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Abstract—China’s birth rate has declined, but its mortality
rate has risen year after year due to the new coronavirus
pandemic. Using the new coronavirus pandemic as a feedback
control variable, we proposed a new non-autonomous single-
population feedback control model in which the feedback
control variable reduces the population’s birth rate while
increasing the population’s mortality rate. We determined
sufficient conditions for the persistence, extinction, and global
stability. The analytical results are then compared numerically
with relevant examples.

Index Terms—species, feedback control, global stability, new
coronavirus pandemic

I. INTRODUCTION

FEEDBACK control ecosystems, where feedback mecha-
nisms play a crucial role in regulating the dynamics and

stability of the ecosystem, have received significant attention
from researchers and scientists in recent years ([1]-[43]).

Gopalsamy and Weng [23] investigated the following
single-species feedback control ecosystem considering logis-
tic growth with a delay.

ṅ = rn
[
1− a1n(t) + a2n(t− τ)

K
− cu(t)],

u̇ = −au(t) + bn(t).

(1)

They determined the sufficient conditions for the global
attractivity of the interior equilibrium of (1).

Fan et al. [32] analyzed a non-autonomous, time-delayed
periodic feedback control system and established an exis-
tence criterion for the interior equilibrium. Later, Chen et al.
[24] explored the persistence of the general non-autonomous
case in [32]. In the context of stage structure, Y. Z. Yang [22]
proposed a single population feedback control model and
explored the existence of positive periodic solutions. Chen et
al. [25] revisited the persistence of the positive equilibrium
for the general non-autonomous case in [22]. Their study
revealed that the feedback control variable has no impact
on persistence, but it negatively correlates with population
density. Using numerical simulations, they demonstrated that
the density of the population decreases as the feedback
control variable increases, which increases the likelihood of
population extinction. Using human stocking as a feedback
control variable, Yue [35] proposed for the first time a
single-population model with positive feedback control and
observed that a limited stocking may not help to control
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the population’s extinction. However, a sufficiently large
stocking could help the population continue to survive. This
highlights the potential efficacy of positive feedback control
as a crucial approach to prevent species extinction. In the
context of discrete systems, Li and Zhu[33] investigated the
positive periodic solution of a discrete system with feedback
control for a single species. Later, Chen[34] presented the
sufficient conditions for the permanence of the model. Across
various terrestrial and aquatic species, a positive associa-
tion exists between population size and individual fitness,
commonly referred to as the Allee effect. Any species may
exhibit the Allee effect in particular circumstances because
low population density can make it difficult for endangered
species to locate mates. Considering the fact Zhu et al.[2]
proposed a single-species system combining feedback control
and the Allee effect and demonstrated Bogdanov-Takens and
saddle-node bifurcations.

