
 

  

Abstract—Lung cancer with the highest mortality rate has 

attracted public attention. For the difficulty of treating lung 

cancer increases sharply over time, detecting lung cancer 

symptoms early on chest computed tomography (CT) is crucial 

for the subsequent treatment. The number of slices can affect 

the accuracy of lung cancer examination, so a deep multiple 

instance learning algorithm was designed and proposed to 

classify lung cancer effectively. First, feature information is 

extracted in the patient 3D CT image using the high and low 

frequency high dimensional features (HLFHD) to balance local 

detail and global overall information of images. Secondly, to 

find the decisive features, a sliding recurrent neural network 

(MSRNN) module is used to take into account the feature 

variations between slices. The experimental studies in this 

paper were constructed on two public datasets, namely, CIA 

and CC-CCII data. Finally, the experimental results show that 

the proposed algorithm can achieve an ACC of 0.97 and an 

AUC of 0.99 on the datasets. These results suggest that the 

proposed algorithm is well suited for lung cancer classification 

of any number of CT slices, and it can be effectively employed 

in computer-aided systems to achieve state-of-the-art 

performance. 

 
Index Terms—Lung Cancer; Multiple instance learning; CT 

images; Convolutional neural network; Deep learning 

 

I. INTRODUCTION 

ccording to the World Health Organization (WHO), 

lung cancer is the leading cause of cancer-related 

deaths worldwide, accounting for the highest mortality rate 

among men and women. It is also important to note that 

there are limited treatment options for advanced lung cancer, 

and screening high-risk individuals has the potential to 

improve their survival rate by early detection. Lung 

carcinoma is a cancerous neoplasm that arises from the 

mucosal lining or glands of the bronchi. People are dying of 

lung cancer-related complications every day. To prevent the 

critical phase of tumor progression, early detection is 

essential for initiating treatment. Currently, CT scans are 

widely utilized to identify the areas affected by tumors. In 

clinical settings, CT images are employed for both visual 

and semi-quantitative assessments [1]. Beyond serving as 
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mere images, CT scans encapsulate numerous features at the 

site of the lesion. These features, not readily quantifiable or 

assessable, requires extraction and analysis from the images 

to evaluate their significance [2]. Although the effectiveness 

of lung cancer treatment depends on the advancements in 

current treatment methods, early detection remains the most 

effective strategy for reducing mortality risk. Studies have 

shown that lung cancer screening using low-dose computed 

tomography (CT) can successfully detect disease at an early 

stage [3]. In the past few years, chest imaging has greatly 

benefited from the advancement in artificial intelligence and 

deep learning, becoming a specialized area of expertise. 

These technologies extracts features that are invisible to the 

human eye from various angles, including the most 

commonly observed histogram features, texture features, 

shape features, among others. The variability in the number 

of features that can be extracted often results in high 

dimensionality [4]. To retain a limited set of related features, 

machine learning algorithms are commonly employed for 

dimensionality reduction [5]. In recent years, a variety of 

architectures have been introduced to identify and detect 

specific features, aiming to address certain limitations of 

standard Convolutional Neural Networks (CNNs). These 

include Residual Networks (ResNet), Inception networks, 

and Dense Networks, all of which have demonstrated the 

ability to learn target features across diverse CT images with 

varying parameters [6]. However, current methods still 

exhibit flaws or potential issues, significantly limiting their 

clinical application. These models necessitate a high level of 

doctor involvement.  

Currently, datasets pertaining to lung cancer are available 

from various imaging modalities, including Computed 

Tomography (CT), Positron Emission Tomography (PET), 

and X-ray. PET/CT, in particular, has been recognized as a 

standard imaging technique for evaluating lung cancer 

patients. Lung cancer is mainly composed of two types: 

non-small cell carcinoma and small cell carcinoma [7]. Fig. 

1 illustrates the comparison between normal lung sections 

and various types of cancer. Medical experts believe that 

examining a large number of CT images of patients can 

mitigate the risk. However, CT scan images contain 

extensive nodule information. As the number of images 

increases, accurate evaluation becomes a challenging task 

for doctors [8]. Shen et al. [9] proposed a multi-scale 

convolutional neural network (MCNN). This network 

captures the heterogeneity of nodules by extracting features 

from stacked layers, learns features of related classes while 

activating the last layer of neurons, and then utilizes random 

forest classification to process deep features. The final 

accuracy achieved is 86%. Xie et al. [10] proposed a nodule 

classification algorithm that focuses on processing texture, 
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shape, and deep information to classify each nodule. The 

final accuracy achieved by the algorithm is 96%. Ardila et al. 

[11] proposed an end-to-end 3D CNN model to calculate the 

overall risk of lung malignant tumors using the fully public 

NLST dataset. Compared with six radiologists, the model 

reduced false positives by 11% and false negatives by 5%. 

