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Abstract—The task of detecting marine target organisms has 

always been a challenging issue, despite the numerous machine 

learning detection methods proposed to improve precision. The 

underwater image blurriness caused by irregular light 

absorption and water quality remains a major obstacle to 

achieving accurate detection. This results in high misalignment 

rates and poor underwater scene recognition capabilities for 

detecting underwater targets. To address this, we put forward 

a YOLOv7-RNCA underwater target detection technology 

based on improvements to YOLOv7. This model adds residual 

modules and coordinate attention mechanisms (CA) at the end 

of the backbone network, as well as incorporating partial 

convolution (PConv) modules. The combination of these three 

components makes the model more precise during the 

detection process while reducing unnecessary computation and 

memory access. This allows for better optimization during 

deep network training and preserves more feature information. 

Additionally, we reconstructed the SPPCSPC structure and 

incorporated a global attention mechanism (GAM) to form the 

SPPCSPC-GAM module in the neck network, which improves 

the performance of the convolutional neural network (CNN) 

and ensures good data capabilities and robustness during 

training, thereby enhancing the target detection ability. We 

also improved the neck ELAN module by introducing PConv 

convolution modules, which continuously enhance network 

learning abilities without disrupting the original gradient path. 

The introduction of the PConv module reduces redundant 

computation and memory access, making the ELAN-PConv 

module more effective at extracting spatial features. Our 

outcomes of experimentation indicate YOLOv7-RNCA 

network an average precision of 86.6% on the URPC dataset, 

outperforming existing methods in accuracy detection and 

demonstrating great potential as a promising solution for 

marine target monitoring tasks. 
 

Index Terms—Underwater Target Detection, Marine 

Resources, YOLOv7, Attention Mechanism 

 

I. INTRODUCTION 

ith the continuous exploitation of resources by 

mankind, natural resources on land are gradually 

depleting, and resource regeneration cannot keep pace with 

the rate of extraction. This situation necessitates finding new 

ways to obtain resources, leading us to turn our attention to 

the ocean. The ocean is the largest resource bank in the 

world, containing numerous precious treasures and holding 
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the potential to provide food, medicine, and other essentials 

for human life[1-2]. However, to harvest marine resources, it 

is necessary to upgrade underwater equipment and 

effectively survey the ocean. 

In recent years, advancements in marine robot technology 

have significantly enhanced our ability to explore the 

oceanic environment. This progress underscores the 

importance of preserving marine ecosystems and 

responsibly utilizing marine resources. Effective target 

detection is crucial in this context, and leveraging advanced 

machine vision technology is essential for oceanic 

exploration [3]. Through the use of ocean robots such as 

remote operating vehicles (ROVs) [4] and autonomous 

underwater vehicles (AUVs) [5], valuable underwater data 

can be acquired. For example, the URPC dataset used in this 

study contains underwater data gathered using ROVs and 

AUVs. These datasets provide crucial insights by addressing 

fundamental questions, such as the precise locations of 

objects. Underwater target detection predicts the location 

and category label for each detected target of interest using 

bounding boxes, enhancing comprehension of the intricate 

nuances of the oceanic realm. 

Through the application of marine robots, we are able to 

acquire underwater datasets in the ocean and perform 

underwater target detection. Both deep sea and shallow sea 

can be targets for detecting hydrops within a certain range, 

and they can contribute significantly as well to seafood 

aquaculture in shallow waters [6]. For instance, by 

collecting specific marine organism datasets, such as those 

of holothurian, echinus, abalones, starfish, alongside other 

aquatic creatures, we can detect the presence of these 

organisms in certain areas, thereby facilitating seafood 

fishing. This can be of great assistance to seafood farmers in 

shallow seas. Through target detection, they can determine 

the density of various seafood in aquaculture areas, estimate 

seafood yields, and prevent underwater abnormalities by 

analyzing the target pictures detected. This greatly saves 

manpower, materials, and finances, and facilitates reuse of 

assets. 
As deep learning target detection algorithms continue to 

evolve, we have observed significant improvements in 

feature extraction capabilities and robustness, laying a solid 

foundation for underwater target detection and driving its 

onward progress. Nevertheless, the application of these 

algorithms to underwater target detection presents a myriad 

of issues and challenges. For example, the intricate 

underwater environment gives rise to wavelength-related 

absorption and scattering, resulting in a notable decline in 

image quality when capturing underwater scenes using 

robotic devices. This degradation manifests in the form of 

reduced contrast, image blurring, and various other issues 
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that hinder the collection of effective datasets. Moreover, a 

