) if z1 is bounded, which implies that y is bounded
as well.

kdown < y < kup, t ≥ Tp (22)

Proof: Observing that k ≥ 1 and ψ(0) = 1, one obtains

ψ(0)(y2(0) + k) > |y(0)| (23)

From (21) and (23), one has

−kdown(0)(1− ψ(0)) + ψ(0)(y2(0) + k) + y(0) > 0 (24)

kup(0)(1− ψ(0)) + ψ(0)(y2(0) + k)− y(0) > 0 (25)

Then we know z1(0) is well defined for any initial condition
y(0), then it is seen that z1 → ∞ if and only if −kdown(1−
ψ)+ψ(y2+k)+ y → 0 or kup(1−ψ)+ψ(y2+k)−y → 0,
therefore, if z1 is bounded, it follows that

−kdown(1− ψ) + ψ(y2 + k) + y > 0 (26)

kup(1− ψ) + ψ(y2 + k)− y > 0 (27)

Using (20), (26) and (27), one has ψ = 0 when t ≥ Tp, one
has

kdown < y < kup, t ≥ Tp (28)

When 0 ≤ t ≤ Tp, y can be derived as bounded by the
continuity of y.

III. CONTROLLER DESIGN

First, by using the output mapping in (21), the performance
constraint and the output constraints for x1(t) may be
transformed

z1 = 0.5 ln
−kdown(1− ψ) + ψ(x21 + k) + x1
kup(1− ψ) + ψ(x21 + k)− x1

(29)

Create the coordinate transformations listed below.

zi = xi − αi−1, i = 2, ..., n (30)

where the virtual control law is denoted by αi−1. The next
first-order filter is shown in order to prevent differential
explosion.

ji ˙̂αi + α̂i = αi, α̂i(0) = αi(0) (31)

where ji is a positive constant. Define the following filtering
error

ei = αi − α̂i, i = 1, ..., n− 1 (32)

where α̂i is the output of the (31).
The real control law, the adaptive law, and the virtual

control law are created as

α1 = −k1z1 − z1 − z1η̂1φ
T
1φ1 (33)

αi = −kizi − ziη̂iφ
T
iφi − zi − zi ˙̂α

2
i−1 (34)

u = −knzn − znη̂nφ
T
nφn − zn − zn ˙̂α2

n−1 (35)

˙̂η1 = z21φ
T
1φ1 − λ1η̂1. (36)

˙̂ηi = z2i φ
T
iφi − λiη̂i. (37)

˙̂ηn = z2nφ
T
nφn − λnη̂n. (38)

here k1, ki, kn > 0, λ1, λi, λn > 0 represent the control
design constants, η̂i represent the estimation parameter of
η∗i = ||θ∗i ||2, here i = 1, ..., n, the ideal vector of RBFNN,
which is used to estimate continuous functions, is θ∗i . The
error of estimation is defined as

η̃i = η̂i − η∗i , i = 1, ..., n (39)

Theorem 2 The closed-loop system satisfies the following
conditions if the virtual control laws, actual control law,
and adaptive laws for the system (1) with Assumptions 1∼2
are created in accordance with (33)∼(38): 1) The system’s
signals are all bounded; 2) If the desired output does not
break the output requirements when t ≥ Tp, then the tracking
error can satisfy the required performance as given by the
PFTPF; and 3) The inequality ρ2 < x1 < ρ1 can be satisfied
by the system output in cases when the desired trajectory
deviates from the output constraints.