The model's performance is comparable to that of 

radiologists. Gopinath et al. [12] proposed a neural network 

model that combines GAN and CNN. They utilized 

grayscale conversion, scaling, and denoising as 

preprocessing steps for images. The CNN model was trained 

using the watershed threshold method and enhanced GAN-

mask technology to classify lung cancer. Xiao et al. [13] 

introduced a multiple feature multiple attention network 

(MFMANet), incorporating a multiple scale spatial attention 

module (MSAM) and a multiple feature fusion attention 

module (MFGLA) to improve the detection of small lesion 

areas. Their model achieved an accuracy of 99.06% and 

91.67% on datasets of lung adenocarcinoma and lung 

squamous cell carcinoma, respectively. Through multiple 

instance learning (MIL) based on attention mechanisms, the 

system can handle packets of different sizes and effectively 

express the distribution of key features within a packet [14], 

resulting in high visibility of features [15]. In multiple 

instance learning, convolutional neural networks (CNNs) are 

also employed as feature extraction methods. However, 

CNNs with insufficient depth may fail to extract effective 

features, which is contingent upon the complexity of the 

problem. Ilse et al. [16] utilized a two-layer convolutional 

neural network to extract effective features from the 

MNIST-based MIL dataset. It's noteworthy that the 

resolution of the images in this problem (512×512) is 

significantly larger than that of the MNIST dataset images 

(28×28). Selecting a deeper and wider ResNet [7] or 

EfficientNet [17] can effectively address this challenge. 

Another issue to consider is the impact of the network's 

width on the overall neural network performance. Selecting 

an appropriate width enhances the model's convergence and 

reduces computational requirements. In other words, the 

convergence of convolutional neural networks (CNNs) can 

be improved by increasing the width of the deep neural 

network (DNN) [18]. Alakwaa et al. [19] introduced a 

classification model based on 3D CNN, employing a 3D 

convolutional neural network to preserve the spatial 

structure information within CT volumes and comprehend 

the alterations in cancerous regions within the images. 

The prevailing lung cancer classification algorithms aim 

to accomplish precise and swift categorization of cancerous 

image cases. Despite their commendable performance in 

cancer image processing applications, these methods exhibit 

several shortcomings. Many models lack sufficient feature 

extraction capabilities, leading to suboptimal quality of 

 
Fig. 1. Lung cancer type (Normal: normal, A: adenocarcinoma, B: small cell carcinoma, G: squamous cell carcinoma) 
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crucial information within the images. Moreover, in real-

world scenarios, delineating specific cancerous areas in each 

CT slice proves to be expensive and time-intensive for 

medical professionals. Therefore, a method that only 

necessitates marking whether the entire 3D CT volume 

contains cancerous regions becomes particularly crucial. 

Furthermore, such a method should be capable of handling 

3D CT volumes of varying sizes. 

Based on the current research status, we propose a lung 

cancer classification model grounded in deep multiple 

instance learning, with the objective of achieving precise 

and interpretable screening of lung cancer cases using chest 

CT scans. Adhering to the definition of multiple instance 

learning, each case's 3D CT volume is conceptualized as a 

bag, while each slice within it is considered an instance. The 

primary aim of our proposed model is to learn a single label 

for the predicted case bag and to generate deep instance 

features with permutation invariance. Through experimental 

evaluation on two public datasets, our results demonstrate 

the superior performance of the proposed model compared 

to existing lung cancer classification methods. The paper’s 

main contributions are summarized below: 

(1) In this work, we employ extensive preprocessing 

techniques to extract key features from lung images, aiming 

to minimize noise and enhance the accuracy of lung cancer 

classification. Additionally, we train the model end-to-end 

from scratch, ensuring comprehensive learning and 

optimization throughout the process. 

(2) In this paper, we introduce a novel module called the 

High-Low-Frequency High Dimensional Feature Extraction 

(HLFHD-RESNET) module, designed to simultaneously 

capture high-frequency and low-frequency features. High-

frequency features encapsulate image details and edges, 

characterized by rapidly changing pixel values. Conversely, 

low-frequency features depict overall structure and large-

scale changes, characterized by slowly changing pixel 

values. These features are combined into a 2D feature map, 

enhancing the model's generalization capability, enabling 

adaptation to various data distributions, and mitigating the 

impact of inherent noise in the dataset on the learning 

process. 

(3) In this paper, we introduce a sliding recurrent neural 

network (MSRNN) module designed to forecast the 

probability of a fixed-length sequence within the 2D feature 

information graph. Subsequently, we derive the weight 

distribution of packet-level features by combining the 

obtained probability graph with the attention mechanism. 

Finally, the classifier determines the category based on these 

derived weights. 

(4) This paper introduces a model based on multiple 

instance learning, featuring an "end-to-end" network 

architecture. Through experimental evaluation on two 

extensive public datasets, TCIA and CC-CCII, we 

demonstrate that the model exhibits superior robustness and 

generalization capabilities. 

II. RELATED WORKS 

In recent years, deep neural networks have demonstrated 

remarkable achievements in various computer vision tasks, 

showcasing immense potential in image feature learning. By 

augmenting the depth and width of the network, researchers 

aim to capture increasingly complex and abstract feature 

representations, thereby facilitating the completion of tasks 

through the utilization of retained relevant information. In 

response to diverse task requirements and objectives, 

researchers in this field continuously refine the network 

structures and develop classification algorithms with 

enhanced performance and generalization capabilities, 

aiding medical professionals in making accurate diagnoses. 

In alignment with the objectives of this paper, this section 

provides an overview of related work in lung cancer 

classification and outlines the designed methodologies 

employed in previous studies. 

