Experimental of Water Mist to Put ou
Electric Compartment of Utility
^{Zhenpeng Bai, Xiaohan Zhao, Jin Zhang
Abstract—This paper used full-scale experimental tests to
Mbstract—This paper used full-scale experimental tes} **Experimental of Water Mist to Put**
 Electric Compartment of Utili
 Zhenpeng Bai, Xiaohan Zhao, Jin Zhang
 Abstract—This paper used full-scale experimental tests to

system. It has the charactury time water mist syst Experimental of Water Mist to Put out Fire in the
Electric Compartment of Utility Tunnel
Zhenpeng Bai, Xiaohan Zhao, Jin Zhang
Affect This paper used full-scale aparimental tests to be a simple and paper in the subscribe o Electric Compartment of Utility Tunnel

Electric Compartment of Utility Tunnel

Electric Compartment of Utility Tunnel

Zhenpeng Bai, Xiaohan Zhao, Jin Zhang

is paper used full-scale experimental tests to high efficiency Engineering Letters

of Water Mist to Put out Fire in the

Dimpartment of Utility Tunnel

Zhenpeng Bai, Xiaohan Zhao, Jin Zhang

system. It has the characteristics of environmental protective

experimental tests to high ef

compartment of utility tunnel after cable fires. It used a 250 kW
 compartment of Utility Tunity Tunity
 compartment of utility tunnel after cable experimental tests to high efficiency and non-pollution. It is

study **propane burner to ignite the cable. A high-pressure water mist

rates on fire extinguishing in the electrical capacity of the value of the cable. A high-pressure water mist

system. It has the character

study fine water EIECTIC COMPATTMENT OT UTIITY**

Zhenpeng Bai, Xiaohan Zhao, Jin Zhang

system. It has the character

study fine water mist system to extinguish fires in the electrical

compartment of utility tunnel after cable fires. It **Example of the CONTR CONTR CONTR CONTREGATED**
 **Example for the CONTR CONTR CONTR SET (The CONTR SET of the control of the content

system. It has the charact

system at a star water mist system to extinguish fires in the** Zhenpeng Bai, Xiaohan Zhao, Jin Zhang
 Abstract—This paper used full-scale experimental tests to
 b system. It has the character

system of the varies in the effective of the effection

compartment of utility tunnel af Zhenpeng Bai, Xiaohan Zhao, Jin Zhang
 system. It has the characterist
 tudy fine water mist system to extinguish fires in the electrical

or extinguishing system and non-pollu

compartment of utility tunnel after cabl Example Bai, Xiaohan Zhao, Jin Zhang
 Abstract—This paper used full-scale experimental tests to

study fine water mist system to extinguish fires in the electrical

compartment of utility tunnel after cable fires. It us *system.* **It has the character about the system of the speed of utility tunnel speed on the free extinguishing efficiency and non-pol study fine water mist system was implemented for cable fires. It used a 250 kW extingui** *Abstract***—This paper used full-scale experimental tests to** system. It has the charact study fine water mist system to extinguish fires in the electrical compartment of utility tunnel after cable fires. It used a 250 kW *Abstract***—This paper used full-scale experimental tests to** high efficiency and non-
study fine water mist system to extinguish fires in the electrical
compartment of utility tunnel after cable fires. It used a 250 kW
sy **Abstract—This paper used full-scale experimental tests to** by sisting the study fine water mist system to extinguish fires in the electrical the urban fire contrompartment of utility tunnel after cable fires. It used a 2 **ventilation** was implementate that the urbeat the specific than the diversion of control constrained for calle fire control constrained between the control constrained between the extinguishing system has propane burner t **Examplement to the studied of the studied in the studied of the studied of the studied of the electrical compartment of utility tunnel after cable fire extinguishing tests. The system was implemented for cable fire exting Examplement of that the could at the could at the set of the different water mist of the extinguishing system was implemented for cable fire extinguishing tests. The system was implemented for cable fire extinguishing tes internal temperature of the electrical compartment in utility**
 internal temperature of the water spray varied between 7 L/min
 internal radiation and puriand 10 L/min. The effect of different water mist volume flow **Existival was implementary of the eximplemism curve are eximplement of the water spray varied between 7 L/min** thermal radiation and 10 L/min. The effect of different water mist volume flow equipment, and rates on fire e **Water the system set of the value of the electrical compartment** of the influence of the effect of different water mist volume flow equipment, and good rates on fire extinguishing in the electrical compartment of extingu **preserved in the control of the control of the system in the electrical compartment of** extinguishing. Computility tunnel was investigated. In four cases, the ventilation systems, water mist speed of utility tunnels varie **Practical compartment of the electrical compartment of utility tunnels** significance in the electrical compartment of the electrical compartment of the electrical compartment of utility tunnel were measured. The effect of **tunnel.** *I* INTRODHICTION

INTRODHICTION

INTRODHICTION

INTERODUICTION

INTERODUICTION

INTEROLLYTION

INTEROLLYTION

INTEROLLYTION

INTEROLLYTION

INTEROLLYTION

INTEROLLYTION

INTEROLLYTION

INTEROLLYTION

INTEROLLYTION

INTERC **Example 12** were measured. The effect of differentiation speeds on the fire extinguishing electrical compartment of utility tunnel versults showed that high-pressure water miss internal temperature of the electrical comp IT and the fire extinguishing efficiency in the halon extinct of utility tunnel were studied. The control of the electrical compartment in utility

In recent y

The of the electrical compartment in utility

I. The water m

previewing re-ignonic Fine water mist system has an important

tunnel,
 Index Terms—Water mist; Put out fire; Utility tunnel;
 Index Terms—Water mist; Put out fire; Utility tunnel;
 Electric compartment
 I. INTRODU Index Terms—Water mist; Put out fire; Utility tunnel; al. [11] conducted

Electric compartment

I. INTRODUCTION

ILECTED machinery casings.

ILECTED machinery casings.

ILECTED machinery casings.

ILECTED machinery casings **A** Then the utility tunnel fire occurs, it is very dangerous spaces. It was recomment control of methane constant rotation of [14] studied the atte threquent excavation of [14] studied the atte threquent conth, the urban W hen the utility tunnel fire occurs, it is very dangerous
spaces. It was recommen
urban roads, shorten the driving time, and keep the traffic
urban roads, shorten the driving time, and keep the traffic
simulation of [14] **VV** [1][2]. In order to reduce the frequent excavation of [14] studied the a
urban roads, shorten the driving time, and keep the traffic large-scale fires by m
smooth, the urban utility tunnel shows an increasing trend i urban roads, shorten the driving time, and keep the traffic

smooth, the urban utility tunnel shows an increasing trend in curtain. A new type

all over the world. However, the fire causes great economic produce a uniform

baiyi1056@126.com).

(2021BSJJ048). Henan Province Central Leading Local Science and experimental tests by

Technology Development Fund Project (220231811020), Zhengzhou indicator. They found the

Support Program Project (23XNKJTD0305), Henan Technology Development Fund Project (Z20231811020), Zhengzhou indicator. They found

University of Light Industry Science and Technology Innovation Team

Special Project (231111322200).

2henpeng Bai is a lecturer in the D University of Light Industry Science and Technology Innovation Team

Special Project (231111322200).

Special Project (23111322200).

Zhenpeng Bai is a lecturer in the Department of Zhengzhou Key

Zhenpeng Bai is a lecture Support Program Project (23XNKJTD0305), Henan Province Key
Special Project (231111322200).

Zhenpeng Bai is a lecturer in the Department of Zhengzhou

Laboratory of Electric Power Fire Safety, College of Building Enviro

E

Sist to Put out Fire in the
mt of Utility Tunnel
an Zhao, Jin Zhang
system. It has the characteristics of environmental protection,
high efficiency and non-pollution. It is gradually promoted in
the urban fire control cons Ist to Put out Fire in the
int of Utility Tunnel
in Zhao, Jin Zhang
system. It has the characteristics of environmental protection,
high efficiency and non-pollution. It is gradually promoted in
the urban fire control cons **ist to Put out Fire in the**
 nt of Utility Tunnel
 nn Zhao, Jin Zhang

system. It has the characteristics of environmental protection,

high efficiency and non-pollution. It is gradually promoted in

the urban fire c Triangleright is the Put out Fire in the
introf Utility Tunnel
an Zhao, Jin Zhang
system. It has the characteristics of environmental protection,
high efficiency and non-pollution. It is gradually promoted in
the urban fir extinguishing efficiency, wide fire extinguishing range, nt of Utility Tunnel
an Zhao, Jin Zhang
system. It has the characteristics of environmental protection,
high efficiency and non-pollution. It is gradually promoted in
the urban fire control construction [5-7]. The water mi **EXECT SET ASSEM CONTROVER CONTROLL COLOGET SET AND SEVERE THE SURVEY CONTROLL SURVEY THE UPS SYSTEM IN A SURVEY THE WATER THE EXTINGUISHING THE EXTINGUISHING SYSTEM THE EXTINGUISHING FOR THE EXTINGUISHING FOR THE EXTINGUI** an Zhao, Jin Zhang
system. It has the characteristics of environmental protection,
high efficiency and non-pollution. It is gradually promoted in
the urban fire control construction [5-7]. The water mist fire
extinguishing an Zhao, Jin Zhang
system. It has the characteristics of environmental protection,
high efficiency and non-pollution. It is gradually promoted in
the urban fire control construction [5-7]. The water mist fire
extinguishing an Zhao, Jin Zhang
system. It has the characteristics of environmental protection,
high efficiency and non-pollution. It is gradually promoted in
the urban fire control construction [5-7]. The water mist fire
extinguishing system. It has the characteristics of environmental protection, high efficiency and non-pollution. It is gradually promoted in the urban fire control construction [5-7]. The water mist fire extinguishing system has the cha system. It has the characteristics of environmental protection, high efficiency and non-pollution. It is gradually promoted in the urban fire control construction [5-7]. The water mist fire extinguishing system has the cha system. It has the characteristics of environmental protection,
high efficiency and non-pollution. It is gradually promoted in
the urban fire control construction [5-7]. The water mist fire
extinguishing system has the cha high efficiency and non-pollution. It is gradually promoted in
the urban fire control construction [5-7]. The water mist fire
extinguishing system has the characteristics of high fire
extinguishing efficiency, wide fire ex Exercise urban fire control construction [5-7]. The water mist fire
tinguishing system has the characteristics of high fire
tinguishing efficiency, wide fire extinguishing range,
ermal radiation and purification of the scr extinguishing system has the characteristics of high fire
extinguishing efficiency, wide fire extinguishing range,
thermal radiation and purification of the screen, no damage to
equipment, and good electrical insulation fo extinguishing efficiency, wide fire extinguishing range,
thermal radiation and purification of the screen, no damage to
equipment, and good electrical insulation for fire
extinguishing. Compared with other fire extinguishi thermal radiation and purification of the screen, no damage to
equipment, and good electrical insulation for fire
extinguishing. Compared with other fire extinguishing
systems, water mist fire extinguishing systems have th