Proof: Part 1. Controller design
Step 1 From (29), we have

ż1 =
∂z1
∂x1

(f1 + g1x2) +
∂z1

∂kdown
k̇down +

∂z1
∂kup

k̇up

+
∂z1
∂ψ

ψ̇ (40)

Construct the following Lyapunov function

V1 =
1

2
z21 +

1

2
η̃21 (41)

From (41), one obtains

V̇1 = z1(M1(f1 + g1x2) + β1) + η̃T
1
˙̂η1 (42)

where

M1 =
1

2

2ψx1 + 1

−kdown(1− ψ) + ψ(x21 + k) + x1

− 1

2

2ψx1 − 1

kup(1− ψ) + ψ(x21 + k)− x1
(43)

β1 =
∂z1

∂kdown
k̇down +

∂z1
∂kup

k̇up +
∂z1
∂ψ

ψ̇

=
1

2
[

−1 + ψ

−kdown(1− ψ) + ψ(x21 + k) + x1
]k̇down

− 1

2
[

1− ψ

kup(1− ψ) + ψ(x21 + k)− x1
]k̇up

+
1

2
[

kdown + x21 + k

−kdown(1− ψ) + ψ(x21 + k) + x1

− −kup + x21 + k

kup(1− ψ) + ψ(x21 + k)− x1
]ψ̇ (44)

From (30), one has

V̇1 =z1(M1(f1 + g1x2) + β1 − x2 + z2 + α1)

+ η̃T
1
˙̂η1 (45)
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Let F1 = M1(f1 + g1x2) + β1 − x2, using an RBFNN to
estimate F1, we have

F1 = θ∗1
Tφ1(Z1) + w1, w1 < W1 (46)

here Z1 = [x, ψ, ψ̇, kup, k̇up, kdown, k̇down], W1 > 0 is an
unknown constant. From (46) and (45) we have

V̇1 ≤ z1(θ
∗T
1 φ1 + α1 + z2) + |z1W1|+ η̃T

1
˙̂η1 (47)

Using Lemma 1 and Young’s inequality, one has

|z1W1| ≤
W 2

1

4
+ z21 (48)

z1θ
∗T
1 φ1(Z1) ≤ |z1|||θ∗1 ||||φ1(X1)||

≤ z21η
∗
1φ1(X1)

T
φ1(X1) +

1

4
(49)

where X1 = [x1, ψ, ψ̇, kup, k̇up, kdown, k̇down]. Substituting
(48), (49) into (47) gives

V̇1 ≤z1(α1 + z2) + z21 η̂1φ1(X1)
T
φ1(X1) + z21 +

W 2
1

4

+ η̃T
1(

˙̂η1 − z21φ1(X1)
T
φ1(X1)) +

1

4
(50)

Substituting (33), (36) into (50) obtains

V̇1 ≤ −k1z21 − λ1
2
η̃21 +

λ1
2
η∗21 +

W 2
1

4
+

1

4
+ z1z2

≤ −γ1V1 +m1 + z1z2 (51)

where γ1 = min{k1, λ1

2 },m1 = λ1

2 η
∗2
1 +

W 2
1

4 + 1
4 .

Step i (2 ≤ i ≤ n− 1) Let

Vi = Vi−1 +
1

2
z2i +

g
i

2
η̃2i +

1

2
e2i−1 (52)

From (52), one has

V̇i ≤− γi−1Vi−1 +mi−1 + zi(fi + gi−1zi−1 − ėi−1 − ˙̂αi−1

+ giαi + gizi+1) + g
i
η̃T
i
˙̂ηi + ei−1ėi−1 (53)

where ėi−1 = − ei−1

ji−1
+ α̇i−1. For the stated initial conditions

[8], α̇i−1 has a maximum Bi−1 since α̇i−1 represents a
continue function on a compact set Gi−1.

Employing Young’s inequality, one obtains

−ziėi−1 = zi(
ei−1

ji−1
− α̇i−1)

≤
e2i−1

4ji−1
+

(1 + ji−1)z
2
i

ji−1
+

1

4
B2

i−1 (54)

ei−1ėi−1 ≤ −
e2i−1

ji−1
+ |ei−1α̇i−1|

≤ −
e2i−1

ji−1
+

1

2
e2i−1 +

1

2
B2

i−1 (55)

Substituting (54), (55) into (53) gives

V̇i =− γi−1Vi−1 +mi−1 + zi(fi + gi−1zi−1 +
(1 + ji−1)zi

ji−1

− ˙̂αi−1 + giαi + gizi+1)− (
3

4ji−1
− 1

2
)e2i−1 + g

i
η̃T
i
˙̂ηi

+
3

4
B2

i−1 (56)

Define Fi = fi +
(1+ji−1)zi

ji−1
+ gi−1zi−1, we have.