A. Dataset preprocessing  

A total of 254 lung cancer patients (191A, 29B, 34G) and 

243 disease-free participants were enrolled in this study. The 

patient image data were obtained from TCIA. Prior to the 

examination, each patient fasted for at least 6 hours, and 

their blood glucose level was maintained below 11 mmol/L. 

Whole-body emission scans were conducted 12 minutes 

after intravenous injection of 60F-FDG (18.4MBq/kg, 

44.0mCi/kg). The disease-free data were sourced from the 

China Chest CT Imaging Research Consortium (CC-CCII). 
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Fig. 2. Overview of the HLFHD-RESNET framework. 
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Since the two parts of data come from different places 

and the file formats are different, this paper will unify the 

CT imaging conditions of the two parts of data. The original 

CT image is composed of anisotropic voxels with different 

in-plane resolutions. Due to different scanners or different 

acquisition protocols, CT datasets with different voxel 

spacing are generated. In order to facilitate training, all 

medical images are resampled according to the voxel 

spacing provided by the DICOM file, and then the 

resolution is uniformly adjusted to be consistent. The slice 

thickness ranged from 0.625 mm to 5 mm, and the scanning 

modes included plain weave, contrast and 3D reconstruction. 

The images were analyzed using a window width of 1050 

HU and a window level of -475 HU. Reconstruction was 

conducted with a section thickness of 2 mm within a lung 

environment. The CT slice interval ranged from 0.625 mm 

to 5 mm, with scanning modes including plain weave, 

contrast, and 3D reconstruction. The location of each tumor 

was annotated by five academic chest radiologists 

specializing in lung cancer. Two radiologists possessed over 

15 years of experience, while the remaining three had more 

than 5 years of experience. Following annotation by one 

radiologist, the other four radiologists performed 

verification. Additionally, each of the five radiologists 

reviewed every annotation file in the dataset. 

While it is recognized that CC-CCII solely offers CT 

images in JPEG or PNG format, it is acknowledged that the 

compression inherent to JPEG from DICOM may 

potentially impact clinical diagnosis performance. 

Nevertheless, through thorough comparison and debugging 

efforts, it has been verified that the data from both sources 

are ultimately displayed under uniform conditions, thereby 

ensuring that training is unaffected. Consequently, the 

obtained results retain significant application value. 

B. Preparing a slice-based instance 

Given the diverse sources of CT images, priority is 

assigned to processing data from TCIA. To align with the 

CT value parameters (1050 HU, -475 HU) utilized for 

extracting lung features, the window width and window 

level of CC-CCII data are adjusted accordingly. Fig. 1 

illustrates a well-processed data sample. Subsequently, the 

data is normalized, with each pixel value scaled to fall 

within the range of 0 to 1. Following normalization, each 

CT image undergoes resampling, with voxel spacing 

ranging from 0.585937 to 0.841796. The resolution range 

after resampling lies between 300 and 431. Next, the images 

are resized to dimensions of 256 × 256 using the OpenCV 

tool. Finally, each processed image is encapsulated into a 

bag. 

C. Extraction of deep features 

In this paper, the fine-tuned ResNet-50 and Hilo attention 

[20] serve as the primary network for deep feature extraction 

(Fig. 3), with ResNet-50 focusing on capturing hierarchical 

features and Hilo attention emphasizing important regions 

within the images. The final fully connected layer of the 

network is responsible for outputting features, with the 

output size matching the number of channels in the 

preceding layer to preserve feature information. The 

network parameters are initialized randomly. The initial 

learning rate is set to 0.0005, and it is subsequently decayed 

using the cosine function to ensure stable training. A total of 

50 training epochs are conducted. It's worth noting that 

networks with insufficient depth may struggle to abstract 

image features effectively and fail to concentrate on key 

feature distributions, even when sufficient data is available, 

although they may suffice for simpler computer vision tasks 

[21]. As the problem complexity escalates, the network 

depth tends to increase accordingly, and the quality of 

feature expression becomes increasingly reliant on the 

training dataset. The length of a packet is set to n , and upon 

inputting a packet into the network, a ( 512n ) feature map 

is generated, resulting in a total of 512 packet-level depth 

features, which are then used for further processing and 

classification tasks. 

D. Recurrent Neural Network Based Inference 

Initially, it's essential to acknowledge that CT images 

constitute 3D-level data, wherein the slices arranged 

sequentially retain significant spatial information. However, 

the approach outlined in the previous method [22] 

disregards this spatial information and solely extracts 2D-

level features from each slice. Subsequently, these features 

are combined via pooling to perform feature mapping. 

Despite considering all slices, the features are extracted 

independently, thus lacking correlation between slices 

within the feature information. 

Many deep learning models leverage 3D CT images as 

input [23], necessitating a preprocessing step to choose a 

fixed number of slices for model input. For instance, S et al. 

[24] opted for a fixed number of slices and introduced the 

Cloud-YLung model for histological classification of 

NSCLC based directly on 3D CT images from whole lung 

scans. In this process, a crucial consideration is how to 

select 3D CT images of consistent size as input across 

different packet sizes. Given variations in patient 

requirements, imaging at different slice intervals might 

result in the disappearance or attenuation of lesions if the 

CT image packet's slice interval is altered. Alternatively, 

manual slice selection can be employed, but this approach 

risks overlooking potentially affected slices and increases 

the workload for doctors. 