showed that high-pressure water mist could reduce the

the influence of the designed the electrical compartment in utility

the influence of the designed

integration and good effects in reducing temperature and

integral Lemperature of the electrical compartment in utility

in the influence of the design param

in this system had good effects in reducing temperature and

in any and large space water mist on the

ting re-ignition. Fine wat tunnel to below 100 °C within 300 seconds. The high-pressure

metar mist system had good effects in reducing temperature and

preventing re-ignition. Fine water mist system has an important

tunnel. Luo et. al. [9]

pract water mist system had good effects in reducing temperature and

practical significance in the electrical compartment of utility

practical significance in the electrical compartment of utility

tunnel.

In the urban under Finder and significant external compariment of all investigated low ambient processing than the electric compartment

Electric compartment

I. INTRODUCTION and the value of the value of the state in the state in the sum o *Index Terms*—Water mist; Put out fire; Utility tunnel;

al. [11] conducted an indoor

Electric compartment

I. INTRODUCTION

I. INTRODUCTION

I. INTRODUCTION

I. INTRODUCTION

I. INTRODUCTION

CITE TO mean interest of met equipment, and good electrical insulation for fire
extinguishing. Compared with other fire extinguishing
systems, water mist fire extinguishing systems have the
advantages of less water consumption, long-distance
transport extinguishing. Compared with other fire extinguishing
systems, water mist fire extinguishing systems have the
advantages of less water consumption, long-distance
transportation, small water supply pipe diameter required by systems, water mist fire extinguishing systems have the advantages of less water consumption, long-distance transportation, small water supply pipe diameter required by the system, and small space occupation. As an alterna advantages of less water consumption, long-distance
transportation, small water supply pipe diameter required by
the system, and small space occupation. As an alternative to
halon extinguishing agents, fine water mist is
e transportation, small water supply pipe diameter required by
the system, and small space occupation. As an alternative to
halon extinguishing agents, fine water mist is
environmentally friendly [8].
In recent years, previo the system, and small space occupation. As an alternative to
halon extinguishing agents, fine water mist is
environmentally friendly [8].
In recent years, previous studies have extensively studied
the influence of the desi halon extinguishing agents, fine water mist is
environmentally friendly [8].
In recent years, previous studies have extensively studied
the influence of the design parameters of tunnel, utility tunnel
and large space water environmentally friendly [8].
In recent years, previous studies have extensively studied
the influence of the design parameters of tunnel, utility tunnel
and large space water mist on the fire extinguishing effect of
tunne In recent years, previous studies have extensively studied
the influence of the design parameters of tunnel, utility tunnel
and large space water mist on the fire extinguishing effect of
tunnel. Luo et. al. [9] explored th the influence of the design parameters of tunnel, utility tunnel
and large space water mist on the fire extinguishing effect of
tunnel. Luo et. al. [9] explored the water mist fire
extinguishing system in the tunnel model. and large space water mist on the fire extinguishing effect of tunnel. Luo et. al. [9] explored the water mist fire extinguishing system in the tunnel model. Wang et al. [10] investigated low ambient pressure effect on the tunnel. Luo et. al. [9] explored the water mist fire
extinguishing system in the tunnel model. Wang et al. [10]
investigated low ambient pressure effect on the spray
characteristics of sprayer at low pressure (<0.1MPa). Zh extinguishing system in the tunnel model. Wang et al. [10]
investigated low ambient pressure effect on the spray
characteristics of sprayer at low pressure (<0.1MPa). Zhu et
al. [11] conducted an indoor experiment of water investigated low ambient pressure effect on the spray
characteristics of sprayer at low pressure (<0.1MPa). Zhu et
al. [11] conducted an indoor experiment of water mist
suppressing transformer sump fire. Yu et al. [12] con characteristics of sprayer at low pressure (<0.1MPa). Zhu et al. [11] conducted an indoor experiment of water mist suppressing transformer sump fire. Yu et al. [12] conducted a study on fine water mist fire extinguishing f al. [11] conducted an indoor experiment of water mist
suppressing transformer sump fire. Yu et al. [12] conducted a
study on fine water mist fire extinguishing for industrial
machinery casings. Pan [13] studied the prevent suppressing transformer sump fire. Yu et al. [12] conducted a
study on fine water mist fire extinguishing for industrial
machinery casings. Pan [13] studied the prevention and
control of methane combustion in enclosed unde study on fine water mist fire extinguishing for industrial
machinery casings. Pan [13] studied the prevention and
control of methane combustion in enclosed underground
spaces. It was recommended to use fine water mist. Zhu machinery casings. Pan [13] studied the prevention and
control of methane combustion in enclosed underground
spaces. It was recommended to use fine water mist. Zhu et al.
[14] studied the attenuation of thermal radiation i control of methane combustion in enclosed underground
spaces. It was recommended to use fine water mist. Zhu et al.
[14] studied the attenuation of thermal radiation in
large-scale fires by medium and low pressure fine wat spaces. It was recommended to use fine water mist. Zhu et al. [14] studied the attenuation of thermal radiation in large-scale fires by medium and low pressure fine water mist curtain. A new type of multi nozzle has been d [14] studied the attenuation of thermal radiation in large-scale fires by medium and low pressure fine water mist curtain. A new type of multi nozzle has been designed to produce a uniform and low water consumption water large-scale fires by medium and low pressure fine water mist
curtain. A new type of multi nozzle has been designed to
produce a uniform and low water consumption water mist
curtains. The author had conducted extensive rese curtain. A new type of multi nozzle has been designed to produce a uniform and low water consumption water mist curtains. The author had conducted extensive research on fire and ventilation [15-19]. Prasad et al. [20] anal produce a uniform and low water consumption water mist
curtains. The author had conducted extensive research on fire
and ventilation [15-19]. Prasad et al. [20] analyzed the
influence of particle size, spray position and o rtains. The author had conducted extensive research on fire
d ventilation [15-19]. Prasad et al. [20] analyzed the
fluence of particle size, spray position and other parameters
vater mist fire suppression. Research has fou and ventilation [15-19]. Prasad et al. [20] analyzed the influence of particle size, spray position and other parameters on water mist fire suppression. Research has found that in large enclosed spaces, fine water mist spr influence of particle size, spray position and other parameters
on water mist fire suppression. Research has found that in
large enclosed spaces, fine water mist sprayed from the top
has the shortest extinguishing time. Zh on water mist fire suppression. Research has found that in large enclosed spaces, fine water mist sprayed from the top has the shortest extinguishing time. Zhang et al. [21] proposed fine water mist fire to suppress combus large enclosed spaces, fine water mist sprayed from the top
has the shortest extinguishing time. Zhang et al. [21]
proposed fine water mist fire to suppress combustion
experimental tests by using rubber ignition as a flash EXECTION

EXECTION

EXECTION

Then the utility tunnel fire occurs, it is very dangerous

spaces. It was recommended to use fine water mist. Zhu et al.

[14] studied the attenuation of thermal radiation in

urban roads, sho

has the shortest extinguishing time. Zhang et al. [21] proposed fine water mist fire to suppress combustion experimental tests by using rubber ignition as a flashover indicator. They found that as the pressure and flow rat proposed fine water mist fire to suppress combustion experimental tests by using rubber ignition as a flashover indicator. They found that as the pressure and flow rate of the fine water mist increased, the flashover and f experimental tests by using rubber ignition as a flashover indicator. They found that as the pressure and flow rate of the fine water mist increased, the flashover and fire extinguishing effects improved. However, there is

mooth, the urban utility tunnel shows an increasing trend in early and curtain. A new type of
all over the world. However, the fire causes great economic damage and casualties to the utility tunnel [3][4]. The fine curtain Smooth, the urban utility tunnel shows an increasing trend in

all over the world. However, the fire causes great economic

produce a uniform

damage and casualties to the utility tunnel [3][4]. The fine

curtains. The aut all over the world. However, the fire causes great economic

damage and casualties to the utility tunnel [3][4]. The fine

water mist fire extinguishing system has two advantages of

and ventilation [15-19].

gas fire exti damage and casualties to the utility tunnel [3][4]. The fine curtains. The author had
water mist fire extinguishing system has two advantages of and ventilation [15-19
gas fire extinguishing system and water fire extinguis and the extinguishing system has two water mist fire extinguishing system has twater mist fire extinguishing system and water f
Specifical Project (242 Scientific Research) in Henan Province (242 Scientific Research) in He Iter mist inve extinguishing system nas two advantages of and ventilation [15-19]