Fi = θ∗i
Tφi(Zi) + wi, wi < Wi (57)

here the constant Wi > 0 is unknown. Substituting (57) into
(56) gives

V̇i =− γi−1Vi−1 +mi−1 + zi(θi
∗Tφi − ˙̂αi−1 + giαi

+ gizi+1) + ziWi − (
3

4ji−1
− 1

2
)e2i−1 + g

i
η̃T
i
˙̂ηi

+
3

4
B2

i−1 (58)

Employing Young’s inequality, we arrive at

ziWi ≤
W 2

i

4g
i

+ g
i
z2i (59)

ziθ
∗T
i φi(Zi) ≤ g

i
z2i η

∗
i φi(Zi)

T
φi(Zi) +

1

4g
i

(60)

Substituting (59), (60) into (58) gives

V̇i =− γi−1Vi−1 +mi−1 + zi(− ˙̂αi−1 + giαi + gizi+1)

+ g
i
z2i η̂iφ

T
iφi + g

i
z2i − (

3

4ji−1
− 1

2
)e2i−1

+ g
i
η̃T
i (

˙̂ηi − z2i φ
T
iφi) +

3

4
B2

i−1 +
1

4g
i

+
W 2

i

4g
i

(61)

When Young’s inequality is combined with equation (34) it
yields

zigiαi ≤ −kigiz
2
i − g

i
z2i η̂iφ

T
iφi − g

i
z2i − g

i
z2i

˙̂α2
i−1 (62)

−zi ˙̂αi−1 ≤ 1

4g
i

+ g
i
z2i

˙̂α2
i−1 (63)

Substituting (37), (62), (63) into (61) has

V̇i ≤− γi−1Vi−1 +mi−1 − kigiz
2
i − λi

2
η̃T
i η̃i

− (
3

4ji−1
− 1

2
)e2i−1 +

λi
2
η∗T
i η∗i +

1

4g
i

+
W 2

i

4g
i

+
3

4
B2

i−1 + gizizi+1

≤− γiVi +mi + gizizi+1 (64)

whereγi = min
{
γi−1, kigi,

λi

2 ,
3

4ji−1
− 1

2

}
,mi = mi−1 +

λi

2 η
∗T
i η∗i +

1
4g

i

+
W 2

i

4g
i

+ 3
4B

2
i .

Step n Let

Vn = Vn−1 +
1

2
z2n +

g
n

2
η̃2n +

1

2
e2n−1 (65)

From (65), one has

V̇n ≤− γn−1Vn−1 +mn-1 + zn(fn + gn−1zn−1 − ėn−1

− ˙̂αn−1 + gnu) + g
n
η̃T
n
˙̂ηn + en−1ėn−1 (66)

where ėn−1 = − en−1

jn−1
+ α̇n−1. Same as step i, α̇n−1 has a

maximum Bn−1.
Using Young’s inequality, one obtains

−znėn−1 = zn(
en−1

jn−1
− α̇n−1)

≤
e2n−1

4jn−1
+

(1 + jn−1)z
2
n

jn−1
+

1

4
B2

n−1 (67)
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en−1ėn−1 ≤ −
e2n−1

jn−1
+ |en−1α̇n−1|

≤ −
e2n−1

jn−1
+

1

2
e2n−1 +

1

2
B2

n−1 (68)

Substituting (67), (68) into (66) gives

V̇n =− γn−1Vn−1 +mn−1 + zn(fn + gn−1zn−1

+
(1 + jn−1)zn

jn−1
− ˙̂αn−1 + gnu)− (

3

4jn−1
− 1

2
)e2n−1

+ g
n
η̃T
n
˙̂ηn +

3

4
B2

n−1 (69)

Define Fn = fn + (1+jn−1)zn
jn−1

+ gn−1zn−1, combining
RBFNN we have.