range of variables, including water quality, clarity, and 

temperature, across diverse aquatic environments—from 

shallow seas to the depths of the ocean and intricate coral 

reefs—can significantly impact the ability of underwater 

robots to detect targets accurately [7]. Additionally, 

obstacles such as small underwater targets, occlusion, 

overlap, and blurring pose considerable difficulties in 

achieving efficient target detection tasks within the oceanic 

environment. 

Therefore, in response to these problems, we propose a 

method based on improving target detection of YOLOv7 on 

the basis of leveraging the ongoing advancements in deep 

learning technology. This is done as follows. 

The fusion of the ResNet_CA_PConv unit within the core 

network structure signifies a substantial improvement. With 

the aid of the PConv module [8], both computations and 

memory access are efficiently reduced. Moreover, by 

flawlessly embedding the CA focus system [9-10], the 

module elevates network accuracy without imposing any 

additional computational burden. This synergistic approach 

is then tactically applied to the residual structure, resulting in 

a refined integration process that safeguards against feature 

loss, amplifies detection accuracy, and streamlines 

computational complexity. 
SPPCSPC module is reconstructed in neck network, and 

GAM (Global Attention Mechanism) [11] is added to 

replace CBS module in SPPCSPC module, to attain 

excellent capability in feature detection and resilience 

during the training procedure. 

Finally, by enhancing the ELAN-W module within the 

neck network, the PConv module is incorporated into the 

ELAN module, replacing one Conv module within the 

Conv_BN_SiLu structure. This improvement enhances the 

effectiveness of the ELAN-W module in feature extraction. 

II. RELATED  ALGORITHMS 

Advanced neural networks have achieved noteworthy 

advancements in feature extraction over the past few years, 

with object recognition systems utilizing this technology, 

finding widespread applications in terrestrial, aerial, and 

military domains. Despite their extensive use on land, the 

research on target detection in the ocean remains limited. As 

target detection methods continue to advance, a growing 

number of algorithms tailored for oceanic target detection 

are expected to emerge continuously in the future. 
Deep neural network object identification methods can 

generally be grouped into two main groups. The group 

involves two-phase procedures like R-CNN [12], 

FastR-CNN [13], and FasterR-CNN [14]. These algorithms 

identify candidate regions in an image and verify their 

content. They achieve high accuracy but suffer from slow 

detection speeds due to their computational complexity. The 

second group consists of one-stage detection algorithms, 

exemplified by OverFeat [15], YOLO [16], and SSD [17]. 

These algorithms directly locate objects and calculate losses 

using a single regression classification approach. 