Solive extinguishing system and water fire extinguishing on water mist fire supported by Key R&D and Pronotion Special Project (Science and gas fire extinguishing system and water fire extinguishing influence of parti

on water mist fii

supported by Key R&D and Promotion Special Project (Science and

supported by Key R&D and Promotion Special Project (Science Manuscript received July 1, 2023; revised May 23, 2024. This work was

supported by Key R&D and Promotion Special Project (Science and

Insert in Henan Province (242102240096), Doctor

Scientific Research Fund of Zhengzhou Manuscript received July 1, 2023; revised May 23, 2024. This work was

large enclosed Sy

Encombed by Key R&D and Pronotion Special Project (Science and

chaology Research Fund of Zhengzhou University of Light Industry

21 supported by Key R&D and Promotion Special Project (Science and

Technology Research) in Henan Province (242102240096), Doctor

Scientific Research Fund of Zhengzhou University of Light Industry

(2021BSJJ048). Henan Provi Technology Research) in Henan Province

Scientific Research Fund of Zhengzhou Univ

(2021BSJJ048). Henan Province Central Lea

Technology Development Fund Project (Z2

University of Light Industry Science and Technology

S entitic Research Fund of Zhengzhou University of Light Industry

21 DESJ048). Henna Province Central Leading Local Science and

chronology Development Fund Project (Z20231811020), Zhengzhou

inductor. They found the

ivers

Engineering Letters
factor. The temperature distribution of the electrical
compartment was investigated when the fine water mist flow
rates were 7 L/min, 8 L/min, 9 L/min, and 10 L/min. This
paper investigated the effect o Engineering Letters

factor. The temperature distribution of the electrical

compartment was investigated when the fine water mist flow

rates were 7 L/min, 8 L/min, 9 L/min, and 10 L/min. This

paper investigated the effe Engineering Letters

factor. The temperature distribution of the electrical

compartment was investigated when the fine water mist flow

rates were 7 L/min, 8 L/min, 9 L/min, and 10 L/min. This

paper investigated the effe Engineering Letters

factor. The temperature distribution of the electrical

compartment was investigated when the fine water mist flow

rates were 7 L/min, 8 L/min, 9 L/min, and 10 L/min. This

paper investigated the effe Externe Externe Externe Extinguishing in the electrical
compartment was investigated when the fine water mist flow
rates were 7 L/min, 8 L/min, 9 L/min, and 10 L/min. This
paper investigated the effect of longitudinal vent Example 110kV

Example 110kV

compartment was investigated when the fine water mist flow

rates were 7 L/min, 8 L/min, 9 L/min, and 10 L/min. This

paper investigated the effect of longitudinal ventilation speed

on fine w Engineering Letters

factor. The temperature distribution of the electrical

compartment was investigated when the fine water mist flow

paper investigated the effect of longitudinal ventilation speed

on fine water mist f compartment. g and distribution of the electrical
tigated when the fine water mist flow
L/min, 9 L/min, and 10 L/min. This
ffect of longitudinal ventilation speed
ire extinguishing in the electrical
tunnel with wind speed. This articl From the temperature distribution of the electrical
 A. Physical Model and Fire Scenario
 A. Physical Model and Fire Scenario
 A. Physical Model and Fire Scenario
 A. Physical Model and Fire Scenario
 A. Physical

paper investigated the effect of longitudinal ventilation speed
on fine water mist fire extinguishing in the electrical
compartment of utility tunnel with wind speed. This article
provides guidance for the use of water mis The water mist fire extinguishing in the electrical

compartment of utility tunnel with wind speed. This article

provides guidance for the use of water mist in the electric

compartment.

The length, height, and width of cable width was 750 mm. The distance between adjacent provides guidance for the use of water mist in the electric

compartment.

Compartment.

The length, height, and width of the electrical

Compartment in utility tunnel were 25 m, 2.9 m, and 3.4 m,

respectively. In this t Examplement and the ground. The top cable was 500 mm away from the top.

Fig. 10. METHOD

The length, height, and width of the electrical

compartment in utility tunnel were 25 m, 2.9 m, and 3.4 m,

respectively. In this The cable types were the same. The cable diameter was 100

The cable types were the same. The cable diameter was a function of the same of the same of the same of the cable width was 750 mm. The distance between adjacent
 The state of the model and Fire Scenario

The length, height, and width of the electrical

compartment in utility tunnel were 25 m, 2.9 m, and 3.4 m,

respectively. In this testing scenario, the right side (ignition

side 11. METHOD

The length, height, and width of the electrical

compartment in utility tunnel were 25 m, 2.9 m, and 3.4 m,

respectively. In this testing scenario, the right side (ignition

side) of the ventilation speed inl *A. Physical Model and Fire Scenario*

The length, height, and width of the electrical

compartment in uility tunnel were 25 m, 2.9 m, and 3.4 m,

respectively. In this testing scenario, the right side (ignition

side) of A. Physical Model and Fire Scenario

The length, height, and width of the electrical

compartment in utility tunnel were 25 m, 2.9 m, and 3.4 m,

respectively. In this testing scenario, the right side (ignition

side) of The length, height, and width of the electrical

compartment in utility tunnel were 25 m, 2.9 m, and 3.4 m,

respectively. In this testing scenario, the right side (ignition

side) of the ventilation speed inlet was a 7-l compartment in utility tunnel were 25 m, 2.9 m, and 3.4 m,

respectively. In this testing scenario, the right side (ignition

side) of the ventilation speed inlet was a 7-layer cable. The

cable layers was 750 mm. The bis respectively. In this testing scenario, the right side (ignition
side) of the ventilation speed inlet was a 7-layer cable. The
cable width was 750 mm. The distance between adjacent
the ground. The toy cable in the bottom side) of the ventilation speed inlet was a 7-layer cable. The

cable width was 750 mm. The distance between adjacent

cable layers was 350 mm. The bottom cable is 300 mm above

the ground. The top cable was 500 mm away fr cable width was 750 mm. The distance between adjacent
cable layers was 350 mm. The bottom cable is 300 mm above
the ground. The top cable was 500 mm away from the top.
The cable types were the same. The cable diameter was

Fig. 1. Physical model of electric compartment
 and the nozzle was arranged in the middle of the the normal intervalses. The nozzle was arranged in the middle of the unit intervalses of the nozzle were mist system activ 5.0 2.5 2.5 2.5 2.5 1.6 1 The experimental process wa

belonged to local applications in the middle of the propagation in the comparison of the propagation in the middle of the entity tunnel,

The nozzle was arranged in t **Experimental** conditions of high-pressure water mist conditions the matter site water in the mist system of the propane burner of the propane burner water and the high pressure water The nozzle was arranged in the middle ignition time. Pre-ignition

and the nozzle time states are the nost time of the propane

Fig. 1. Physical model of electric compartment

Fig. 1. Physical model of electric compartment

The nozzle was arranged in the middl outlet **a**
 Example 10 MPa. As shown in Table 1, it is parameters are the shown in the mozzle was arranged in the middle of the utility tunnel,

The mozzle was arranged in the middle of the utility tunnel,

The mozzle wa Fig. 1. Physical model of electric compartment

Fig. 1. Physical model of electric compartment

(2) The mist start time of the

which was located below the ceiling of the electrical

which was located below the ceiling of The fine water mist system active

Fig. 1. Physical model of electric compartment

(2) The mist started to spray are

cocorded the start time of the mislon which was located below the ceiling of the electrical

when the te Fig. 1. Physical model of electric compartment (2) The mist started to spray are

which was located below the ceiling of the utility tunnel, (3) The temperature was reco

which was located below the ceiling of the electric Fine nozzle was arranged in the middle of the utility tunnel,

which was located below the ceiling of the electrical

compartment. The nozzle spacing was 3 m. The installation

angle and levelness of the nozzle were 45 deg The nozzle was arranged in the middle of the utility tunnel, (3) The temperature was
which was located below the ceiling of the electrical When the temperature rema
compartment. The nozzle spacing was 3 m. The installatio which was located below the ceiling of the electrical When the temperature remained
compartment. The nozzle spacing was 3 m. The installation that the fire had been extinguisl
angle and levelness of the nozzle were 45 degr compartment. The nozzle spacing was 3 m. The installation that the fire had b angle and levelness of the nozzle were 45 degrees. It to release the pre-
belonged to local applications of fine water mist. Under the closed.
e

CHARACTERISTICS				
Pressure (MPa)	Nozzle volume flow rate (L/min)	Atomizatio n cone angle	Droplet size (μm)	Initial droplet velocity (m/s)
10	7/10	140	80	50

 $\begin{array}{ccc} 5 & 7 & 0 & 250 \\ 6 & 7 & 0.4 & 250 \\ 7 & 7 & 0.8 & 250 \\ \hline \end{array}$

The experimental process was performed as follows:

(1) The propane burner was ignited. It recorded the ignition time. Pre-ignition time lasted for 2 minute (3) The temperature remained constant, the staff confirmed the first one of the respective monitor of the propane burner was ignited. It recorded the mition time. Pre-ignition time lasted for 2 minutes. Then, it med off th

 $\frac{8}{12}$ $\frac{7}{12}$ $\frac{0.8}{250}$
The experimental process was performed as follows:
(1) The propane burner was ignited. It recorded the
ignition time. Pre-ignition time lasted for 2 minutes. Then, it
turned off the pro $\frac{8}{12}$ and $\frac{1.2}{12}$ and $\frac{250}{120}$
The experimental process was performed as follows:
(1) The propane burner was ignited. It recorded the
ignition time. Pre-ignition time lasted for 2 minutes. Then, it
turned o The experimental process was performed as follows:

(1) The propane burner was ignited. It recorded the

ignition time. Pre-ignition time lasted for 2 minutes. Then, it

turned off the propane burner. Meanwhile, it manual closed. (1) The propane burner was ignited. It recorded the intion time. Pre-ignition time lasted for 2 minutes. Then, it med off the propane burner. Meanwhile, it manually ened the high pressure water mist area control valve grou ignition time. Pre-ignition time lasted for 2 minutes.

turned off the propane burner. Meanwhile, it i

opened the high pressure water mist area control valy

The fine water mist system activated the correspond

(2) The mi The more is the propane burner. Meanwhile, it manually

ened the high pressure water mist area control valve group.

e fine water mist system activated the corresponding area.