Fn = θ∗n
Tφn(Zn) + wn, wn < Wn (70)

here the constant Wi > 0 is unknown. Substituting (70) into
(69) gives

V̇n =− γn−1Vn−1 +mn−1 + zn(θn
∗Tφn − ˙̂αn−1 + gnu)

+ znWn − (
3

4jn−1
− 1

2
)e2n−1 + g

n
η̃T
n
˙̂ηn +

3

4
B2

n−1

(71)

Using Young’s inequality, one has

znWn ≤ W 2
n

4g
n

+ g
n
z2n (72)

znθ
∗T
n φn(Zn) ≤ g

n
z2nη

∗
nφn(Zn)

T
φn(Zn) +

1

4g
n

(73)

Substituting (72), (73) into (71) gets

V̇i =− γn−1Vn−1 +mn−1 + zn(− ˙̂αn−1 + gnu)

+ g
n
z2nη̂nφ

T
nφn + g

n
z2n − (

3

4jn−1
− 1

2
)e2n−1

+ g
n
η̃T
n(

˙̂ηn − z2nφ
T
nφn) +

3

4
B2

n−1 +
1

4g
n

+
W 2

n

4g
n

(74)

When Young’s inequality is combined with equation (35) it
yields

zngnu ≤− kngnz
2
n − g

n
z2nη̂nφ

T
nφn − g

n
z2n

− g
n
z2n

˙̂α2
n−1 (75)

−zn ˙̂αn−1 ≤ 1

4g
n

+ g
n
z2n

˙̂α2
n−1 (76)

Substituting (38), (75), (76) into (74) has

V̇n ≤− γn−1Vn−1 +mn−1 − kngnz
2
n − λn

2
η̃T
nη̃n

− (
3

4jn−1
− 1

2
)e2n−1 +

λn
2
η∗T
n η∗n +

1

4g
n

+
W 2

n

4g
n

+
3

4
B2

n−1

≤− γnVn +mn (77)

here γn = min
{
γn−1, kngn,

λn

2 ,
3

4jn−1
− 1

2

}
,mn =

λn

2 η
∗T
n η∗n+

1
4g

n

+
W 2

n

4g
n

+ 3
4B

2
n +mn−1.

Part 2.
1) Proof for the boundedness.
zi(1 ≤ i ≤ n) are bounded, by (77). The theorem 1 tells us

that if z1 is bounded, then the constraint kdown < x1 < kup,
t ≥ Tp, is fulfilled. So, it can be seen that x1 is bounded
for t > 0. Then, α1, η̂1, x2 are bounded, thus, we obtain
x3, ..., xn, α2, ..., αn−1, θ2, ..., θn, u are bounded.

2) Proof for the tracking error’s prescribed performance
after Tp when the desired trajectory complies with the output
constraints.

We may deduce that kdown = k̄down, kup = k̄up from
(13)∼(19), The following inequality is true if the desired
output does not break the output restriction.

k̄down(t) < x1(t) < k̄up(t), t ≥ Tp (78)

From (9), (10) one obtains

−ϕ(t) < x1(t)− yd(t) < ϕ(t), t ≥ Tp (79)

This can result in the x1 − yd satisfying the prescribed
performance according to the PFTPF.

3) When yd violates the constraint, prove that ρ2 < x1 <
ρ1, t ≥ Tp can be satisfied by the system output.

From (11)-(19), when t ≥ Tp, one has kup ≤ ρ1, kdown ≥
ρ2, combining the inequality kdown < x1 < kup yields ρ2 ≤
kdown < x1 < kup ≤ ρ1. Thus the inequality ρ2 < x1 < ρ1
holds.

Remark 7 A smaller l can result in better tracking
accuracy for the PFTPF parameters; a lower T value or an
increase in q can result in a faster rate of convergence. A
trade-off needs to be established because an excessive control
performance will lead to a huge control input. The real
smoothness of the secure boundaries depends on σ. Large
jitter in the control input can be effectively suppressed with
a high enough value of σ.