With the continuous development of single-stage 

detection techniques, increasingly, researchers have utilized 

the YOLO algorithm to detect objects beneath the water's 

surface. For instance, Lei et al. [18] enhanced the images by 

applying the CLAHE algorithm and histogram equalization 

to the raw data, and then applied it to YOLOv2 and 

YOLOv3 to meet the requirements of better underwater 

recognition. Xu et al. [19] fused MobileNet V2 with 

depth-wise separable convolution, enhanced the AFFM 

module, balancing speed and accuracy for underwater object 

detection. Jian et al. [20] proposed a dual-domain data 

augmentation method to enhance data diversity. They used 

self-attention and convolutional operations to increase the 

detection efficiency of YOLOv7, introduced the SIoU loss 

function for faster convergence, and enhanced model 

performance. Yi et al. [21] integrated the SENet attention 

framework into YOLOv7 to focus on capturing more crucial 

information of small targets in the network, enhancing 

network topology to reduce model complexity, and 

implemented the EIoU loss function to boost underwater 

model detection precision. Shen et al. [22] launched the 

MIPAM module and integrated it into the YOLO detector 

model to strengthen detection task effectiveness by 

collecting more feature information through MIPAM. In 

summary, their research on single-stage detection 

techniques not only demonstrated the effectiveness of 

single-stage object detection but also provided a solid 

platform for studying underwater object detection using 

YOLO. 
YOLOv7 [23] stands as a cutting-edge single-stage 

real-time target detector. Its architecture primarily 

comprises two components: the Backbone, alongside 

modules such as MP, ELAN, CSB, and SPPCSPC, 

synergistically employed for extracting crucial image 

information. The Head segment seamlessly integrates upper 

and lower sampling, detection layers, and additional 

modules, ensuring further refinement and judicious 

application of the extracted features. Subsequently, through 

a meticulous analysis of these features, YOLOv7 excels in 

both speed and precision, outperforming its predecessors. 

Remarkably, YOLOv7 reduces parameters by 40% and 

computations by 50% compared to the foundational YOLO 

model, making it the preferred choice for enhancing target 

detection research in underwater marine organisms. 

However, despite its promise, there remains a paucity of 

studies exploring the YOLOv7 model's efficacy in marine 

organism target detection, highlighting the imperative for 

refining its accuracy and paving the way for future 

advancements. 

III. IMPROVEMENTS 

A. Introduction to the PConv Module 

To underscore the proficiency of the ELAN module, this 

paper avails itself of the highly effective feature extraction 

technique denominated as PConv, which was introduced by 

Chen et al. This methodology adeptly extracts spatial 

features through the application of traditional convolution to 

a select group of input channels, thereby preserving the total 

count of channels. The calculation of memory access 

pertaining to interconnections is determined by considering 

either the initial or the terminal channel as an emblematic 

representation of the entire feature map. The corresponding 

FLOPs are then tallied in the manner outlined below: 
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 h×w×2CP+k
2
×CP

2  (1) 

The variables h signifies height, w signifies width, and d 

signifies depth. of the input channels, severally. In this 

scenario, the calculated quantity is merely 1/16 of the 

standard calculated amount. Additionally, the memory 

access of the PConv module is minimal, approximately 

h×w×2CP, constituting 1/4 of that required by standard 

convolution. 
A schematic of the PConv module work is shown in Fig. 

1. 

 

× ＝

×

＝

× ＝

(a) Convolution

(b) Depthwise/Group Convolution

(c) Partial Convolution (ours)  
Fig. 1. PConv module basic working principle 

 

B. ELAN-PC Module 

The YOLOv7 ELAN module is engineered to regulate the 

shortest and longest path gradients, facilitating effective 

learning and convergence in deeper networks. This 

maintenance of the original gradient path continuously 

amplifies the network's learning capacity and fortifies its 

robustness, thereby expanding its ability to acquire a broader 

range of features. In contrast to the standard Conv 

convolution module, the PConv module swiftly captures 

input branch features and accesses memory expediently. 

This not only enhances the model's capability to detect small 

targets but also streamlines computations and memory 

access, ultimately improving the extraction of spatial 

characteristics when integrated with ELAN. By supplanting 

the common Conv module with PConv, the channel features 

remain intact while upholding a high computational speed. 

The modified ELAN-PC module is illustrated in Fig. 2 

below. 

 

ELAN-PC PConvBS

CBS

CBS CBS CBS CBS Cat CBS=

PConvBS = PConv BN Relu

ELAN-W CBS

CBS

CBS CBS CBS CBS Cat CBS=

PConvBS module replaces the CBS module

 
Fig. 2. ELAN compare with ELAN-PC 

C. ResNet_CA_PConv Module 

The YOLOv7 backbone network has been augmented 

with the integration of the ResNet_CA_PConv module, 

which effectively maintains the consistency of the captured 

feature characteristics. This module relies on ResNet [24] 

compressed design. 