(2) The mist started to spray and extinguish opened the high pressure water mist area control valve group.
The fine water mist system activated the corresponding area.
(2) The mist started to spray and extinguish the fire. And it
recorded the start time of the mist s The fine water mist system activated the corresponding area.

(2) The mist started to spray and extinguish the fire. And it

recorded the start time of the mist spray.

(3) The temperature was recorded on the monitor scree (2) The mist started to spray and extinguish the fire. And it
corded the start time of the mist spray.
(3) The temperature was recorded on the monitor screen.
hen the temperature remained constant, the staff confirmed
at t recorded the start time of the mist spray.

(3) The temperature was recorded on the monitor scree

When the temperature remained constant, the staff confirme

that the fire had been extinguished and shut down the pun

to r (3) The temperature was recorded on the monitor screen.

then the temperature remained constant, the staff confirmed

at the fire had been extinguished and shut down the pump

release the pressure. The regional control ma When the temperature remained constant, the staff confirmed
that the fire had been extinguished and shut down the pump
to release the pressure. The regional control manifold was
closed.
(4) The temperature curve of the fi

that the fire had been extinguished and shut down the pump
to release the pressure. The regional control manifold was
closed.
(4) The temperature curve of the fire scene over time was
recorded and saved.
(5) If the water to release the pressure. The regional control manifold was closed.

(4) The temperature curve of the fire scene over time was recorded and saved.

(5) If the water mist system did not extinguish after 15 minutes of operat

Engineering Le
III. RESULTS AND DISCUSSIONS temport
of water mist flow rate
inst flow rate
inst flow rate is one of the important factors
extinguishing efficiency. This paper tested and inacc **Engineering Lette**

III. RESULTS AND DISCUSSIONS tempera
 A. Effect of water mist flow rate

Fine water mist *flow rate*

Fine water mist flow rate is one of the important factors

Tecting fire extinguishing efficiency. **Engineering Letters**

III. RESULTS AND DISCUSSIONS

4. *Effect of water mist flow rate*

Fine water mist *flow rate*

Fine water mist *flow rate*

Fine water mist flow rate is one of the important factors

Fecting fire ex **En Example 18 EVALUATE:**
III. RESULTS AND DISCUSSIONS
A. Effect of water mist flow rate
Fine water mist flow rate is one of the important
affecting fire extinguishing efficiency. This paper tes
analyzed the temperature o

200 $y = 2.50 \text{ m}$

can be seen that the temperature distribution in Figs. 3 ~ 6, when the flow rates were 7 L/min,

Fig. 4. Temperature above the fire source position when flow rate was

E 400 $y = 2.50 \text{ m}$

As shown in 100
 $V = 2.50 \text{ m}$
 $V = 2.50 \text{ m}$
 $V = 1.80 \text{ m}$
 $V = 2.50 \text{ m}$
 $V = 2.50 \text{ m}$

As shown in Figs. 3 ~ 6, when the flow rates were 7 L/min,

8 L/min, 9 L/min, and 10 L/m Fig. 4. Temperature above the first summarize of the bottom

Time (s)

Fig. 4. Temperature above the first summer position when flow rate was
 $\frac{8 \text{ L/min}}{200 \text{ A}} = \frac{100 \text{ V}}{200 \text{ A}} = \frac{100 \text{ V}}{200 \text{ A}} = \frac{100 \text{ V}}{200$ Fig. 4. Temperature above the fire source position when flow rate was

Fig. 4. Temperature above the fire source position when flow rate was

8 L/min (s)

As shown in Figs. 3 ~ 6, when the flow rates were 7 L/min,

8 L/mi Fig. 4. Temperature above the fire source position when flow rate was

8 L/min

As shown in Figs. 3 ~ 6, when the flow rates were 7 L/min,

8 L/min, 9 L/min, and 10 L/min, the temperature of the

thermocouples above the Fig. 4. Temperature above the fire source position when flow rate was

8 L/min

As shown in Figs. 3 ~ 6, when the flow rates were 7 L/min,

8 L/min, 9 L/min, and 10 L/min, the temperature of the

thermocouples above the f s L/min

8 L/min, 9 L/min, and 10 L/min, the temperature of the

thermocouples above the fire source position was affected.

Fig. 6. Temperature above the fire source position was affected.

Fig. 6. Temperature above the As shown in Figs. 3 ~ 6, when the flow rates were 7 L/min,

8 L/min, 9 L/min, and 10 L/min, the temperature of the

thermocouples above the fire source position was affected.

From the analysis of temperature fluctuations As shown in Figs. 3 ~ 6, when the flow rates were 7 L/min,

8 L/min, 8 L/min, and 10 L/min, the temperature of the

thermocouples above the fire source position was affected.

From the analysis of temperature fluctuations 8 L/min, 9 L/min, and 10 L/min, the temperature of the thermocouples above the fire source position was affected. Fig. 6. Temperature abord temperature fluctuations in Figs. 3 -6, it from the analysis of temperature fluct thermocouples above the fire source position was affected.

From the analysis of temperature fluctuations in Figs. 3-6, it

can be seen that the temperatures in the bottom, middle, and

upper spaces remained relatively st

Engineering Letters

III. RESULTS AND DISCUSSIONS

A. Effect of water mist flow rate

Fine water mist flow rate

Fine water mist flow rate

Fine water mist was within 40 s,

the previous groups. Due to term

affecting fi **Engineering Letters**

III. RESULTS AND DISCUSSIONS

A. Effect of water mist flow rate

Fine water mist flow rate

Fine water mist flow rate

Fine water mist was under

analyzed the temperature of the electric compartment **Example 18 Exercise 19 Exercise 19 Exercise 19 Exercise 19 Exercise 10 E/min, the temperature fluctuation of the fine water mist was within 40 s, which was more intense than the previous groups. Due to temperature fluctua** g Letters
temperature fluctuation was further weakened. When the
flow rate was 10 L/min, the temperature fluctuation of the
fine water mist was within 40 s, which was more intense than
the previous groups. Due to temperatu **g Letters**
temperature fluctuation was further weakened. When the
flow rate was 10 L/min, the temperature fluctuation of the
fine water mist was within 40 s, which was more intense than
the previous groups. Due to tempera **Example 19 Letters**
temperature fluctuation was further weakened. When the
flow rate was 10 L/min, the temperature fluctuation of the
fine water mist was within 40 s, which was more intense than
the previous groups. Due t **g Letters**
temperature fluctuation was further weakened. When the
flow rate was 10 L/min, the temperature fluctuation of the
fine water mist was within 40 s, which was more intense than
the previous groups. Due to temper **g Letters**
temperature fluctuation was further weakened. When the
flow rate was 10 L/min, the temperature fluctuation of the
fine water mist was within 40 s, which was more intense than
the previous groups. Due to temper **Exercise 10 Solution 10** state the flow rate was 10 L/min, the temperature fluctuation of the fine water mist was within 40 s, which was more intense than the previous groups. Due to temperature fluctuations, it was inac **Exercise 15 Exercise 10** Energy temperature fluctuation was further weakened. When the flow rate was 10 L/min, the temperature fluctuation of the fine water mist was within 40 s, which was more intense than the previous **g Letters**
temperature fluctuation was further weakened. When the
flow rate was 10 L/min, the temperature fluctuation of the
fine water mist was within 40 s, which was more intense than
the previous groups. Due to temper funder the mistrical model of the space of the space of the space of the space of the mist was within 40 s, which was more intense than the previous groups. Due to temperature fluctuations, it was inaccurate to use certai temperature fluctuation was further weakened
flow rate was 10 L/min, the temperature fluctu
fine water mist was within 40 s, which was more
the previous groups. Due to temperature fluctua
inaccurate to use certain tempera

200
 $\begin{bmatrix}\n100 \\
0 \\
0\n\end{bmatrix}\n\begin{bmatrix}\n100 \\
Y=2.50m\n\end{bmatrix}$
 $\begin{bmatrix}\n100\n\end{bmatrix}\n\begin{bmatrix}\nY=1.80m \\
Y=1.80m\n\end{bmatrix}$
 $\begin{bmatrix}\nY=1.80m \\
Y=1.80m\n\end{bmatrix}$
 $\begin{bmatrix}\nY=1.80m \\
Y=1.80m\n\end{bmatrix}$
 $\begin{bmatrix}\nY=1.80m \\
Y=1.80m\n\end{bmatrix}$
 $\begin{bmatrix}\nY=1.80m$ 100 $Y=2.50m$
 $Y=2.50m$
 $V=2.50m$
 $V=2.50m$
 $T=6$ $V=1.80m$
 V Fig. 6. Temperature above the fire source position when flow rate was

Fig. 6. Temperature above the fire source position when flow rate was

10 L/min

The flame retardant cable was ignited that it used a

propane burner.