Human capture or release is considered the feedback con-
trol variable in all of the feedback control models discussed
above. But in reality, it is not always necessarily the capture
rate to be the control variable. Fear of predation risk is one of
the significant factors associated with the predation process.
The prey population dynamics are more affected by indirect
interaction with a predator than by direct killing. Prey often
compromises with their food source and foraging strategies,
affecting their community growth by lowering the fertility
rate in the long run. Experimental results on the impact of
predation risk on prey reproduction were reported by Zanette
et al. [44], Elliott et al. [45]. Considering the impact of
fear on prey reproduction, several exciting works have been
proposed in recent years [47], [48], [49], [50]. However, in
a recent experiment on snowshoe hares, MacLeod et al. [46]
revealed that the fear induced in the prey due to predation risk
could also be lethal in wild animals. Such lethal scenarios of
fear have also been observed recently in the human commu-
nity. The new crown pneumonia, also known as COVID-19,
has had a significant negative impact on the daily lives of
individuals in the last few years, particularly in China. During
2022, the annual birth population was 9.56 million, whereas
the death population reached 10.41 million, resulting in a
decrease of 85 million from the year-end. According to the
National Bureau of Statistics of China, at the end of the year
2023, the population of China was 1,409,670,000 individuals,
which is 2,080,000 individuals less than that at the end of the
previous year. The annual births amounted to 9.02 million,
yielding a birth rate of 6.39 per thousand. Meanwhile, there
were 11.1 million deaths, resulting in a mortality rate of
7.87 per thousand. Consequently, the natural population
growth rate stood at −1.48 per thousand. In response to
population decline, certain cities in China initiated campaigns
to promote multiple births. Several factors contributed to
the decline in the birth population, with one factor being
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associated with the COVID-19 pandemic. The pandemic has
heightened feelings of insecurity and uncertainty about the
future, leading families to hesitate about future fertility and
diminishing people’s desire to have children. The COVID-
19 pandemic has directly or indirectly lowered the income
of family members, exacerbating the impact of childcare
costs on fertility. During the outbreak, there were many
enterprises, tiny and micro-enterprise units, which not only
affected the income of family members but also increased
the conflicts between work and family responsibilities, in-
creasing childbirth panic or fear. Of course, some people
worry that these routine services, such as maternal care,
maternal inspections, and so on, will be affected during
the epidemic. These factors prompted many individuals to
choose to postpone or even cancel birth plans. Moreover, the
mortality rate was somewhat increased by the absence of a
timely response program and the strain on medical resources
during the initial stages of the new coronavirus outbreak. The
combination of underlying severe diseases, such as malignant
tumours, kidney failure, etc., being infected with the new
coronavirus can worsen their condition, resulting in higher
mortality rates. Recently, Yue and Chen [38] proposed a
new single-population feedback control model using the new
crown epidemic as the feedback control variable as follows:

dx

dt
= x

( a

1 + k1u
− b(1 + k2u)− cx

)
,

du

dt
= −eu+ fx.

(2)

where u represents the feedback control variable. In the
system (2), the birth and death rates of the species were
assumed by incorporating the fear effect. The birth and death
rates were presented by the terms

a

1 + k1u
and b(1 + k2u),

where k1, k2 represents the strengths of fear. Such assump-
tions came from recent works on predator-prey systems with
fear effects on prey species[28]-[31]. System (2) possesses
only one globally asymptotically stable positive equilibrium,
unaffected by the feedback control variable in a species
where the reproduction rate is greater than the extinction rate.
However, the ultimate density of the species decreases with
increasing feedback control. In the system (2), for a > b, the
system admits a unique positive equilibrium that is globally
asymptotically stable, while for the case a < b, the system
will be driven to extinction.

It is well known that the human environment is constantly
changing over time. Hence a suitable system needs to assume
that the coefficients of the system are time-varying, which
inspires us to explore the following non-autonomous system:

dx

dt
= x

( a(t)

1 + k1(t)u
− b(t)(1 + k2(t)u)

−c(t)x
)
,

du

dt
= −e(t)u+ f(t)x.

(3)

Now, for a continuous and bounded function, we let f l =
inft∈R f(t) and fu = supt∈R f(t).

The system (3) is biologically feasible under the following
assumption:

(H1) a(t), k1(t), k2(t), c(t), e(t) and f(t) are all contin-
uous and strictly positive functions that meet

min{al, kl1, kl2, cl, el, f l} > 0,

max{au, ku1 , ku2 , cu, eu, fu} < +∞.

The objective of this study is to examine the dynamical
behaviours of the system (3). Including time-dependent pa-
rameters distinguishes our research from previous studies,
thus introducing a novel aspect to our model.

This paper is arranged as follows.
The persistence of the proposed model is analyzed in the
following section. Section III deals with the results related
to the extinction of the system. In Section IV, the global
attractivity of the system is explored by constructing an
appropriate Lyapunov function. Numerical simulations are
conducted in Section V to demonstrate the viability of the
primary findings. Finally, the key findings of this study are
summarized in Section VI.