Ongoing investigations into the design of mobile 

networks reveal that channel attention holds paramount 

significance in elevating model performance. Nevertheless, 

a noteworthy constraint of this methodology lies in its 

disregard for location information. To bridge this gap, we 

present a groundbreaking and computationally streamlined 

CA mechanism. This innovative approach seamlessly 

integrates location nuances with channel data, empowering 

mobile networks to effectively concentrate on diverse 

regions without imposing substantial computational 

burdens. 

To overcome the potential positional details lost through 

2D holistic pooling, we refine the channel attention 

mechanism by decomposing the global average pooling. 

This decomposition involves the utilization of two 1D global 

pooling operations. These operations encourage attention 

blocks to identify spatial distant dependencies while 

maintaining exact location context. Concisely, for input X, 

we codify each channel individually along horizontal and 

vertical axes, exploiting spatial ranges of (H, 1) and (1, H), 

respectively. Consequently, the output for a given channel C 

at a specific height h and width w is determined as follows: 

 zc
w(h)=

1

W
∑ xc(h,i)

0≤i<W

 (2) 

 zc
w(w)=

1

H
∑ xc(j,w)

0≤j<H

 (3) 

The aforementioned two transformations to create a set of 

two feature maps for directional sensing, specifically 

C×H×1 and C×1×W trait diagrams. This allows our attention 

to detect remote distance connections in a dimensional 

alignment and maintain accurate positional data, thus 

enhancing the network's precision in localization. 

Subsequently, the resulting feature map of C×1×W 

undergoes a 1×1 dimensional convolution function F1 to 

obtain: 

 f=δ(F1([zh,zw])) (4) 

[ , ] marks the progression of operations along the spatial 

plane, δ is a nonlinear activation mechanism, and f∈

R
C

r
×(H+W)

 is an intermediary feature representation that 

encodes spatial data in both the lateral and vertical planes. r 

serves as the factor to regulate the scaling proportion of the 

block size within SE blocks, Subsequently f is separated into 

two independent tensors f
 h∈R

C

r
×H

 and f
 w∈R

C

r
×W

 across 

the spatial axis, Then, a 1×1 convolution is applied to 

perform the dimension lifting operation on each tensor, 

respectively, followed by the final attention vectors are 

derived by applying the sigmoid activation function, as 

follows: 

 gh=σ(Fh(f
 h

)) (5) 

 gw=σ(Fw(f
 w

)) (6) 
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By utilizing the sigmoid function σ, we commonly reduce 

the number of channels of f by an suitable scaling ratio r in 

order to streamline the model. Subsequently, we examine 

the impact of various decline ratios on execution and 

generate gh and gw extensions, which subsequently affect the 

attention weights. Ultimately, this culminates in the 

Coordinate Attention output formula. 

 g
c
(i,j)=xc(i,j)×g

c
h(i)×g

c
w(j) (7) 

The CA module not only considers the relationship 

between space and channel, but also tackles the long-range 

dependency problem. By doing so, it avoids excessive 

information loss, leading to improved accuracy. 

Furthermore, the module boasts fewer parameters and 

reduced computational requirements. Labeled as 'CA 

Module Algorithm Flowchart', Fig. 3 illustrates the 

step-by-step process of the CA module's algorithm. 

 

Residual

Re-weight

X Avg Pool X Avg Pool

Concat + Conv2d

BatchNorm + Non-Linear

Conv2d Conv2d

Sigmoid Sigmoid

Input

C×H×W

C×H×1 C×1×W

C/r×1×W

C/r×1×W

C×1×W

C×1×WC×H×1

C×H×1

C×H×W

Output

 
Fig. 3. CA attention mechanism network structure 

 

Based on the residual structure of ResNet, the CA module 

and PConv module are integrated within the ResNet module. 