In summary, this paper addresses two key issues: the 

variable number of slices and the spatial relationships 

between slices. To tackle these challenges, we propose an 

MSRNN framework designed to learn the spatial 

relationships between slices through a reasoning process. 

Additionally, the framework incorporates an attention 

mechanism to handle varying numbers of CT image packets. 

E. Multiple instance learning 

Methods based on multiple instance learning (MIL) [25] 

play an important role in addressing the aforementioned 

problems. In this paper, all CT images of the patient are 

referred to as instances, which can be either lung cancer 

positive or negative, and the model is trained under weakly 

supervised conditions. Most MIL-based methods draw 

inspiration from Ilse et al. [16], who proposed an attention 

mechanism to learn the correlation confidence between 

different instances to assess patient-level classification. Shi 

et al. [26] mentioned that the prediction at the packet level 

largely depends on the validity of the learned instance 

weights. To address this, a loss-based attention mechanism 
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is proposed, where instance weights are calculated using the 

SoftMax + cross-entropy loss function, and the parameters 

are shared with the fully connected layer for predicting 

instances and packets. 

In the model proposed in this paper, HLFHD-RESNET is 

utilized for integrating high and low frequency features in 

the first stage of feature extraction. Here, the first stage is 

considered as generating a feature map. In the second stage, 

SRNN is employed to process high-dimensional features 

among instances and learn the relationships between them. 

Finally, effective relationship information is obtained 

through the attention mechanism to predict the packet. 

III. METHODS 

In the current study of multiple instance learning, the 

dataset unit is referred to as a "bag," which comprises 

multiple instances. When all instances within a bag are 

labeled negative, the bag is termed a negative bag, and 

conversely, it is called a positive bag. The ratio of positive 

to negative instances in a positive bag significantly 

influences each instance's contribution ratio. However, most 

algorithms assume that both positive and negative instances 

are independently sampled from their respective 

distributions, which often does not meet the requirements of 

practical problems. This is due to the structural and 

interrelationship characteristics between bags and instances. 

For instance, instances may be sequential or exhibit spatial 

and temporal dependencies. The randomness inherent in 

sampling poses significant challenges in capturing packet-

level features. To address these issues, it is imperative to 

enhance both the feature extraction method and the MIL 

classification method. In this section, we introduce the 

methodological flow of each module of the proposed model 

based on the aforementioned research direction. The 

subsequent sections provide detailed descriptions of each 

module and the developed model. 

A. Overall Structure of the Network 

In this paper, we introduce a novel image classification 

model. The network model integrates a residual learning 

module, a high and low frequency attention mechanism, and 

a recurrent neural network. Fig. 4 illustrates the overall 

structure of the network model, which effectively extracts 

feature information and achieves accurate classification. 

 The figure illustrates the input data to the model, which 

consists of a 3D CT volume. The bottom of the figure 

represents the dimension of the data after passing through 

each module. The model utilizes the residual learning 

module to perform down sampling operations, gradually 

reducing the size of the input to enhance the perception of 

the convolution kernel. The Hilo attention mechanism is 

utilized to enable the model to focus on high-frequency and 

low-frequency information in the image separately, and the 

newly designed HLFHD-RESNET module is integrated by 

connection. This module incorporates a multi-head attention 

mechanism and pooling technology to acquire high and low 

frequency features of the image. In the output, the maximum 

number of channels is constrained to 512 to minimize 

computational complexity. The detailed process of the 

proposed model includes the following steps: 

 Step 1: Input image preprocessing involves preprocessing 

the original CT image, including adjusting image resolution, 

voxel spacing, and resampling, to ensure that the data meets 

the requirements of model training. 

 Step 2: HLFHD-RESNET module. The preprocessed CT 

image is fed into the module, where high-level feature 

representations are obtained through a series of 

convolutional layers and pooling layers within the residual 

block. Subsequently, the feature information from different 

perspectives is captured by the multi-head attention 

mechanism. This ensemble of feature information 

constitutes the integration of global high-frequency attention 

and local low-frequency attention. 

 Step 3: MSRNN module. The feature map is rearranged 

based on the window size, followed by the application of a 

recurrent neural network to identify the target part within the 

new sequence, namely, the lesion probability distribution. 

Subsequently, the attention mechanism is utilized to map the 

probability distribution onto the instance sequence. 

 Step 4: MIL classifier. The probability sequence is fed 

into the MIL classifier to predict the packet label. This 

classifier is capable of learning various levels of semantic 

and contextual information within the image, thereby 

enabling more accurate predictions. 

B. HLFHD-RESNET for 2D level diagnostics 

In this section, the HLFHD-RESNET module is 

constructed to develop features that can be extracted at the 

application level. This module incorporates a Hilo attention 

layer [20] before global average pooling, enabling the 

extraction of high and low-frequency features from the 

feature maps obtained from each convolutional kernel. In 

Fig. 2, the high-frequency attention component aims to 

capture the dependencies of fine local features, encoding the 

local details of the object. It sets the local self-attention 

window to capture fine feature information and utilizes non-

overlapping window partitioning to reduce redundant time-

consuming operations. Conversely, the low-frequency 
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attention component is designed to capture rich low-

frequency information within the features. The low-

frequency attention component conducts average pooling for 

each window to obtain low-frequency signals in the input. 