II. PERMANENCE

In feedback control models, persistence indicates that the
species’ population remains within a viable range, neither
growing excessively nor declining to extinction. This helps
predict the species’ resilience to environmental changes and
design effective management strategies for conservation and
population control. The following theorem is an outcome of
the persistence of system (3).

Theorem 2.1. Assumes that

al

1 + ku1M2
> bu(1 + ku2M2) (4)

holds, where

M2 =
fu

(au − bl

cl

)
el

,

then system (3) is permanent.
Proof. It is implied by condition (4) that the following
inequality holds for sufficiently small ε > 0:

al

1 + ku1 (M2 + ε)
> bu(1 + ku2 (M2 + ε)) (5)

Using the system (3)’s first equation, one has

dx

dt
= x

( a(t)

1 + k1(t)u
− b(1 + k2(t)u)− c(t)x

)
≤ x

(
a(t)− b(t)− c(t)x

)
≤ x

(
au − bl − clx

)
.

(6)

Consequently,

lim sup
t→+∞

x(t) ≤ au − bl

cl
def
= M1. (7)

For ε > 0 which satisfies inequality (5), from (7) there exists
T1 > 0 such that

x(t) <
au − bl

cl
+ ε for all t ≥ T1. (8)
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For t > T1, one has the following from the second equation
of (3) and (8)

du

dt
= −e(t)u+ f(t)x

≤ −elu+ fu
(au − bl

cl
+ ε

)
.

(9)

Thus,

lim sup
t→+∞

u(t) ≤
fu

(au − bl

cl
+ ε

)
el

def
= M2. (10)

Since ε is arbitrary small positive constant, setting ε → 0 in
(10) results in

lim sup
t→+∞

u(t) ≤
fu

(au − bl

cl

)
el

. (11)

For ε > 0 which satisfies inequality (5), there exists T2 > T1

from (11) such that

u(t) <
fu

(au − bl

cl

)
el

+ε
def
= M2+ε for all t ≥ T2. (12)

From the first equation of the system (3), one has

dx

dt
= x

( a(t)

1 + k1(t)u
− b(1 + k2(t)u)− c(t)x

)
≥ x

( al

1 + ku1u
− bu(1 + ku2u)− cux

)
≥ x

( al

1 + ku1 (M2 + ε)
− cux

−bu(1 + ku2 (M2 + ε))
)
.

(13)

Consequently,

lim inf
t→+∞

x(t) ≥ ∆ε

cu
, (14)

where

∆ε =
al

1 + ku1 (M2 + ε)
− bu(1 + ku2 (M2 + ε)).

Given an arbitrary small positive constant ε > 0, taking the
limit as ε approaches 0 in equation (15) results in:

lim inf
t→+∞

x(t) ≥ ∆

cu
def
= m1. (15)

where

∆ =
al

1 + ku1M2
− bu(1 + ku2M2).

For ε1 > 0 small enough, without loss of generality, we may

assume that ε1 < 1
2

∆

cu
, from (15) there exits a T3 > T2 such

that
x(t) >

∆

cu
− ε1 for all t ≥ T3. (16)

Based on the second equation of equation (1.9) and equation
(2.12), the following relationship holds for time greater than
T3,

du

dt
= −e(t)u+ f(t)x.

≥ −euu+ f l
(∆

cu
− ε1

)
.

(17)

Hence,

lim inf
t→+∞

u(t) ≥
f l
(∆

cu
− ε1

)
eu

. (18)

Given that ε1 is a positive constant with infinitesimal value,
taking the limit as ε1 approaches zero in equation (18) results
in

lim inf
t→+∞

u(t) ≥ f l∆

cueu
def
= m2. (19)

Equations (7), (11), (15), and (19) provide evidence that,
given the premise that equation (4) is valid, the system
exhibits permanence. The proof of Theorem 2.1 is concluded
at this point.

III. EXTINCTION

This section aims to investigate the parametric conditions
associated with the extinction of the system. More precisely,
we prove the following theorem.