g Letters
in the electrical compartment of the utility tunnel rapidly
decreased after 20 s. At a distance of 2.5 m from the ignition
source, the temperature dropped below 45 °C. With the
continuous spraying of fine water m g Letters
in the electrical compartment of the utility tunnel rapidly
decreased after 20 s. At a distance of 2.5 m from the ignition
source, the temperature dropped below 45 °C. With the
continuous spraying of fine water m g Letters
in the electrical compartment of the utility tunnel rapidly
decreased after 20 s. At a distance of 2.5 m from the ignition
source, the temperature dropped below 45 ℃ . With the
continuous spraying of fine water g Letters
in the electrical compartment of the utility tunnel rapidly
decreased after 20 s. At a distance of 2.5 m from the ignition
source, the temperature dropped below 45 °C. With the
continuous spraying of fine water g Letters
in the electrical compartment of the utility tunnel rapidly
decreased after 20 s. At a distance of 2.5 m from the ignition
source, the temperature dropped below 45 °C. With the
continuous spraying of fine water **Exercise 12 The Exercise of the exercise of 2.5 m from the ignition** decreased after 20 s. At a distance of 2.5 m from the ignition source, the temperature dropped below 45 ℃. With the continuous spraying of fine water **Exercise 15 Exercise 10 Continuos** in the electrical compartment of the utility tunnel rapidly decreased after 20 s. At a distance of 2.5 m from the ignition source, the temperature dropped below 45 ℃. With the cont g Letters
in the electrical compartment of the utility tunnel rapidly
decreased after 20 s. At a distance of 2.5 m from the ignition
source, the temperature dropped below 45 °C. With the
continuous spraying of fine water **g Letters**
in the electrical compartment of the utility tunnel rapidly
decreased after 20 s. At a distance of 2.5 m from the ignition
source, the temperature dropped below 45 °C. With the
continuous spraying of fine wate in the electrical compartment of the utility tunnel rapidly decreased after 20 s. At a distance of 2.5 m from the ignition source, the temperature dropped below 45 °C. With the continuous spraying of fine water mist, afte in the electrical compartment of the utility tunnel rapidly decreased after 20 s. At a distance of 2.5 m from the ignition source, the temperature dropped below 45 °C. With the continuous spraying of fine water mist, afte in the electrical compartment of the utility tunnel rapidly
decreased after 20 s. At a distance of 2.5 m from the ignition
source, the temperature dropped below 45 °C. With the
continuous spraying of fine water mist, afte decreased after 20 s. At a distance of 2.5 m from the ignition
source, the temperature dropped below 45 ℃. With the
continuous spraying of fine water mist, after 240 s, the
temperature around the fire source gradually dro

Volume 32, Issue 7, July 2024, Pages 1325-1331

Engineering Letters
temperature fluctuations at three locations were significant, As shown in Fig. 13,
which caused by the buoyancy of unstable smoke movement. electrical compartment
Meanwhile, when the water mist was op Engineering Letters
temperature fluctuations at three locations were significant, As shown in Fig. 13,
which caused by the buoyancy of unstable smoke movement. electrical compartment
Meanwhile, when the water mist was open **Engineering Letters**
temperature fluctuations at three locations were significant, As shown in Fig. 13, when t
which caused by the buoyancy of unstable smoke movement. electrical compartment of the u
Meanwhile, when the **Engineering Letters**
temperature fluctuations at three locations were significant, As shown in Fig. 13
which caused by the buoyancy of unstable smoke movement. electrical compartment
Meanwhile, when the water mist was op **Engineering Letters**
temperature fluctuations at three locations were significant, As shown in Fig. 13, w
which caused by the buoyancy of unstable smoke movement. After detertical compartment of
Meanwhile, when the water **Engineering Letters**

temperature fluctuations at three locations were significant, As shown in Fig. 13, when the which caused by the buoyancy of unstable smoke movement. electrical compartment of the undermementarie dat **Engineering Letters**

temperature fluctuations at three locations were significant, As shown in Fig. 13, which caused by the buoyancy of unstable smoke movement. electrical compartment of Meanwhile, when the water mist w **Engineering Letters**
temperature fluctuations at three locations were significant, As shown in Fig. 13, when ti
which caused by the buoyancy of unstable smoke movement. electrical compartment of the u
Meanwhile, when the **Engineering Letters**

temperature fluctuations at three locations were significant, As shown in Fig. 13, when

which caused by the buoyancy of unstable smoke movement. electrical compartment of the

Meanwhile, when the w **Engineering Letters**

temperature fluctuations at three locations were significant, As shown in Fig. 13, when

which caused by the buoyancy of unstable smoke movement.

lectrical compartment of the underawitie, when the temperature fluctuations at three locations were significant,
which caused by the buoyancy of unstable smoke movement. electrical compartment of the u
Meanwhile, when the water mist was opened for 60 s and the temperature temperature fluctuations at three locations were significant, As shown in Fig. 13, when
which caused by the buoyancy of unstable smoke movement. electrical compartment of the
Meanwhile, when the water mist was opened for temperature fluctuations at three locations were significant, As shown in Fig. 13, when the which caused by the buoyancy of unstable smoke movement. Meanwhile, when the water mist was opened for 60 s and the temperature ab which caused by the buoyancy of unstable smoke movement. electrical compartment of the Meanwhile, when the water mist was opened for 60 s and the temperature above the ignitice temperature data was stable, the entire spac Meanwhile, when the water mist was opened for 60 s and the

temperature above the ignit

temperature data was stable, the entire space temperature combustion. The electrical

reached a stable state after 30 s. After water temperature data was stable, the entire space temperature combustion. The electrical con-
reached a stable state after 30 s. After water mist was sprayed, exceeded 70 °C. The temp
the water mist acted on the flame surface reached a stable state after 30 s. After water mist was sprayed, exceeded 70 °C. The
the water mist acted on the flame surface along the
tatomization cone angle and longitudinal ventilation direction.
Even the remoccuple the water mist acted on the flame surface along the thermocouple showed that the matomization cone angle and longitudinal ventilation direction.

Fine water mist relied on the amount of mist to suppress the constant in th atomization cone angle and longitudinal ventilation direction.

Fine water mist relied on the amount of mist to suppress the

constant in the middle position

buoyancy rise of flames and smoke, as well as the heat

exchan Fine water mist relied on the amount of mist to suppress the

buoyancy rise of flames and smoke, as well as the heat

exchange between fine water droplets and flames. The

diffusion process of fine water droplets started

Letters
As shown in Fig. 13, when the ventilation velocity in the
ectrical compartment of the utility tunnel was 0.8 m/s, the
mperature above the ignition source decreased after stable
mbustion. The electrical compartment **Example 18 Except**
As shown in Fig. 13, when the ventilation velocity in the
electrical compartment of the utility tunnel was 0.8 m/s, the
temperature above the ignition source decreased after stable
combustion. The elec **Example 18 Except**
As shown in Fig. 13, when the ventilation velocity in the
electrical compartment of the utility tunnel was 0.8 m/s, the
temperature above the ignition source decreased after stable
combustion. The elec **Example 18 Exters**
As shown in Fig. 13, when the ventilation velocity in the
electrical compartment of the utility tunnel was 0.8 m/s, the
temperature above the ignition source decreased after stable
combustion. The elec **Example 18 Exceeded** 70 °C . The temperature data of the ventilation velocity in the electrical compartment of the utility tunnel was 0.8 m/s, the temperature above the ignition source decreased after stable combustion. **Example 15**
As shown in Fig. 13, when the ventilation velocity in the
electrical compartment of the utility tunnel was 0.8 m/s, the
temperature above the ignition source decreased after stable
combustion. The electrical **Example 10**
As shown in Fig. 13, when the ventilation velocity in the
electrical compartment of the utility tunnel was 0.8 m/s, the
temperature above the ignition source decreased after stable
combustion. The electrical **g Letters**
As shown in Fig. 13, when the ventilation velocity in the electrical compartment of the utility tunnel was 0.8 m/s, the temperature above the ignition source decreased after stable combustion. The electrical c **Exercise 15 Exercise 15 All Startingtherol** As shown in Fig. 13, when the ventilation velocity in the electrical compartment of the utility tunnel was 0.8 m/s, the temperature above the ignition source decreased after st As shown in Fig. 13, when the ventilation velocity in the electrical compartment of the utility tunnel was 0.8 m/s, the temperature above the ignition source decreased after stable combustion. The electrical compartment c As shown in Fig. 13, when the ventilation velocity in the electrical compartment of the utility tunnel was 0.8 m/s, the temperature above the ignition source decreased after stable combustion. The electrical compartment c As shown in Fig. 13, when the ventilation velocity in the electrical compartment of the utility tunnel was 0.8 m/s, the temperature above the ignition source decreased after stable combustion. The electrical compartment c As shown in Fig. 15, when the ventua
electrical compartment of the utility tunn
temperature above the ignition source de
combustion. The electrical compartment
exceeded 70 °C. The temperature d
thermocouple showed that th cerrical compartment of the utility tunnel was 0.8 m/s, the
mperature above the ignition source decreased after stable
mbustion. The electrical compartment ceiling temperature
ceeded 70 °C. The temperature data of the low temperature above the ignition source decreased after stable
combustion. The electrical compartment ceiling temperature
exceeded 70 °C. The temperature data of the lower
thermocouple showed that the maximum temperature di combustion. The electrical compartment celling temperature
exceeded 70 °C. The temperature data of the lower
thermocouple showed that the maximum temperature did not
exceed 40 °C. And the ambient temperature remained
cons exceeded 70 °C. The temperature data of the lower
thermocouple showed that the maximum temperature did not
exceed 40 °C. And the ambient temperature remained
constant in the middle position. After the water mist was
turne

thermocouple showed that the maximum temperature du not exceed 40 °C. And the ambient temperature remained constant in the middle position. After the water mist was turned on, the temperature of the bottom thermocouple dr exceed 40 ∪. And the ambient temperature remained constant in the middle position. After the water mist was turned on, the temperature of the bottom thermocouple droped to near the simulated ambient temperature within 10 constant in the middle position. After the water mist was
turned on, the temperature of the bottom thermocouple
droped to near the simulated ambient temperature within 10 s
and remained stable. The temperature of the uppe durned on, the temperature of the bottom thermocoupted droped to near the simulated ambient temperature within 10 s and remained stable. The temperature of the upper thermocouple droped to around 40 °C and remained stable droped to near the simulated ambient temperature within 10 s
and remained stable. The temperature of the upper
thermocouple droped to around 40 °C and remained stable for
80 s.
As shown in Fig. 14, when the ventilation ve and remained stable. The temperature of the upper
thermocouple droped to around 40 °C and remained stable for
80 s.
As shown in Fig. 14, when the ventilation velocity in the
electrical compartment increased to 1.2 m/s, th thermocouple aropea to around 40 ∪ and remained stable for
80 s.