Subsequently, it maps these low-frequency features to Key 

and Value keys, with Query as input. Finally, the feature 

map for the next input is obtained by concatenating the 

high-frequency information with the low frequency 

information and then calculating its global average pooling 

with the window set to (1×1), followed by passing through 

the fully connected layer. 

C. Multiple instance learning 

According to the standard MIL formula, each patient's CT 

image is regarded as a bag with each slice considered as an 

"instance." The label of the bag is associated with the 

corresponding instance label, implying that all instances 

within the same bag share the same label. However, due to 

the fact that only a very small number of instances may 

actually satisfy the label [27], while most other instances 

may be contrary to the label, this unbalanced allocation 

method may introduce noise to the positive bag. 

Consequently, adjustments to the model parameters are 

necessary to enable better differentiation between different 

categories or to perform more accurate discrimination tasks. 

In the multiple instance problem, let  1 2, ,..., KX x x x=  

denote a set of K  instances in a bag. Given different bags, 

the size of k  may vary. Each bag corresponds to a label 

 0,1Y  , and it is assumed that each instance in the bag 

has an individual label associated with it, denoted as 

1 2, ,..., ky y y , and  0,1ky  . However, the essence of the 

regression problem is that the instance label cannot be 

accessed during the training process. Thus, the MIL problem 

hypothesis [16] can be expressed as follows: 

 
0, 0

1,

kk
iff y

Y
otherwise

 =
= 




 (1) 

In general, a prediction model for the MIL problem 

requires two functions: one is the appropriate transformation 

function, and the other is the permutation invariant function. 

The prediction function of the model is defined as follows: 

 ( ) ( )
x X

P X g f X



 
=  

 
 
  (2) 

For given f  and g , there are two main MIL approaches: 

(1) Based on the instance-based approach, f  is used as 

an instance classifier. The transformation function f  is 

considered as an instance classifier, and scores are 

calculated for each instance. g  is considered as an identity 

function of the pooling operation type. The prediction 

probability of the bag is obtained by summarizing the scores 

of each instance. 

(2) Based on the embedding approach, f  is used as a 

feature extractor to embed the features of each instance in 

low dimensions respectively. g  is considered as an 

aggregation operator. It aggregates the low-dimensional 

embedding of the instance into a bag-level embedding and 

generates the prediction probability of the bag according to 

the embedding of the bag. 

In these two methods, [22,25,28] argue that the 

embedding-based method is superior to the instance-based 

method in all aspects. Since the label of the instance is 

unknown during the training process, and the instance 

classifier may be affected by the imbalance in the number of 

instances corresponding to each label, leading to errors in 

the final prediction. Models capable of identifying key 

instances can make better predictions for bag labels. 

Consequently, the article adopts an embedded perspective 

on the method. 

D. MIL with HLFHD-RESNET module 

In the classical MIL problem, the instance does not 

require further processing of the representation results of the 

features and is considered to be an identity. However, when 

dealing with other complex problems such as images or 

texts, it becomes necessary to enhance the feature extraction 

method; otherwise, it would be impossible to generate 

features that determine the prediction results. A feature 

extraction method that combines residual neural network [6] 

and Hilo attention [20] as a model is proposed. As shown in 

Fig. 2, let M  be the output vector of the residual block, then: 

 ( )  ( ),k k kiM x F x W x= +  (3) 

where ( )Kx x X  is the input vector of the residual block, 

and the function  ( ),K i KF x W x+  represents the base 

mapping of the residual block. It is obtained by summing 

with the initial input A to produce an output vector that fully 

encompasses the range of the previous residual block. The 

Kth instance is transformed into a low-dimensional 

embedding through multiple residual blocks. 

When the embedded features of the respective instances 

are obtained, the subsequent step involves acquiring the high 

and low-frequency feature vectors within the features 

obtained across various instances. Firstly, a multi-head self-

attention mechanism (MSA) [29] is established, which is 

capable of capturing relationships between different 

positions. Let N DM R   denote the input, where N  is the 

length of the input vector, D  is the size of the hidden 

dimension, and each self-attention headsets Q  (Query 
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matrices), K  (Key matrices), and V  (Value matrices): 

 , ,h h h
k q k k k vQ m W K m W V m W= = =  (4) 

Where , , hD Dh h h

q k vW W W R   is the number of self-

attentive heads, 
hD  denotes the number of hidden 

dimensions of the h-th head. Then, each head outputs a 

weighted sum of input vectors. 

 ( )
T

h h
h k

h

Q K
SA m Softmax V

D

 
=  

 
 

 (5) 

Then the input of each head is combined: 

 ( ) ( )k h k oMSA m concat SA m W =    (6) 

Where 
( )h hN D D

oW R
 

  is a weight matrix acquired 

through learning, which is employed to map the aggregation 

results from multiple attention heads to the final output. 

In high and low-frequency attention mechanisms, a 

hyperparameter  0,1   is defined to allocate the number 

of high and low-frequency attention heads, where d    

represents the number of high-frequency attention heads, 

and ( )1 d−   denotes the number of low-frequency 

attention heads. By adjusting  , we can decide whether to 

prioritize high or low frequencies based on the specific 

problem, thus effectively allocating computational resources. 