Theorem 3.1. Assumes that

au < bl, (20)

then system (3) extincts, i.e.,

lim
t→+∞

x(t) = 0, lim
t→+∞

u(t) = 0. (21)

Proof. By considering the first equation in the system (3), it
can be observed that

dx

dt
= x

( a(t)

1 + k1(t)u
− b(1 + k2(t)u)− c(t)x

)
≤ x

(
a(t)− b(t)− c(t)x

)
≤ x

(
au − bl

)
.

(22)

Hence, it follows from (20) that

x(t) ≤ x(0) exp{(au − bl)t} → 0 as t → +∞. (23)

For ε > 0 enough small, from (23) there exists a T5 > 0
such that

x(t) < ε for all t ≥ T5. (24)

Based on the second equation of equation (3) and equation
(24), it may be concluded that for t > T5.

du

dt
= −e(t)u+ f(t)x.

≤ −elu+ fuε,

(25)

and so,

lim sup
t→+∞

u(t) ≤ fuε

el
. (26)

Since ε is arbitrary small positive constant, setting ε → 0 in
(26) leads to

lim sup
t→+∞

u(t) ≤ 0. (27)

On the other hand, based on the positivity of the solution, it
can be inferred that

lim inf
t→+∞

u(t) ≥ 0. (28)

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1291-1299

 
______________________________________________________________________________________ 



(27) combine with (28) leads to

lim
t→+∞

u(t) = 0. (29)

Equations (23) and (29) demonstrate that, given the premise
that equation (20) is valid, the system will become extinct.
The proof of Theorem 3.1 is concluded at this point.

IV. GLOBAL ATTRACTIVITY

In this section, we will explore the problem of global
attractiveness of the positive solutions of the system, and
in fact, we obtained the following result.
Theorem 4.1 Let (x∗(t), u∗(t)) be a bounded positive
solution of system (3). If

al

1 + ku1M2
> bu(1 + ku2M2), (30)

el >
auku1

(1 + kl1m2)2
+ buku2 (31)

and

cl > fu (32)

hold, the variables m2 and M2 are specified by equations
(10) and (19) correspondingly. Then (x∗(t), u∗(t)) exhibits
global asymptotic stability.
Proof. The condition expressed in inequality (31) indicates
that, for a sufficiently small positive constant ε > 0,
it is possible to assume, without loss of generality, that
ε < 1

2 min{m2,m1}. Under this assumption, the following
inequality is valid.

el >
auku1

(1 + kl1(m2 − ε))2
+ buku2 . (33)

Consider the solution (x(t), u(t))T of equation (3) with a
positive initial value. It may be deduced from condition (30)
and Theorem 2.1 that, given any positive value of ε, there
exists a positive value of T such that for all values of t
greater than or equal to T ,

m1 − ε < x(t), x∗(t) < M1 + ε,
m2 − ε < x(t), x∗(t) < M2 + ε.

(34)

Let us consider a Lyapunov function that is defined by

V (t) = | ln{x(t)}− ln{x∗(t)}|+ |u(t)−u∗(t)|, t ≥ 0. (35)

We are now estimating and computing the upper right
derivative of V (t) along the system (3) solutions for t > T .

Applying (34) yields the following results:

D+V (t)

= sgn(x(t)− x∗(t))
[
− a(t)

1 + k1(t)u∗(t)

+b(t)(1 + k2(t)u
∗(t))− b(t)(1 + k2(t)u(t))

+
a(t)

1 + k1(t)u(t)
+ c(t)x∗(t)− c(t)x(t)

]
+sgn(u(t)− u∗(t))

[
e(t)u∗(t)− f(t)x∗(t)

−e(t)u(t) + f(t)x(t)
]

= sgn(x(t)− x∗(t))
[ a(t)k1(t)(u(t)− u∗(t))

(1 + k1(t)u∗(t))(1 + k1(t)u(t))

−b(t)k2(t)(u(t)− u∗(t))− c(t)(x(t)− x∗(t))
]

+sgn(u(t)− u∗(t))
[
− e(t)(u(t)− u∗(t))