As shown in Fig. 14, when the ventilation velocity in the

electrical compartment increased to 1.2 m/s, the temperature

above the fire source further decr

200
 $\begin{bmatrix}\n\sqrt{Y=1.80 \text{ m}}\n\end{bmatrix}\n\begin{bmatrix}\n\sqrt{Y=1.80 \text{ m}}\n\end{bmatrix}\n\begin{bmatrix}\n\sqrt{Y=1.80 \text{ m}}\n\end{bmatrix}\n\begin{bmatrix}\n\sin(95) & \sin(950) & \sin(950) & \sin(950) & \sin(950) & \sin(950) & \sin(950) \\
\sin(950) & \sin(950) & \sin(950) & \sin(950) & \sin(950) & \sin(950) & \sin(950) \\
\cos(950)$ 100
 $\frac{1}{2}$ $\frac{1}{$ 100

units of 100 150 200 250 300 350 400 450 500 550 600

Fig. 14. Temperature above fire source position when ventilation velocity was

1.2 m/s

As shown in Figs. 15 ~ 18, the temperature changes in the

upstream direct and 2.5 m from the fire source location. High-pressure water
metal and 2.5 m/s and 2.5 m from the fire source location. The temperature changes in the upstream d 0 50 100 150 200 250 300 350 400 450 500 550 600

Fig. 14. Temperature above fire source position when ventilation velocity was

1.2 m/s

As shown in Figs. $15 \sim 18$, the temperature changes in the

upstream direction in Time (s)

Fig. 14. Temperature above fire source position when ventilation velocity was

1.2 m/s

As shown in Figs. 15 ~ 18, the temperature changes in the

upstream direction in the electrical compartment were

represent Fig. 14. Temperature above fire source position when ventilation velocity was
1.2 m/s
1.2 m/s
45 s, the temperature changes in the
upstream direction in the electrical compartment were
represented at distances of -10.0 m, 1.2 m/s

As shown in Figs. $15 \sim 18$, the temperature changes in the

upstream direction in the electrical compartment were

represented at distances of -10.0 m, -5.0 m, and -2.5 m from

the fire source location. The temp As shown in Figs. $15 \sim 18$, the temperature changes in the upstream direction in the electrical compartment were represented at distances of -10.0 m, -5.0 m, and -2.5 m from the fire source location. The temperature chan As shown in Figs. $15 \sim 18$, the temperature c
upstream direction in the electrical compa
represented at distances of -10.0 m, -5.0 m, and
the fire source location. The temperature ch
downstream direction of the electrica

 $\begin{array}{r|l}\n \text{Z0} & \text{X=2.5m}\n & \text{X=2.5m}\n & \text{X=10.0m}\n\end{array}$
 $\begin{array}{r|l}\n \text{X=10.0m}\n\end{array}$
 $\begin{$ source was 2.5 m, the temperature was greatly affected by the ²¹⁵ s = $x=10.0$ s = $x=$ 210 **in any 200 160 200** Time (s)
Fig. 18. Temperature at different locations from fire source when ventilation
velocity was 1.2 m/s
The temperature of the electrical compartment continued
to rise until the water mist was opened. The temperature
 Fig. 18. Temperature at different locations from fire source when ventilation velocity was 1.2 m/s
The temperature of the electrical compartment continued
to rise until the water mist was opened. The temperature
curve was Fig. 18. Temperature at different locations from fire source when ventilation velocity was 1.2 m/s
The temperature of the electrical compartment continued
to rise until the water mist was opened. The temperature
curve was velocity was 1.2 m/s

The temperature of the electrical compartment continued

to rise until the water mist was opened. The temperature

curve was consistent at 2.5 m and 2.0 m from the ignition

source. This is because w The temperature of the electrical compartment continued
to rise until the water mist was opened. The temperature
curve was consistent at 2.5 m and 2.0 m from the ignition
source. This is because when the distance from the The temperature of the electrical compartm
to rise until the water mist was opened. The
curve was consistent at 2.5 m and 2.0 m fror
source. This is because when the distance fror
source was 2.5 m, the temperature was gre The was consistent at 2.5 m and 2.0 m from the ignition
tive was consistent at 2.5 m and 2.0 m from the ignition
ource. This is because when the distance from the ignition
ource was 2.5 m, the temperature was greatly affec arce. This is because when the distance from the ignition
urce was 2.5 m, the temperature was greatly affected by the
intion source. At 280 s, the temperature downstream of the
intion source reached its maximum. When the t source was 2.5 m, the temperature was greatly affected by the ignition source. At 280 s, the temperature downstream of the ignition source reached its maximum. When the time was 400 s, the temperature from different posit ignition source. At 280 s, the temperature downstream of the ignition source reached its maximum. When the time was 400 s, the temperature from different positions of the fire source remained basically constant, and the t

ignition source reached its maximum. When the time was 400
s, the temperature from different positions of the fire source
remained basically constant, and the temperature was below
28 °C. Ventilation increased the tempera s, the temperature from different positions of the fire source
remained basically constant, and the temperature was below
28 °C. Ventilation increased the temperature of electrical
compartment downstream of the fire sourc remained basically constant, and the temperature was below
28 °C. Ventilation increased the temperature of electrical
compartment downstream of the fire source. It reduced the
temperature of electrical compartment upstrea 28 °C. Ventilation increased the temperature of electrical
compartment downstream of the fire source. It reduced the
temperature of electrical compartment upstream of the
ignition source.
C. Fire extinguishing time
The co compartment downstream of the fire sou
temperature of electrical compartment
ignition source.
C. Fire extinguishing time
The comparison results were in Table :
cases used in this paper. The nozzle flow
on shortening the f The comparison results were in Table 3 between the eight
sess used in this paper. The nozzle flow rate had the effect
a shortening the fire extinguishing time in the electrical
ompartment of the utility tunnel. When the w Example 1 and this paper. The nozzle flow real

ening the fire extinguishing time

ment of the utility tunnel. When

cow rate was 10 L/min, the time

indoor temperature of the utility

rate (0.5) and the time required to zle flow rate had the effect
hing time in the electrical
nel. When the water mist
the time required for the
he utility tunnel to drop to
quired to drop to 50 ℃ was
Note to 100°C drops to 50°C
(s)
(s) (s)
145 180
105 130 ad the effect
he electrical
water mist
ired for the
el to drop to
o 50 ℃ was
<u>L CASES</u>
Temperature
drops to 50°C
(s)
180
180

Engineering Letters

compartment gradually decreased to 50 ℃. The reason is that [9] P. Luo, W. Liu, W. Han, J. Jia

with the ventilation speed increased, the larger longitudinal

ventilation velocity blew away the fine **Engineering Letters**

compartment gradually decreased to 50 °C. The reason is that [9] P. Luo, W. Liu, W. F

with the ventilation speed increased, the larger longitudinal

ventilation velocity blew away the fine water mi **Engineering Letters**

compartment gradually decreased to 50 °C. The reason is that [9] P. Luo, W. Liu, W. Han, J.

with the ventilation speed increased, the larger longitudinal

ventilation velocity blew away the fine wa **Engineering Letters**

compartment gradually decreased to 50 °C. The reason is that [9] P. Luo, W. Liu, W. Han, J. Jian

with the ventilation speed increased, the larger longitudinal

ventilation velocity blew away the fin **Engineering Letters**

compartment gradually decreased to 50 °C. The reason is that [9] P. Luo, W. Liu, W. Han,

with the ventilation speed increased, the larger longitudinal

ventilation velocity blew away the fine water **Engineering Letters**

compartment gradually decreased to 50 °C. The reason is that [9] P. Luo, W. Liu, W. Han, J. Jian,

with the ventilation speed increased, the larger longitudinal

article to reduce the original fire **Engineering Letters**

compartment gradually decreased to 50 °C. The reason is that [9] P. Luo, W. Liu, W. Han, J. Jian

with the ventilation speed increased, the larger longitudinal

article with fine with the ventilatio **Engineering Letters**

compartment gradually decreased to 50 °C. The reason is that [9] P. Luo, W. Liu, W.

with the ventilation speed increased, the larger longitudinal

articled the original fire was the fine water mist **Engineering Letters**

with the ventilation speed increased to 50 °C. The reason is that

with the ventilation velocity blew away the fine value and the longitudinal

ventilation velocity blew away the fine water mist, wh compartment gradually decreased to 50 °C. The reason is that [9] P. Luo
with the ventilation speed increased, the larger longitudinal
ventilation velocity blew away the fine water mist, which station
affected the original Illy decreased to 50 °C. The reason is that
speed increased, the larger longitudinal
blew away the fine water mist, which
all fire extinguishing effect. When the
ion speed was 0.4 m/s, the time required
rature of the elec This article investigated the impact of fine water mist on $[15]$ Z . Bai, H . You, Z . Bai, W , W , W are the state internal continuous and the impact of the electrical compartment to $[10]$ X . Wang, P. Zhu, Y. Fire accidents in electrical compartment fires. The main conclusions and the stringuishing effect. When the [10] X. Wang, P. Zhu, Y. Il ongitudinal ventilation speed was 0.4 m/s, the time required to reduce the temperatur Fine water mist has a good fire extinguishing effect on

the misturator of the structure of the energy of the required

In P. Zhu, X. Wang, Z. Wang, an

100 °C was 350s, and the time required to reduce the

transformer oi Eliable the telectrical compartment for the electrical compartment to [11] P. Zhu, X. Wang, Z. Wang, and 10 °C was 350s, and the time required to reduce the transformer oil pool fire suppression temperature to 50°C was 36

follows: The time interesting of the start of th

Extinguishing system, the temperature of the check it is recommended [12] H. Yu, X. Zhou, and J. Capar Muslem in industrial

that the longitudinal ventilation velocity of the electrical

compartment should not exceed 0.4 that the iongitudinal ventilation velocity of the electrical

compartment should not exceed 0.4 m/s.