Remark 8 The following is a summary of the suggested
method’s design steps.

Step 1: In the PFTPF, set q, l, T, Tp,K.
Step 2: In the SBPM, select the values for σ, ρm,

ωm, ωmax, and ω0.
Step 3: Using the SBPM, create the kup, kdown.
Step 4: For the virtual control laws αi, control input u,

and adaptive law ˙̂ηi, use (33)∼(38).

IV. SIMULATION STUDIES

Consider the following nonlinear system [17].{
ẋ1 = x2
ẋ2 = −9.8 sin (x1)− 2x2 + 2u

(80)

In this simulation, the system’s safe tracking control is
examined. ODE5 is the solver, and 0.0001 is the simulation
step. The control parameters are chosen as k1 = 1, k2 = 20,
σ = 0.25, j2 = 0.01, λ1 = λ2 = 100, T = 2.5, r = 3,
q = 4, ρm = 0.01, l = 0.0025, ω̂ = 1, K = 0.5,
ωm= 1. The initial conditions are given as x2(0) = 0,
[η̂1(0), η̂2(0)]

T
= [0, 0]

T. The three possibilities will be taken
into consideration in order to confirm the efficacy of the
suggested strategy. Case 1 is x1(0) = −0.7, Case 2 is
x1(0) = 0.6, Case 3 is x1(0) = −0.1. The neural network
θ̂T
1φ1 contains 77 nodes, its centers are ω̄i(i = 1, ..., 77)

evenly spaced in [−3, 3], and width ν1 = 1.1. θ̂T
2φ2 contains

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1402-1411

 
______________________________________________________________________________________ 



78 nodes, centers ω̄i(i = 1, ..., 78) evenly spaced in [−3, 3],
and width ν2 = 1.1. The output constraint and the desired
trajectory are as follows.

ρ1 =

{
0.9 + 0.026 sin(3t), 0 ≤ t < 8
0.4 + 0.026 sin(3t), t ≥ 8

(81)

ρ2 =

{
−0.9, 0 ≤ t < 7
−0.6, t ≥ 7

(82)

yd = 0.8 sin(t) (83)

The control method is simulated in accordance with The-
orem 2’s controller design, and the outcomes are displayed
in Figs.4∼5. The tracking response is shown in Fig. 4, and
the state x2 is shown in Fig. 5.

It doesn’t matter if the initial output falls inside the
constraint boundary, as can be observed in Fig. 4, the system
output can enter the safety range based on the required time
Tp. The x1 is limited to a preset neighborhood surrounding
the yd within the settling time T , provided that the expected
output does not break the output constraints. Stated other-
wise, it satisfies the required performance according to the
PFTPF. The safety boundary will change to make sure that
the x1 fulfills the constraint when the desired output and the
constraint clash. The boundedness of the state x2 is shown
in Fig. 5.

Fig.4. Tracking response

Fig.5. The system state x2

Fig.6. Safe tracking effect and comparison

Fig.7. Control inputs and comparison

We compare with the procedure in [8] to confirm the
superiority of the proposed method. In the simulation, the
following parameters in [8] are consistent with this paper,
they are ρ1 = 0.7, ρ2 = −0.7, yd = 0.8 sin(t), k1 =
5, k2 =25, λ1 = λ2 = 15. The special parameters
in the proposed method are set as σ = 0.25, T = 2.5,
j2 = 0.01, r = 3, q = 4, l = 0.0025, ωm= 1, ω̂ = 1,
K = 0.5, ρm = 0.01. The special parameters in [8] are set as
∆ts = 0.01, ∆tmin = 0.04, ∆tmax = 0.2, c11 = c21 = −2,
c12 = c22 = 2, which are the same as those in [8]. The
initial conditions of the system are given as x1(0) = −0.15,
x2(0) = 0, [η̂1(0), η̂2(0)]

T
= [0, 0]

T. With the exception of
the unique parameters in the two methods, all the parameters
are the same. The simulation is shown in Fig.7 and Fig.8.