High-frequency attention (HF) encodes high-frequency 

features directly through local attention applied to the input. 

Conventionally, high-frequency features are associated with 

capturing local details of objects. Therefore, a local self-

attention window, typically of size 2 × 2, is designed to 

capture these high-frequency features. 

Low-frequency attention (LF) encodes low-frequency 

features through down-sampling the global attention of the 

input. In Fig 2, average pooling is applied to each window 

of the input to derive the low-frequency signals in M . 

Subsequently, the averaged-pooled feature maps are mapped 

to the keys K   and V , while the query Q  is still obtained 

from the mapping of M . This approach reduces the 

complexity of Equations (4) and (5) compared to high-

frequency attention. 

Then the output of each attention is spliced together: 

 ( ) ( ) ( ),Hilo M concat HF M LF M=     (7) 

Finally, the output of ( )Hilo M  will be processed through 

global tie pooling and the linear layer, resulting in a 2-

dimensional feature map ( k l ), where k  represents the 

size of the packet and l  represents the size of the output of 

the linear layer. 

E. Attention-based MSRNN module 

In classical multiple instance learning (MIL) problems, 

such as those encountered in handwritten digit datasets, each 

instance within each bag is typically considered independent 

and unrelated [25]. However, in the case of a complete 3D 

CT image, the data is continuous, and it is also presumed 

that the features generated by different instances under 

similar conditions exhibit continuity. 

When addressing this issue, it's possible to encounter 

scenarios where more than one cancer lesion exists within a 

bag containing cancer instances, and instances of the same 

cancer with morphological variations may appear in 

consecutive slices. To address these situations, it is proposed 

to employ a recurrent neural network for processing 

variable-length sequences. Here, the sequence features 

derived from all instances under similar conditions are 

referred to as a sequence. 

 

First, the 2D feature map ( )H k l  obtained in the 

previous section is transposed. Due to the varying sizes of 

different packets, the value of k  becomes uncertain. The 

conventional method is to establish a fixed-length template 

sequence and apply zero-padding to different sequences. 

However, considering that the zero-padding operation can 

be influenced by  ( )1,1tanhfunction  − , a sliding window 

is introduced in this process to handle sequences of length 

k . As depicted in Fig. 5, the length of the sliding window is 

set to Mul , processing sequences of Mul  lengths: 

 1n k Mul= − −  (8) 

After this processing, the length of the sequence for each 

input recurrent neural network is standardized. It is essential 

to note that the input shape is ( )l k , the shape of the MS 

function is ( )n l Mul  , and l  represents the batch size 

entering the recurrent neural network, that is: 

 ( )Tgf MS Hilo=  (9) 

Then, gf  is fed into the LSTM network, where each 

batch in gf  comprises n  sequences of length Mul . Hence, 

it is imperative to compute the gating units at each time step, 

referring to the mathematical formulation of LSTM [30]: 

 ( )1t t

p
n i i tn
i sigmoid W gf U h −= +  (10) 

 ( )1t t

p
n f f tn

f sigmoid W gf U h −= +  (11) 

 ( )1t t

p
n o o tn

o sigmoid W gf U h −= +  (12) 

 ( )1
t

p
t c c tn

c tanh W gf U h −= +  (13) 

 1t tt n t n tc i c f c −= +  (14) 

 ( )
tt n th o tanh c=  (15) 

Where W and U  are weight matrices, 
t

p
n

gf  is the vector 

input of the time step t  of the n -th sequence of the p -th 

batch, th  is the hidden state at the current time step, tc  is 

the memory cell at the current time step, and  denotes 

element-wise multiplication. Finally, splicing all inputs 

together will result in a two-dimensional matrix ( )n p . 

The significance of the final output of the MSRNN 

a b c

db c

ec d

a b c d e

1×k

n×Mul
 

Fig. 5. Demonstration of the process of changing Mul values in the 
MSRNN module 
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module lies in acquiring its relational weights across the 

instances' lengths. However, similarity might emerge among 

instances that are closely situated due to the minimal 

difference between the first and second steps being solely 

the variance between the two instances. Therefore, it is 

proposed to establish an attentional weight for the relation 

matrix and employ a weighted average for the relation of 

each segment of the instances, with the weights determined 

by the neural network. Let  1 2, ,..., nH h h h=  denote the 

relationship of the n -th segment instance, as follows: 

 

1

n

n n
n

z a h

=

=   (16) 

Where: 

 
( )

1

{ }

exp{ ( )}

T T
n

n n
T T

j
j

exp W tanh Vh
a

W tanh Vh
=

=



 (17) 

Where 1LW R   and L MV R  represent the parameters 

of the neural network. The validity of this construction will 

be experimentally verified thereafter. 

IV. EXPERIMENTS 

A. Datasets 

In this study, two of the largest publicly available lung 

CT datasets, TCIA [31] and CC-CCII, have been chosen for 

experimentation. Each package contains a varying number 

of slices, ranging from 30 to 110, and will be utilized to 

assess the proposed model. This section elaborates on these 

two datasets in Table 1. The TCIA dataset comprises three 

categories: A (adenocarcinoma), B (small cell carcinoma), 

and G (squamous cell carcinoma), while the CC-CCII 

dataset exclusively contains cases labeled as Normal (no 

cancer). In total, there are 36,031 slices across 600 packages, 

with 460 packages allocated for training and validation, and 

the remaining 140 packages reserved for testing. The 

training and validation ratio is set at 4:1. 