(13) R. Pan, Z. Xiao, and M. Y

ombustion suppression by

applications". *Energies*, vol. 10, pp. 596-605, 20

This art First and the exceed of the state of the value of the value of the spherical sphe This article investigated the impact of fine water mist on applications". *Energies*, vol. 10, no

IT is article investigated the impact of fine water mist on

investigated the impact of fine water mist on

pool fires by fires. This article investigated the impact of fine water mist on the extractain''. Joint extermist such that identifies to the extermist and a good fire extriguishing effect on the extermist has a good fire extinguishing effect This article investigated the impact of fine water mist on

fire accidents in electrical compartment through experiments.

Fore water mist has a good fire extinguishing effect on

electrical compartment fires. The main co fire accidents in electrical compartment through experiments.

Fine water mist has a good fire extinguishing effect on

electrical compartment fires. The main conclusions as

shat side. Engineering Lettrical

(1) Within 2 Fine water mist has a good fire extinguishing effect on

electrical compartment fires. The main conclusions as

follows:

(16) Z. Bai, Y. Yu, K. Lv, H. Qin, I

(1) Within 20 seconds after the start of the water mist fire
 electrical compartment fires. The main follows:

(1) Within 20 seconds after the start of the extinguishing system, the temperature of th space of the utility tunnel electrical compar

from a maximum of 800 °C to 200 °C. Lows:

(1) Within 20 seconds after the start of the water mist fire $\frac{1}{2}$ but, we in currely and the electrical compartment may drop $\frac{1}{2}$ but, $\frac{1}{2}$ but, $\frac{1}{2}$ but, $\frac{1}{2}$ but, $\frac{1}{2}$ but, $\frac{1}{2}$ (1) Within 20 seconds after the start of the water mist fire

extinguishing system, the temperature of the entire internal

space of the utility tunnel electrical compartment may drop

space of the utility tunel conformed

extinguishing system, the temperature of the entire internal [17] Z. Bai, Y. Li, J. Zhang, A. Fewkagnace of the utility tunnel electrical compartment may drop
from a maximum of 800 °C to 200 °C. In other words, fine $\frac{\cos$ space of the utility tunnel electrical compartment may drop
from a maximum of 800 °C to 200 °C. In other words, fine
weater mist played a positive role in controlling the spread of [18] Z. Bai. "Bunding changes in the com from a maximum of 800 °C to 200 °C. In other words, fine *Technology*, vol. 42, no. 3,
water mist played a positive role in controlling the spread of [18] Z Bai, H. Yao, and
fires.
(2) If the longitudinal ventilation velo water mist played a positive role in controlling the spread of

fires.

(2) If the longitudinal ventilation velocity is too high, it

[1] reduce the fire in the electrical compartment. Therefore,

the longitudinal ventila (3) When a fire occurs in the electrical compartment, the

flow rate of fine water mist is greater than 7 L/min. After the

water mist system was turned on, the temperature inside the

utility tunnel could drop below 100 Solution for the sustainable revitalization of historic centres: The case
solution for the spaces". Applied Therma
sures can protect the structural safety of electrical
partments in the utility tunnel.
Numerial safety of rate of tine water mist is greater than 7 L/min. After the

r mist system was turned on, the temperature inside the

y tunnel could drop below 100 °C within 300 s. These

sures can protect the structural safety of electric *Technology, wol.* 81, pp. 228-236, 2018.
 Technology tunnel could drop below 100 °C within 300 s. These
 Technology, and protect the structural safety of electrical

partments in the utility tunnel.
 REFERENCES
 J. Unility tunnel could drop below 100 °C within 300 s. These
measures can protect the structural safety of electrical
compartments in the utility tunnel.
REFERENCES
[1] J. Valdenebro, and F. Gimena. "Urban utility tunnels as

REFERENCES

- *Perspectives* Change of the Structural Safety of electrical partments in the utility tunnel.
 Persectives
 Persectival Exercises
 Perspectives, and F. Gimena. "Urban utility tunnels as a long-term

solution for the measures can protect the structural safety of electrical

compartments in the utility tunnel.

REFERENCES

[1] J. Valdenebro, and F. Gimena. "Urban utility tunnels as a long-term

solution for the sustainable revitalizatio partments in the utility tunnel.

REFERENCES

J. Valdenebro, and F. Gimena. "Urban utility tunnels as a long-term

solution for the sustainable revitalization of historic centres: The case

study of Pamplona-Spain". Tunnel **EXECTE:**
 EXECTED:
 EXECTE Applications
 Applications
 Applications, The exact in the sustainable revitalization of historic centres: The case

study of Pamplona-Spain". *Tunnelling and Underground Space

<i>Technology*, vol. 81, pp. 228-236, 20 **EXELENCES**
 EXECUTE: Solution for the sustainable revitalization of historic centres: The case

study of Pamplona-Spain". *Tunnelling and Underground Space*
 Technology, vol. 81, pp. 228-236, 2018.

[2] M. Troitino. " REFERENCES

U. Valdenebro, and F. Gimena. "Urban utility tunnels as a long-term

solution for the sustainable revitalization of historic centres: The case

study of Pamplona-Spain". *Tunnelling and Underground Space

Techn T.* Valdenebro, and F. Gimena. "Urban utility tunnels as a long-term
solution for the sustainable revitalization of historic centres: The case
study of Pamplona-Spain". *Tunnelling and Underground Space
<i>Technology*, vol.
-
- J. Valdenebro, and F. Gimena. "Urban utlity
solution for the sustainable revitalization of h
study of Pamplona-Spain". *Tunnelling an*
Technology, vol. 81, pp. 228-236, 2018.
M. Troitiño. "Renovación urbana: dinámicas
M solution for the sustainable revitalization of histonc centres: The case
study of Pamplona-Spain". Turnelling and Underground Space
Technology, vol. 81, pp. 228-236, 2018.
[2] M. Troitino. "Renovación urbana: dinámicas y study of Pamplona-Spain". Tunnelling and Underground Space
Technology, vol. 81, pp. 228-236, 2018.
M. Troitino. "Renovación urbana: dinámicas y cambios funcionales".
Perspectivas Urbanas/Urban Perspectives. vol. 2, 2003.
J *Technology, vol. 81, pp. 228-236, 2018.*
M. Troitino. "Renovación urbana: dinámicas y cambios funcionales".
M. Troitino. "Renovación urbana: dinámicas y cambios funcionales".
J. Canto-Perello, J. Curiel-Esparza, and
- threat analysis on utility tunnels for planning se
utilities in urban underground space". *Experapplications*, vol. 40, no. 11, pp. 4707-4717, 2013.
L. Legrand, O. Blanpain, and F. Buyle-Bodin. "Pre-
utilities tunnel techn
-
- [2] M. Trottino. "Renovación urbana: dinámicas y cambios funcionales".
 Bregnetivas Urbanas/Urban Perspectives. vol. 2, 2003.

[3] J. Canto-Perello, J. Curiel-Esparza, and V. Calvo. "Criticality and

threat analysis on *Perspectivas Urbanas/Urban Perspectives*. vol. 2, 2003.

1. Canto-Perello, J. Curiel-Esparza, and V. Calvo. "Criticality and

threat analysis on utility tunnels for planning security policies of

utilities in urban underg J. Canto-Perello, J. Curiel-Esparza, and V. Calvo. "Criticality and
threat malysis on utility tumels for planing security policies of
utilities in urban underground space". *Expert Systems with*
Applications, vol. 40, no. uthites in urban underground space". *Expert Systems with*

Applications, vol. 40, no. 11, pp. 4707-4717, 2013.

[4] L. Legrand, O. Blanpain, and F. Buyle-Bodin. "Promoting the urban

utilities tunnel technique using a de Applications, vol. 40, no. 11, pp. 4707-4717, 2013.

L. Legrand, O. Blampin, and F. Buyle-Bodin. "Promoting the urban

Luilities tunnel technique using a decision-making approach".

Tunnelling and Underground Space Technol L. Legrand, O. Blanpain, and F. Buyle-Bodin. "Promoting the urbantilities tunnel technique using a decision-making approach".
 Tunnelling and Underground Space Technology, vol. 19, no. 1, pp.

79-83, 2004.
 Z. Wang, X.
-
- uthites tunnel technique using a decision-making approach".

Tunnelling and Underground Space Technology, vol. 19, no. 1, pp.

79-83, 2004.