It is evident from the two figures that in situations where
the planned trajectory clashes with the output constraints,
the suggested technique performs safe tracking control. The
approach in [8] can only guarantee that the system output
does not exceed the output constraints to the best of its
ability because its efficacy depends on the tracking control
performance, parameter selection, and system output predic-
tion. There is a lot of jittering in the control input, and if
the control effect is pool, the strategy can be hazardous in
practical situations. By using a batter tracking performance
and smooth control input under the same control parameters,
the strategy presented in this study is able to rigorously
confine the output inside the output constraints; thus, the
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system’s output curve is smoother than that of the method
in [8]. Furthermore, it is important to highlight that the
approach in [8] is not able to manage the time-varying and
saltatory output requirements that are present in this study.
That is, the output constraints considered in [8] are a special
case of the constraints considered in this paper.

To further validate the effectiveness of this paper’s scheme
in more complex systems, the following third-order elec-
tromechanical system[11] is considered

{
Mq̈ +Bq̇ +N sin q = I

V0 −RI −KB q̇ = Lİ
(84)

here q represents the angular position, I is the armature
current, V0 represents the input control voltage. Let x1 = q,
x2 = q̇, x3 = I , u = V0, y = x1, Add two items Λ1(q̇, q, I)
and Λ2(q̇, q, I) based on [11].


ẋ1 = x2
ẋ2 = 1

M x3 − N
M sinx1 − B

M x2 + Λ1(q̇, q, I)
ẋ3 = 1

Lu− KB

L x2 − R
Lx3 + Λ2(q̇, q, I)

y = x1

(85)

here Λ1(q̇, q, I) = B
M x22x

3
3 and Λ2(q̇, q, I) = R

Lx
2
2 sinx3

representation the model error, M = J
Kτ

+
mL2

0

3Kτ
+

M0L
2
0

Kτ
+

2M0R
2
0

5Kτ
, N = mL0g

2Kτ
+ M0L0g

Kτ
, B = B0

Kτ
. Here J = 1.625 ×

10−3kg ·m2, M = 0.506kg, R0 = 0.023m, M0 = 0.434kg,
L0 = 0.305m, B0 = 16.25× 10−3N ·m · s/rad, L = 25×
10−3H , R = 5Ω, Kτ = KB = 0.9N ·m/A.

The initial conditions are x1(0) = 0.35, x2(0) = 0,
x3(0) = 0, [η̂1(0), η̂2(0)], η̂3(0)]

T
= [0, 0, 0]

T. The controller
is calculated according to Theorem 2. The simulation results
are shown in Fig.8-Fig.9. Fig.8 represents the tracking re-
sponse and Fig.9 represents the control input.

The simulation results demonstrate that, with the control
method suggested in this study, the more complex third-order
electromechanical system can still achieve a satisfactory
control performance and complete the safe tracking control.
Additionally, there is a noticeable suppression of the control
input’s considerable jitter.

Fig.8. Tracking response

Fig.9. Control input and comparison

V. CONCLUSION

For a class of non-strict feedback nonlinear systems, This
work suggests an finite-time initial tracking condition-free
safe tracking control method. The three potential practical
scenarios are examined, and an SBPM is provided to guar-
antee that the system output does not go against the output
restriction. The SBPM takes into account both the output
constraint and the prescribed performance at the same time.
The desired trajectory can be adjusted without predicting
the system output value, as the approach can handle abrupt
changes in the actual output constraint with effectiveness.
Additionally, by using the design parameters, the approach
may be used to define the tracking accuracy and convergence
speed. We suggest using the BFSM to smooth the secure
boundary in order to mitigate the significant jitter in the
control input while maintaining tracking performance. The
suggested method’s computing complexity is also much
decreased at the same time. Significant application oppor-
tunities exist for the technique presented in this study in the
domains of unmanned vehicle systems, UAVs, etc.
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