In this experiment, all slices from the two datasets are 

saved as tensor format data, with each slice having a 

resolution of 256×256. This downsizing reduces the size to 

one-fourth compared to the original slices, resulting in a 

significant reduction in dataset file size. Furthermore, it 

drastically shortens training time and alleviates the demand 

on video memory of the graphics card. After testing, it was 

found that the downsized data exhibits little difference 

compared to the original data. The experiments will 

randomly allocate data into training, validation, and test sets 

in a 6:2:2 ratio. 

In this study, two of the largest public lung CT datasets, 

TCIA and CC-CCII, are chosen for experimentation. Each 

package contains a varying number of slices, ranging from 

30 to 110, which will be employed to evaluate the proposed 

model. Detailed information about these datasets is provided 

in Table 1 of this section. The TCIA dataset encompasses 

three categories: A (adenocarcinoma), B (small cell 

carcinoma), and G (squamous cell carcinoma). Conversely, 

the CC-CCII dataset exclusively consists of Normal (no 

cancer cases). In total, there are 36,031 slices distributed 

across 600 packages. Out of these, 460 packages are 

allocated for training and validation, while 140 packages are 

designated for testing. The ratio of training to validation is 

set at 4:1. 

B. Experimental details 

All experiments are conducted on a local workstation 

equipped with an Intel(R) Core(TM) i9-12900H processor 

and an NVIDIA GeForce RTX 3070 Ti Laptop GPU. A 

large number of experiments are then performed to evaluate 

the sensitivity of the hyperparameters. Specifically, the 

initial learning rate of the model is set to 0.0005 based on 

prior experience, and the learning rate of the optimizer is 

adjusted using the cosine annealing method. The learning 

rate starts from the initial value and gradually decreases via 

cosine annealing until the maximum number of iterations 

( maxT ) is reached, with maxT  set to 20. The model is trained 

using the Adam optimization algorithm, retaining the default 

parameters 1  and 2 . The batch size is set to 1, the 

number of epochs is set to 50, and the dropout rate   of the 

HLFHD-RESNET module is set to 0.5. 

The model proposed in this paper integrates research 

methodologies from deep learning and offers the advantage 

of being equally applicable to both small and large datasets. 

In comparison with similar methods, it possesses additional 

advantages, such as its weak supervision nature of learning 

and the avoidance of lesion segmentation requirements. 

C. Evaluation metrics 

The training and testing procedure of the proposed model 

employs 5-fold cross-validation. In this approach, 4/5 of the 

data is utilized for training the model, where the model 

undergoes fine-tuning with pre-training parameters. The 

remaining 1/5 of the data is reserved for validation. The 

performance of the model is evaluated using five standard 

classification performance metrics, namely, the area under 

the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), 

specificity (SPE), and F1 score: 

TABLE I  

A DESCRIPTION OF THE LUNG CT IMAGE DATASET 

Datasets Classes 
Slices Bags 

Train & Val Test Train & Val Test 

TCIA 

A 9045 2683 167 49 

B 1712 386 34 7 

G 1629 741 29 14 

Total 12386 3810 230 70 

CC-CCII Normal 15318 4517 230 70 
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TP TN
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TP TN FP FN

+
=

+ + +
 (18) 

 
TP
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TP FN

=
+

 (19) 

 
TN

SPE
TN FP

=
+

 (20) 

 
2 Pr Re

1 
Pr Re

ecision call
F score

ecision call

 
=

+
 (21) 

Where TP , TN , FP  and FN  represent true positives, 

true negatives, false positives, and false negatives, 

respectively. Additionally, 
TP

Precision
TP FP

=
+

 and 

Recall  are equal to SEN . The 1 F score  mitigates the 

TABLE II 
COMPARISON OF MODEL PERFORMANCE FOR IDENTIFYING DIFFERENT   VALUES. 

  Initial lr AUC ACC SEN SPE F1 score Precision 

0.1 =  0.0005 0.881020 0.800000 0.671428 0.928571 0.770491 0.903846 

0.2 =  0.0005 0.875510 0.864286 0.985714 0.742857 0.878980 0.793103 

0.3 =  0.0005 0.940816 0.878571 0.914285 0.842857 0.882758 0.853333 

0.4 =  0.0005 0.945510 0.885714 0.842857 0.928571 0.880597 0.921875 

0.5 =  0.0005 0.952245 0.907143 0.814285 1.0 0.897637 1.0 

0.6 =  0.0005 0.938367 0.900000 0.9 0.9 0.9 0.9 

0.7 =  0.0005 0.947755 0.892857 0.8 0.985714 0.88189 0.982456 

0.8 =  0.0005 0.947143 0.828571 0.742857 0.914286 0.8125 0.896552 

0.9 =  0.0005 0.943877 0.814286 0.714285 0.914285 0.793650 0.892857 

 

TABLE III 

COMPARISON OF MODEL PERFORMANCE FOR IDENTIFYING DIFFERENT Mul  VALUES. 