+f(t)(x(t)− x∗(t))
]

≤ −A1|x(t)− x∗(t)| −A2|u(t)− u∗(t)|,
(36)

where

A1 = cl − fu > 0,

A2 = el − auku1
(1 + kl1(m2 − ε))2

− buku2 > 0.
(37)

For t ≥ T , one thus has

D+V (t) ≤ −µ
(
|x(t)− x∗(t)|+ |u(t)− u∗(t)|

)
, (38)

where µ = min{A1, A2}. Performing integration on both
sides of equation (38) with respect to the variable t across
the interval from T to t yields

V (t) +µ

∫ t

T

(
|x(s)− x∗(s)|+ |u(s)− u∗(s)|

)
ds

≤ V (T ) < +∞, t ≥ T.

Then, for all t ≥ T ,∫ t

T

(
|x(s)−x∗(s)|+ |u(s)−u∗(s)|

)
ds ≤ µ−1V (T ) < +∞,

and hence,

|x(t)− x∗(t)|+ |u(t)− u∗(t)| ∈ L1([T,+∞)).

The fact that x∗(t) and u∗(t) are bounded, and that x(t) and
u(t) are ultimately bounded, implies that the derivatives of
x(t), x∗(t), u(t), and u∗(t) are all bounded for t ≥ T , as
indicated by the equations that govern their behavior. Conse-
quently, it may be inferred that |x(t)−x∗(t)|+ |u(t)−u∗(t)|
is uniformly continuous on [T,+∞). Thus, by Barbălat’s
Lemma[37], we have

lim
t→+∞

(
|x(t)− x∗(t)|+ |u(t)− u∗(t)|

)
= 0.

The proof is completed.
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V. NUMERIC SIMULATIONS

In this section, we conducted numerical simulations to
compare the analytical findings of the system (3). Let us
examine the subsequent three illustrations.

Example 5.1

dx

dt
= x

( 1 + 1
2 cos(t)

1 + (2 + sin(t))u

−2(1 + (1 + 0.3 cos(t))u)− 2x
)
x,

du

dt
= −u+ x.

(39)

In accordance with the system (3), we adopt a(t) =
1 + 1

2 cos(t), b(t) = 2, k1(t) = 2 + sin(t), k2(t) = 1 +
0.3 cos(t), c = 2, e = f = 1, then,

au =
3

2
< 2 = bl,

hence, it follows from Theorem 4.1 that the system is extinct.
Fig. 1 and 2 support this assertion.

Example 5.2
dx

dt
= x

( 2

1 + (0.2 + 0.1 sin(t))u

−(1 + (0.2 + 0.1 cos(t))u)− x
)
,

du

dt
= −2u+ 1

2x,

(40)

In accordance with the system (3), we adopt a(t) = 2, b(t) =
1, k1(t) = 0.2 + 0.1 sin(t), k2(t) = 0.2 + 0.1 cos(t), c =
1, e = 2, f = 1

2 , then,

al

1 + ku1M2
≈ 1.86 > 1.075 = bu(1 + ku2M2), (41)

el = 2 > 0.277 ≈ auku1
(1 + kl1m2)2

+ buku2 , (42)

and
cl = 1 >

1

2
= fu (43)

All the conditions of Theorems 2.1 and 4.1 are satisfied, so
the positive solution of system (40) is globally asymptotically
stable. Fig 3 and 4 support this assertion.

Example 5.3
dx

dt
= x

( 2

1 + (3 + sin(t))u

−(1 + (3 + cos(t))u)− x
)
,

du

dt
= −u+ 2x,

(44)

In accordance with the system (3), we adopt a(t) = 2, b(t) =
1, k1(t) = 3+sin(t), k2(t) = 3+cos(t), c = 1, e = 1, f = 2,
then,

cl = 1 < 2 = fu (45)

That is, if condition (32) in Theorem 4.1 does not hold, we
have no idea what the stability property of this system is,
however, numeric simulations (Fig 5 and 6) show that in

this case, the positive solution of system (44) is globally
asymptotically stable.