[5] Z. Wang, X. Wang, Y. Huang, C. Tao, and H. Zhang. "Experimental

study on fir Tunnelling and Underground Space Technology, vol. 19, no. 1, pp.
79-83, 2004.
T. Wang, X. Wang, Y. Huang, C. Tao, and H. Zhang. "Experimental
study on fire smoke control using water mist curtain in channel".
Journal of Ha 79-83, 2004.
 Z. Wang, X. Wang, Y. Huang, C. Tao, and H. Zhang. "Experimental
 Journal of Hazardous Materials, vol. 342, pp. 231-241, 2018.
 P. Yang, C. Shi, Z. Gong, and X. Tan. "Numerical study on water

curtain sy
- [9] P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle
height on water mist fire extinguishing system in railway tunnel rescue
station". 2017 3rd International Forum on Energy, Environment
Science and Materi **Etters**
 P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle

height on water mist fire extinguishing system in railway tunnel rescue

station". 2017 3rd International Forum on Energy, Environment

Science **Station:**
P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle height on water mist fire extinguishing system in railway tunnel rescue station". 2017 3rd International Forum on Energy, Environment Science an FILENT PERCOCAL EXECT:
 P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle height on water mist fire extinguishing system in railway tunnel rescue station". 2017 3rd International Forum on Energy, Environ [9] P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle height on water mist fire extinguishing system in railway tunnel rescue station". 2017 3rd International Forum on Energy, Environment Science and Mater **P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle height on water mist fire extinguishing system in railway tunnel rescue station".** 2017 3rd International Forum on Energy, Environment Science and Material **action 36, pp. 19.13**
P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle height on water mist fire extinguishing system in railway tunnel rescue station". 2017 3rd International Forum on Energy, Environmen [9] P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle
height on water mist fire extinguishing system in railway tunnel rescue
station". 2017 3rd International Forum on Energy, Environment
Science and Materi **Phonomic First Example 10**
 P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle height on water mist fire extinguishing system in railway tunnel rescue station". 2017 3rd International Forum on Energy, Envi P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle height on water mist fire extinguishing system in railway tunnel rescurstation". 2017 3rd International Forum on Energy, Environment Science and Materials [9] P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle height on water mist fire extinguishing system in railway tunnel rescurstation". 2017 3rd International Forum on Energy, Environment Science and Materi P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzle height on water mist fire extinguishing system in railway tunnel rescue station". 2017 3rd International Forum on Energy, Environment Science and Materials P. Luo, W. Liu, W. Han, J. Jian, and K. Yao. "Influence of nozzl
height on water mist fire extinguishing system in railway tunnel rescu
station". 2017 3rd International Forum on Energy, Environmen
Science and Materials (*I* [9] P. Luo, W. Luu, W. Han, J. Jian, and K. Yao. "Influence of nozzle
height on water mist free extinguishing system in railway tunen lescue
station". 2017 3rd International Forum on Energy, Environment
Science and Materi
-
-
- height on water mist fire extinguishing system in railway tunnel rescure
station". 2017 3rd International Forum on Energy, Environment
Science and Materials (IFEESM 2017). Atlantis Press, 2018.
X. Wang, P. Zhu, Y. Li, X. N
-
- station". *2017 3rd International Forum on Energy, Environment*
Science and Materials (IFEESM 2017). Atlantis Press, 2018.
X. Wang, P. Zhu, Y. Li, X. Ni, and M. Fan. "Effect of low ambient air
T. S. Wang, P. Zhu, Y. Li, X. Science and Materials (*IFEESM 2017)*. Atlantis Press, 2018.

[10] X. Wang, P. Zhu, Y. Li, X. Ni, and M. Fan. "Effect of low ambient air

pressure on spray characteristics of water mist". *Experimental Thermal*

and Fluid X. Wang, P. Zhu, Y. Li, X. Ni, and M. Fan. "Effect of low ambient air
pressure on spray characteristics of water mist". *Experimental Thermal
and Fluid Science*, vol. 66, pp. 7-12, 2015.
P. Zhu, X. Wang, Z. Wang, and X. N pressure on spray characteristics of water mist". *<i>Lxperimental Thermal*

and Fluid Science, vol. 66, pp. 7-12, 2015.

P. Zhu, X. Wang, Z. Wang, and X. Ni. "Experimental study on

transformer oil pool fire suppression by and Fluid Science, vol. 66, pp. 7-12, 2015.

P. Zhu, X. Wang, Z. Wang, and X. Ni. "Experint transformer oil pool fire suppression by water mist". *F*
 Technology 2015. Springer, Singapore, pp. 895-901, 2011.

H. Yu, X. [11] P. Zhu, X. Wang, Z. Wang, and X. Ni. "Experimental study on
transformer oil pool fire suppression by water mist". *Fire Science and*
Technology 2015. Springer, Singapore, pp. 895-901, 2015.
[12] H. Yu, X. Zhou, and J transformer oil pool fire suppression by water mist". *Fire Science and* Technology 2015. Springer, Singapore, pp. 895-901, 2015.
H. Yu, X. Zhou, and J. Carpenter. "Physical scaling of water mist fire extinguishment in in Technology 2015. Springer, Singapore, pp. 895-901, 2015.
H. Yu, X. Zhou, and J. Carpenter. "Physical scaling of water mist fire
extinguishment in industrial machinery enclosures". *Fire Safety*
Journal, vol. 91, pp. 596-60 [12] H. Yu, X. Zhou, and J. Carpenter. "Physical scaling of water mist tire

extinguishment in industrial machinery enclosures". Fire Safety

Journal, vol. 91, pp. 596-605, 2017.

[13] R. Pan, Z. Xiao, and M. Yu. "The cha extinguishment in industrial machinery enclosures". *Fire Safety*
 Journal, vol. 91, pp. 596-605, 2017.
 The characteristics of methane
 combustion suppression by water mist and its engineering

applications". *Energ* Journal, vol. 91, pp. 596-605, 2017.

R. Pan, Z. Xiao, and M. Yu. "The characteristics of methane

combustion suppression by water mist and its engineering

emplications". *Energies*, vol. 10, no. 10, pp. 1566-1570, 2017.

-
-
- [13] R. Pan, Z. Xiao, and M. Yu. "The characteristics of methane

conbustion suppression by water mist and its engineering

applications". *Energies*, vol. 10, po. 10, pp. 1566-1570, 2017.

[14] P. Zhu, X. Wang, Z. Wang, combustion suppression by water mist and its engineering
applications". *Energies*, vol. 10, no. 10, pp. 1566-1570, 2017.

2. Zhu, X. Wang, Z. Wang, H. Cong, and X. Ni. "Experimental and

numerical study on attenuation of applications". *Energies*, vol. 10, no. 10, pp. 1566-1570, 2017.

P. Zhu, X. Wang, Z. Wang, H. Cong, and X. Ni. "Experimental and

numerical study on attenuation of thermal radiation from large-scale

pool fires by water m *P. Zhu, X. Wang, Z. Wang, H. Cong, and X. Ni. "Experimental and numerical study on attenuation of thermal radiation from large-scale pool free by water mist curtain". Journal of Fire Sciences, vol. 33, no. 4, pp. 269-289,* numerical study on attenuation of thermal radiation from large-scale
pool fires by water mist curtain". Journal of Fire Sciences, vol. 33, no.
4, pp. 269-289, 2015.
[15] Z. Bai, H. Yao, and H. Zhang. "Experimental study o pool fires by water mist curtain". Journal of Fire Sciences, vol. 33, no.
4, pp. 269-289, 2015.
5. Bai, H. Yao, and H. Zhang. "Experimental study on fire
characteristics of cable compartment in utility tunnel with fire sou 4, pp. 269-289, 2015.

Z. Bai, H. Yao, and H. Zhang. "Experimental study on fire

characteristics of cable compartment in utility tunnel with fire source at

shaft side". *Engineering Letters*, vol. 30, no. 2, pp. 806-810, [15] Z. Bai, H. Yao, and H. Zhang. "Experimental study on fire
characteristics of cable compartment in utility tunnel with fire source at
shaft side". Engineering Letters, vol. 30, no. 2, pp. 806-810, 2022.
[16] Z. Bai, Y characteristics of cable compartment in utility tunnel with fire source at shaft side". *Engineering Letters*, vol. 30, no. 2, pp. 806-810, 2022. Bai, Y. Yu, K. Lv, H. Qin, H. Yao and C. Yang. "Experimental study on influe shaft side". *Engineering Letters*, vol. 30, no. 2, pp. 806-810, 2022.

[16] Z. Bai, Y. Yu, K. Lv, H. Qin, H. Yao and C. Yang. "Experimental

study on influence of natural ventilation on near wall fre in cable

Tunnel". Z. Bai, Y. Yu, K. Lv, H. Qin, H. Yao and C. Yang. "Experimental
study on influence of natural ventilation on near wall fire in cable
Tunnel". *Engineering Letters*, vol. 31, no. 2, pp. 689-694, 2023.
Z. Bai, Y. Li, J. Zhan study on influence of natural ventilation on near wall fire in cable

Tunnel". *Engineering Letters*, vol. 31, no. 2, pp. 689-694, 2023.
 Z. Bai, Y. Li, J. Zhang, A. Fewkes, and H. Zhong. "Research on the

design and app Tunnel". *Engineering Letters*, vol. 31, no. 2, pp. 689-694, 2023.

[17] Z. Bai, Y. Li, J. Zhang, A. Fewkes, and H. Zhong. "Research on the design and application of capillary heat exchangers for heat pumps in coastal are Z. Bai, Y. Li, J. Zhang, A. Fewkes, and H. Zhong. "Research on the design and application of capillary heat exchangers for heat pumps in coastal areas". *Building Services Engineering Research and Technology*, vol. 42, no
- design and application of capillary heat exchangers for heat pumps in
coastal areas". *Building Services Engineering Research and*
Technology, vol. 42, no. 3, pp. 333-348, 2021.
Z. Bai, H. Yao, and H. Zhang. "Experiment
-
-
-