The 1×1 convolution is replaced with PConv, facilitating 

rapid extraction of input branch characteristics, reducing 

redundant calculations, and enhancing memory access speed. 

Subsequently, the 3×3 convolution is replaced with the CA 

module. This allows for the aggregation of input 

characteristics along the two spatial dimensions, enabling 

the capture of long-distance dependencies and precise 

location information. This not only helps prevent 

information loss but also reduces parameters and 

calculations. The improved ResNet_CA_PConv module is 

illustrated in Fig. 4. 

 

PConv

CABlock

PConv

CABlock = CA

Cat

BN Relu

Conv1×1

Conv3×3

Conv1×1

Cat

 
Fig. 4. ResNet_CA_PConv module structure diagram (left: ResNet; Right: 

ResNet_CA_PConv) 

 

D. The SPPCSPC Module is Reconstructed 

The SPPCSPC module in YOLOv7 enhances the model's 

receptive field and feature expression capability by pooling 

the feature maps across the input's multi-scale spatial 

pyramid. Attention mechanism is a technique used to 

enhance complex feature identification environments by 

distributing varying weights to different parts of the neural 

network input. Notably, the GAM attention mechanism 

demonstrates strong performance. GAM consists of a 

channel-focused attention module and a spatial attention 

module. During the channel attention phase, GAM initially 

transforms the dimensionality of the input feature map. It 

then feeds it into two layers of Multi-Layer Perceptron 

(MLP) followed by sigmoid processing. Meanwhile, the 

spatial attention mechanism integrates utilizing spatial info 

two convolutional layers and sigmoid processing, allowing 

the network to prioritize context-sensitive areas in the image. 

The schematic of GAM is depicted in Fig 5. Replacing the 

Conventional Block Structure (CBS) with GAM in the 

SPPCSPC module leads to significant accuracy 

improvements. The updated SPPCSPC module is illustrated 

in Fig 6. 

 
Channel Attention Spatial Attention

MC MS

× ×
Input features F1

Output features F3

1

Input features F1

Input features F2

MC  (F1)

MS  (F2)

MLP
Permutation

C×W×H W×H×C

Reverse 

permutation

(b) Channel attention submodule

 (c) Spatial attention submodule

7×7 

Conv
7×7 

Conv

Sigmoid
C×H×WC/r×H×W

(a) The overview of GAM

Sigmoid

Fig. 5. GAM model 
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SPPCSPC = CBS CBS CBS

MaxPool 5

MaxPool 5

MaxPool 5

CBS

Cat CBS CBS Cat CBS

SPPCSPC = CBS GAM

MaxPool 5

MaxPool 5

MaxPool 5

CBS

Cat CBS CBS Cat CBS

GAM blockmodule replaces the CBS module

 
Fig. 6. The structure diagram of SPPCSPC-GAM module 
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Fig. 7. Schematic of YOLOv7-RNCA structure 

 

In summary, the proposed YOLOv7-RNCA model 

effectively preserves the Backbone features captured by 

introducing the ResNet_CA_PConv structure at the bottom 

layer of the backbone network. This model is able to extract 

feature information from small targets and complex 

backgrounds, thereby enhancing the model's ability to focus 

on valuable content and specific locations within input 

image samples. By integrating PConv into the ELAN 

module, rather than using the original 1×1 convolution 

module of the neck network, computation redundancy is 

reduced, inference time is shortened, while maintaining 

detection accuracy. Simultaneously, the introduction of the 

GAM into the SPPCSPC module enhances the network's 

feature extraction capabilities and boosts the original 

network's deep feature distillation skill. The modified 

YOLOv7-RNCA model is shown in Fig. 7. 

IV. EXPERIMENTS 

A. Experiment Environments 

Hardware specifications include an NVIDIA GeForce 

RTX 4070Ti graphics card with 12GB of video memory. 