Mul  Initial lr AUC ACC SEN SPE F1 score Precision 

2Mul =  0.0005 0.955306 0.864286 0.785714 0.942857 0.852713 0.932203 

3Mul =  0.0005 0.948367 0.900000 0.9 0.9 0.9 0.9 

4Mul =  0.0005 0.927755 0.942857 1.0 0.885714 0.945946 0.897436 

5Mul =  0.0005 0.998776 0.971429 0.942857 1.0 0.970588 1.0 

6Mul =  0.0005 0.983878 0.964286 1.0 0.928571 0.965517 0.933333 

7Mul =  0.0005 0.984898 0.942857 1.0 0.885714 0.945946 0.897436 

8Mul =  0.0005 0.994694 0.928571 1.0 0.857143 0.933333 0.875 

9Mul =  0.0005 0.991837 0.914286 0.828571 1.0 0.90625 1.0 

10Mul =  0.0005 0.91 0.885714 0.842857 0.928571 0.880597 0.921875 

 

 
Fig. 6. In setting the ROC curves and AUC values for models with 

different   values 

 
Fig. 7. In setting the ROC curves and AUC values for models with 

different Mul  values 
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interference of unbalanced data. 

Next, the ablation experiment will be conducted to verify 

each module of the model. In this paper, the HLFHD-

RESNET module and the MSRNN module are integrated. 

The performance of both modules will be evaluated based 

on their respective metrics and significance. Detailed 

evaluation indicators for the two modules will be provided 

below.  

D. Experiments based on the HLFHD-RESNET module 

In this section, we will conduct experiments on the 

hyperparameter   of the high and low frequency attention 

in the HLFHD-RESNET module, denoted as 

 0.1,0.2,....,0.9  . The   value will be varied across 9 

values during the experiment to train the model. Specifically, 

the model selection for this experiment comprises ResNet50 

and HLFHD-RESNET, excluding the MSRNN module. 

Afterwards, an appropriate value of   will be selected 

based on evaluation metrics for use in subsequent 

experiments. 

By comparing the performance of the model under 

different values set in Table 2, it was found that when 

0.5 = , the model exhibits the highest performance level, 

with an accuracy (ACC) of 0.9071, area under the ROC 

curve (AUC) of 0.9522, and F1 score of 0.8976. Therefore, 

the settings of 0.5 =  will be maintained in subsequent 

experiments. Fig. 6 illustrates the area under the ROC curve 

for different settings of  . 

E. Experiments based on the MSRNN module 

In this section, we will experiment with the size of the 

hyperparameter Mul  of the MSRNN module, denoted as 

 2,3,...,10Mul  . The experiment involves setting Mul  to 

9 different values for training the model, and subsequently 

comparing the evaluation indicators of the model. For this 

experiment, the model utilizes ResNet50, with the hidden 

layer state dimension of the LSTM set to 1, and the number 

of LSTM layers set to 1. 

By comparing the different sizes of the Mul  values of the 

MSRNN module in Table 3, it is evident that the model 

achieves its best performance when 5Mul = , with an 

accuracy (ACC) of 0.9714, area under the ROC curve (AUC) 

of 0.9987, and F1 score of 0.97. Therefore, we will continue 

the experiment with this setting in subsequent experiments. 

Figure 7 illustrates the area under the ROC curve for 

different settings of Mul . 

F. Model Performance Evaluation 

In this section, the experiments will be divided into six 

 
Fig. 8. ROC curves and AUC values of the proposed model for 

different scenarios 

 
Fig. 9. Confusion matrix for the proposed and comparable models 
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basic models based on the model, as shown in Table 4. 

ResNet50 and MobileNetV3 are the basic feature extraction 

modules utilized, followed by the evaluation of the 

performance of the Hilo attention and MSRNN modules 

based on these two modules. According to the data in the 

table, it is concluded that the accuracy (ACC) of the Hilo 

attention module increases by 6.5%, the overall increase of 

Hilo attention + MSRNN is 12.9%, and the use of ResNet 

yields a 2.8% higher accuracy than that of MobileNet.  

In Fig. 8, the model configuration of ResNet + Hilo 

attention + MSRNN exhibited the best patient-level 

performance, achieving an accuracy (ACC) of 0.9714, 

sensitivity (SEN) of 0.9429, specificity (SPE) of 1.0, area 

under the ROC curve (AUC) of 0.9988, and F1 score of 0.97. 

As depicted in Figure 9, all 70 patients with lung cancer 

were correctly predicted, while among the 70 normal 

subjects, four cases were incorrectly predicted as lung 

cancer patients. 

V. CONCLUSION 

The method proposed in this paper effectively 

characterizes the deep features of lung cancer lesions in CT 

images, enabling accurate differentiation between lung 

cancer patients and normal individuals in a weakly 

supervised manner. In this process, deep learning serves as a 

feature extractor, while Multiple Instance Learning (MIL) 

acts as a classifier, with the two approaches combined 

synergistically. By leveraging Hilo attention and MSRNN, 

the model learns 2D and 3D features from any number of 

CT images. Experimental results demonstrate that the 

method can aggregate both available and latent diagnostic 

features by exploiting the depth information of these 

features. With its practical application value established, it is 

anticipated that this method will exhibit excellent 

performance in other domains as well. 
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