Example 5.4
dx

dt
= x

( 3

1 + u
− 2(1 + u)− x

)
,

du

dt
= −( 32 + 1

2 cos(t))u+ ( 32 − 1
2 sin(t))x,

(46)

In accordance with the system (3), we adopt a(t) = 3, b(t) =
2, k1(t) = 1, k2(t) = 1, c = 1, e = 3

2 − 1
2 sin(t), f = 3

2 +
1
2 cos(t), then, by simple computation, we have M2 = 2, and

al

1 + ku1M2
= 1 < 6 = bu(1 + ku2M2). (47)

In this case, condition (4) in Theorem 2.1 is not satisfied,
we have no idea what the persistent property of this system
is. However, numeric simulations (Fig 7) show that in this
case, system (47) is permanent.

VI. DISCUSSION

In recent years, China’s newborn population has dropped
sharply. In contrast, population deaths have increased yearly,
a large part of which is caused by the epidemic, which
inspired us to use the coronavirus as a feedback control
variable and put forward a system (3). We explored dynam-
ical behaviours such as system persistence, extinction, and
global attractiveness of the proposed system analytically and
numerically. We obtained sufficient conditions for the global
stability and persistence of the proposed system. Figures
5 and 6 demonstrate although the conditions for global
stability are not satisfied, the system may exhibit globally
stable dynamical behaviour, i.e., it may have a large basin of
attraction. Numerical results also revealed that although the
persistence conditions are not satisfied, the system may be
persistent (Figure 7). These two numerical results indicate
that our results (Theorem 2.1 and 4.1) still have scope for
improvement. However, with the current research method,
it isn’t easy to obtain more in-depth results. In the present
study, the stability of non-autonomous systems is mainly
studied by constructing Lyapunov functions, which makes
it impossible to produce results that are too precise. Suppose
we do not explore the stability of the system and instead
study the more realistic topic, such as persistence property.
In that case, we may be able to come up with the following
conjecture: condition al > bu is enough to ensure the
persistence of the system. We will explore this issue further
in a subsequent paper.

REFERENCES

[1] Y. Lv, L. Chen, F. Chen, “Stability and bifurcation in a single species lo-
gistic model with additive Allee effect and feedback control,” Advances
in Difference Equations, vol. 2020, article number: 129, 2020.

[2] Z. Zhu, M. He, Z. Li, et al, “Stability and bifurcation in a Logistic
model with Allee effect and feedback control,” International Journal of
Bifurcation and Chaos, vol. 30, no. 15, 2050231, 2020.

[3] F. Chen, Y. Chong, S. Lin, “Global stability of a commensal symbiosis
model with Holling II functional response and feedback controls,”
Wseas Trans. Syst. Contr, vol. 17, no.1, pp. 279-286, 2022.

[4] K. Yang, Z. Miao, F. Chen, et al., “Influence of single feedback control
variable on an autonomous Holling-II type cooperative system,” Journal
of Mathematical Analysis and Applications, vol. 435, no. 1, pp.874-888,
2016.

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1291-1299

 
______________________________________________________________________________________ 



Fig. 1. Numeric simulations of x(t) in the system (39), the initial condition
(x(0), u(0)) = (1, 1), (0.8, 0.8), (0.2, 0.2) and (0.5, 0.5), respectively.

Fig. 2. Numeric simulations of u(t) in the system (39), the initial condition
(x(0), u(0)) = (1, 1), (0.8, 0.8), (0.2, 0.2) and (0.5, 0.5), respectively.

[5] R. Han, F. Chen, “Global stability of a commensal symbiosis model
with feedback controls,” Commun. Math. Biol. Neurosci., vol. 2015,
article ID 15, 2015.

[6] Z. Li, M. Han, F. Chen, “Influence of feedback controls on an
autonomous Lotka–Volterra competitive system with infinite delays,”
Nonlinear Analysis: Real World Applications, vol. 14, no. 1, pp. 402-
413, 2013.