The software environment comprises Windows 10, CUDA 

11.3, Pytorch 1.11.0, and Python 3.8.0. For the training 

parameters, the inputted pictures are resized to 640×640 

pixels, the total set iteration limit to 300, and a batch size of 

4 is used. The chosen optimizer is Stochastic Gradient 

Descent (SGD) momentum value 0.937. Set the learning rate 

to 0.01 and apply a weight decay of 0.0005. Regulate the 

learning rate as training progresses, a cosine annealing 

learning algorithm is employed. 
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Fig. 8. The URPC marine organism datasets 

 

B. Datasets and Settings 

In this research, we chose an underwater dataset 

originating from the Underwater Robot Professional 

Competition (URPC). This dataset comprises images 

captured by autonomous underwater vehicles (AUVs) in the 

aquatic meadows of Zhangzi Island, Dalian, offering an 

authentic depiction of the marine ecosystem. As the official 

competition test set is not publicly accessible, we curated a 

collection of 6671 images, highlighting four marine species: 

sea urchins, sea cucumbers, sea stars, and scallops. These are 

labeled as echinus, holothurians, starfish, and scallops in the 

dataset. Fig 8 showcases some representative images from 

this dataset. For experimental purposes, we allocated the 

images into training, validation, and test sets in a 7:1:2 ratio, 

resulting in 4669 pictures for training, 667 for validation, 

and 1335 for testing, all randomly distributed. 

C. Model Evaluation Metrics 

Target identification key metrics: Precision, Recall, IoU, 

AP, mAP, the weighted harmonic average F1, and the 

number of parameters (Params). 

We can assess the effectiveness of underwater marine 

organism detection by considering the computational 

complexity of the model, quantified by FLOP count. 

Additionally, we can use TP, FP, and FN to represent the 

number of correctly detected, falsely detected, and missed 

marine organisms, respectively. Another evaluation metric 

is the AP, which denotes precision-recall curve's area under 

a curve, and mAP represents the average AP across all 

categories. These metrics provide a comprehensive 

assessment of the model's performance in detecting marine 

organisms in underwater environments: 

 P=
TP

TP+FP
 (8) 

 R=
TP

TP+FN
 (9) 

 AP= ∫ P(R)dR
  1 

0

 (10) 

 F1=
2PR

P+R
 (11) 

 mAP=
1

n
∑AP(j)

n

j=1

 (12) 

Among them, TP is true positive, TN is true negative, FP 

is false positive, and FN is false negative. N is the number of 

classes. 

D. Results and Analysis of the P-R Curve on the 

URPC Dataset 

P-R curves were compared to assess the detection 

capabilities of the introduced YOLOv7-RNCA model and 

the YOLOv7 model on the URPC dataset, as shown in Fig. 9 

and Fig. 10. Relying on P-R curve, the area under the PR 

curve for the YOLOv7-RNCA model is larger than that for 

the original YOLOv7 model. This suggests that the newly 

introduced model, YOLOv7-RNCA, has good 

generalization ability. 
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Fig. 9. P-R curve of YOLOv7-RNCA model 
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Fig. 10. P-R curve of YOLOv7 model 
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E. Comparative Experimental Results of Different 

Models 

To demonstrate the superiority of the YOLOv7-RNCA 

model, we trained and tested it on the URPC dataset, using 

mAP as an evaluation metric, and compared it with currently 

popular object detection models such as YOLOv5s, 

YOLOv6n, YOLOv7, YOLOv8m, and YOLOv8l. The 

findings of the analogous comparison are outlined in Table Ⅰ. 

As evident from the table, the YOLOv7-RNCA model 

surpasses the performance of alternative detection methods, 

achieving a 1.5% higher mAP than YOLOv7, and 3.9%, 

3.7%, 4.1%, and 4.4% higher mAP than YOLOv8m, 

YOLOv8l, YOLOv6n, and YOLOv5s, respectively. These 

experimental results Exhibit the practical applications and 

advantages of this method of Recognition of underwater 

objects. 

 
TABLE Ⅰ 

THE PERFORMANCE OF DIFFERENT MODELS ON THE URPC DATASET 

Method Precision Recall mAP@0.5 mAP@0.9 

YOLOv5s 85.7% 75.5% 82.2% 64.8% 

YOLOv6n 85.1% 76.1% 82.5% 63.7% 

YOLOv7 84.5% 76.7% 85.1% 64.8% 

YOLOv8m 84.2% 77.1% 82.7% 67.0% 

YOLOv8l 88.2% 74.2% 82.9% 67.1% 

YOLOv7-RNCA 85.7% 79.7% 86.6% 66.9% 

 

F. Ablation Experiments of the URPC Dataset 

To enhance the accuracy of YOLOv7-RNCA, various 

improvements were implemented and evaluated through 

ablation experiments. Specifically, the study initially 

substituted the ELAN module in network of the initial 

YOLOv7 model with an enhanced ELAN-PC module. This 

allowed us to assess the AP values across various category 

and the mAP values for a particular category within the 

dataset. Subsequently, building upon the original YOLOv7 

model, ResNet_CA_PConv was integrated into the trunk 

network's terminus. This addition was evaluated by 

analyzing its mAP value. Furthermore, the ELAN-PC 

module of the neck network was integrated, and the 

combined effect of these two modifications was assessed by 

examining the AP and mAP values. Lastly, the original 

SPPCSPC structure was replaced with a newly designed 

SPPCSPC-GAM structure, and the AP and mAP values 

were observed after the integration of all three modifications. 

These findings are summarized in Table Ⅱ. 

G. Inference Result 

Fig. 11 and Fig. 12 show the result inference diagrams of 

the YOLOv7 model and the YOLOv7-RNCA model. From 

these result diagrams, we can see that the detection 

correctness of sea urchins has markedly improved in most 

cases. Specifically, from Fig. 12, we can observe regarding 

the accuracy of sea stars is greatly enhanced in cases of 

occlusion, indicating that the YOLOv7-RNCA module 

presented efficiently achieved in this paper enhance the 

correctness of occlusion detection. Furthermore, from Fig. 

11, we can also note that scallops were missed in the original 

YOLOv7 model, but they can be detected in this model with 

high accuracy, as further confirmed by Table Ⅱ. Therefore, 

we indeed conclude that the improved network structure 

exhibits higher accuracy. 
 

TABLE Ⅱ 
THE RESULTS OF THE ABLATION EXPERIMENTS FOR THE YOLOV7 MODEL ON THE URPC DATASET 

Model ELAN-PC ResNet_CA_PConv SPPCSPC-GAM AP(echinus) AP(holothurian) AP(starfish) AP(scallop) mAP 

YOLOv7 

× × × 94.0% 86.4% 94.1% 66.0% 85.1% 

√ × × 94.4% 86.9% 94.4% 67.4% 85.8% 

× √ × 94.0% 87.3% 94.3% 68.5% 86.0% 

√ √ × 93.9% 87.3% 94.1% 70.3% 86.4% 

√ √ √ 94.0% 88.2% 94.1% 70.3% 86.6% 

 

 
Fig. 11. The inference result on YOLOv7 
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Fig. 12. The inference result on YOLOv7-RNCA 

 

V. CONCLUSION 

In the research herein, an advanced algorithm for 

underwater marine biological target detection, 

YOLOv7-RNCA, is proposed. This algorithm enhances the 

original YOLOv7 by integrating the PConv structure into 

ELAN, significantly improving both computational 

efficiency and memory access speed. Furthermore, the 

original SPPCSPC module has been enhanced to enhance its 

ability to extract features. Furthermore, the incorporation of 

the ResNet_CA_PConv module into the main network 

further enhances the overall accuracy of the detection model. 

Consequently, these improvements result in excellent 

detection accuracy for detecting underwater marine targets. 

However, submerged target detection still faces several 

challenges, such as scattered targets and unclear images that 

need to be addressed. We must overcome these 

dataset-related challenges and continue to make progress 

through continued efforts and improvements. 
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