[7] Z. Li, M. Han, et al., “Global stability of a predator-prey system
with stage structure and mutual interference,” Discrete and Continuous
Dynamical Systems-Series B, vol. 19, no. 1, pp.173-187, 2014.

[8] L. Chen, F. Chen, “Extinction in a discrete Lotka–Volterra competitive
system with the effect of toxic substances and feedback controls,”
International Journal of Biomathematics, vol. 8, no.01, 1550012, 2016.

[9] R. Han, F. Chen, X. Xie, et al., “Global stability of May cooperative
system with feedback controls,” Advances in Difference Equations, vol.
2015, article number:360, 2015.

[10] R. Y. Han, X. D. Xie, F. D. Chen, “Permanence and global attractivity
of a discrete pollination mutualism in plant-pollinator system with
feedback controls,” Advances in Difference Equations, vol. 2016, article
number:199, 2016.

[11] J. Xu, F. Chen, “Permanence of a Lotka-Volterra cooperative
system with time delays and feedback controls,” Commun. Math. Biol.
Neurosci., vol. 2015, article ID 18, 2015.

[12] Y. Xue, X. Xie, Q. Lin, et al., “Global attractivity and extinction of
a discrete competitive system with infinite delays and single feedback
control,” Discrete Dynamics in Nature and Society, vol. 2018, article
ID 1893181, 2018.

[13] L. Zhao, X. Xie, L. Yang, et al., “Dynamic behaviors of a
discrete Lotka-Volterra competition system with infinite delays and
single feedback control,” Abstract and Applied Analysis, vol. 2014,
article ID 867313, 2014.

[14] Z. Miao, F. Chen, J. Liu, et al., “Dynamic behaviors of a discrete
Lotka-Volterra competitive system with the effect of toxic substances
and feedback controls,” Advances in Difference Equations, vol. 2017,
article number: 112, 2017.

[15] Y. Wang, “Periodic and almost periodic solutions of a nonlinear single
species discrete model with feedback control,” Applied Mathematics
and Computation, vol. 219, no.10, pp. 5480-5486, 2013.

[16] Y. Li, L. Yang, H. Zhang, “Permanence and uniformly asymptotical
stability of almost periodic solutions for a single-species model with

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1291-1299

 
______________________________________________________________________________________ 



Fig. 3. Numeric simulations of x(t) in the system (40), the initial condition
(x(0), u(0)) = (1, 1), (0.8, 0.8), (0.2, 0.2) and (0.5, 0.5), respectively.

Fig. 4. Numeric simulations of u(t) in the system (40), the initial condition
(x(0), u(0)) = (1, 1), (0.8, 0.8), (0.2, 0.2) and (0.5, 0.5), respectively.

feedback control on time scales,” Asian-European Journal of Mathe-
matics, vol. 07, no. 1, 1450004, 2014.

[17] Y. Li, X. Han, “Almost periodic solution for a N-species competition
model with feedback controls on time scales,” Journal of Applied
Mathematics & Informatics, vol. 31, no.1-2, pp. 247-262, 2013.

[18] Q. Lin, “Stability analysis of a single species logistic model with
Allee effect and feedback control,” Advances in Difference Equations,
vol. 2018, article number: 190, 2018.

[19] F. D. Chen, H. Lin, Q. Zhu, Q. Q. Li, “The permanence of a
nonautonomous single-species model with stage-structure and feedback
control,” WSEAS Transactions on Circuits and Systems, vol. 21, pp.
258-267, 2022

[20] M. Khuddush, K. Rajendra Prasad, “Permanence and stability of
multi-species nonautonomous Lotka–Volterra competitive systems with
delays and feedback controls on time scales,” Khayyam Journal of
Mathematics, vol. 7, no. 2, pp. 241-256, 2021.

[21] Z. Jiang, A. Muhammadhaji, C. Hu, et al., “Dynamics of n-Species
cooperation models with feedback controls and continuous delays,”
Qualitative Theory of Dynamical Systems, vol.22, no.1, 41, 2023.

[22] Y. Z. Yang, “Positive periodic solution of a nonautonomous single-

species model with stage structure and feedback control,” Journal of
Shenyang University (Natural Science), vol. 30, no.6, pp. 512-515,
2018.

[23] K. Gopalsamy, P. X. Weng, “Feedback regulation of Logistic growth,”
Inthernational Journal of Mathematics Sciencess, vol.16, no. 1, pp.177-
192, 1993.

[24] F. Chen, J. Yang, L. Chen, “Note on the persistent property of a
feedback control system with delays,” Nonlinear Analysis: Real World
Applications, vol. 11, no. 2, pp. 1061-1066, 2010.

[25] F. Chen, H. Lin, Q. Zhu, Q. Q. Li, “The permanence of a
nonautonomous single-species model with stage-structure and feedback
control,” WSEAS Transactions on Circuits and Systems, vol. 21, no.1,
pp. 258-267, 2022.

[26] Y. C. Zhou, Z. Jin, J. L. Qin, Ordinary Differential Equation and Its
Application, Beijing, Science Press, 2003.

[27] L. Lai, Z. Zhu, F. Chen, “Stability and bifurcation in a predator–prey
model with the additive Allee effect and the fear effect,” Mathematics,
vol.8, no.8, 1280, 2020.

[28] T. Liu, L. Chen, F. Chen, et al., “Stability analysis of a Leslie–Gower
model with strong Allee effect on prey and fear effect on predator,”

Engineering Letters

Volume 32, Issue 7, July 2024, Pages 1291-1299

 
______________________________________________________________________________________ 



Fig. 5. Numeric simulations of x(t) in the system (44), the initial condition
(x(0), u(0)) = (1, 1), (0.8, 0.8), (0.2, 0.2) and (0.5, 0.5), respectively.

Fig. 6. Numeric simulations of u(t) in the system (44), the initial condition
(x(0), u(0)) = (1, 1), (0.8, 0.8), (0.2, 0.2) and (0.5, 0.5), respectively.

International Journal of Bifurcation and Chaos, vol. 32, no.6, 2250082,
2022.

[29] J. Chen, X. He, F. Chen, “The influence of fear effect to a discrete-
time predator-prey system with predator has other food resource,”
Mathematics, vol. 9, no. 8, 865, 2021.

[30] S. Lin, F. Chen, Z. Li, et al., “Complex dynamic behaviors of a
modified discrete Leslie–Gower predator–prey system with fear effect
on prey species,” Axioms, vol. 11, no. 10, 520, 2022.

[31] F. Chen, S. Lin, S. Chen, et al., “A new consideration of the influence
of shelter on the kinetic behavior of the Leslie-Gower predator prey
system with fear effect,” WSEAS Transactions on Systems, vol. 22,
no.1, pp. 7-18, 2023.

[32] G. H. Fan, Y. K. Li, M. C. Qin, “The existence of positive periodic
solutions for periodic feedback control systems with delays,” Zeitschrift
für Angewandte Mathematik und Mechanik, vol.84, no.6, pp. 425–430,
2004.

[33] Y. K. Li, L. F. Zhu, “Existence of positive periodic solutions
for difference equations with feedback control,” Applied Mathematics
Letters, vol.18, no.1, pp. 61–67, 2005.

[34] F. Chen, “Permanence of a single species discrete model with feedback

control and delay,” Applied Mathematics Letters, vol. 28, no.7, pp. 729-
733, 2007

[35] Q. Yue, “The influence of positive feedback control to a single species
stage structure system,” Engineering Letters, vol. 28, no.2, pp. 322-330,
2020.

[36] F. Chen, Z. Li, Y. Huang, “Note on the permanence of a competitive
system with infinite delay and feedback controls,” Nonlinear Analysis:
Real World Applications, vol. 8, no.2, pp. 680-687, 2007.
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