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Abstract—This paper presents a study on a Lotka-Volterra
ammensalism model that incorporates the fear effect, which
can potentially decrease the birth rate and raise the mortality
rate of the species. For the autonomous case, equilibrium points’
local and global stability are discussed. For the nonautonomous
case, sufficient conditions which ensure the persistence and
extinction, and global asymptotic stability of the positive so-
lutions are obtained, respectively. The study has shown that
with the increase of the fear effect, the final density of the
affected population will decrease, and when the fear effect is
large enough, it will cause population’s extinction.

Index Terms—Fear effect; Ammensalism; Local stability;
Global stability; Persistence; Extinction; Global asymptotically
stability

I. INTRODUCTION

IT is rare to see a single species that can live indepen-
dently without relationships with other natural popula-

tions. Amensalism is a biological phenomenon character-
ized by the interaction between two species, whereby one
species experiences limitations and constraints, while the
other species remains unaffected. Xi, Griffin, and Sun[1]
pointed out that in a Tibetan alpine meadow, grasshoppers
and grassland caterpillars constitute an amensal relationship.
Gómez and González-Megı́as[2] pointed out that the Spanish
ibex and the weevil also forms an amensalism relationship.
In recent years, the research on the amensalism model has
attracted great attention from scholars ([3]-[50]). For exam-
ple, in [16], a detailed analysis of the amensalism system
with the Beddington-DeAngelis functional response and the
second population with the Allee effect was carried out, and
it was proved that with the change of the system parameters,
the system has dynamics such as saddle node bifurcation
and transcritical bifurcation. The author also gave the global
phase diagram of the system; Zhou, Chen, and Lin[30]
argued that the discrete model is more appropriate when the
population size is small, or the population intergenerational is
obvious, so they proposed a discrete amensalism system with
the Beddington–DeAngelis functional response and Allee
effect for the unaffected species, their research shows that
the Allee effect can enhance the stability of the system at
this time, and as the parameters change, the system can have
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various codimension one and codimension two bifurcations,
including transcritical bifurcations, pitchfork bifurcations,
folding bifurcations, flipping bifurcations, and 1:2 strong
resonance bifurcations, whose dynamic behaviors is far more
complex than that of continuum systems.

Noticed that to this day, no scholars have considered the
influence of fear on the amensalism system. Xi, Griffin, and
Sun[1] pointed out grassland caterpillars and grasshoppers
are two of the main herbivorous insects. Among them,
the grasshoppers “no consciousness” disturbance (natural
jumping) severely reduced the feeding time of grassland
caterpillars, slowing down its development rate, and even-
tually lead to a decline in the number of eggs laid by female
caterpillars, the presence of grasshoppers had a substantial
impact on various aspects of caterpillar behavior and devel-
opment, including eating patterns, growth rate, survival rates,
reproductive efforts, and the timing of transformation. That is
to say, the fear of grasshoppers eventually leads to a decrease
in the birth rate and an increase in the death rate of grassland
caterpillars. It is necessary to propose suitable mathematical
modeling to describe such a fact. However, so far, no scholars
have proposed or studied the amensalism model with the
fear effect. This paper aims to establish the Lotka-Volterra
model with the fear effect on the affected species, and find
out how the fear effect affects the dynamic behavior of the
amensalism model.

The classic two-species amensalism model can be ex-
pressed as

dx

dt
= x

(
a1 − b1x− c1y

)
,

dy

dt
= y

(
a2 − c2y

)
,

(1)

Where x ≥ 0, y ≥ 0, a1, a2, b1, c2, c1 are all normal numbers,
where ai, i = 1, 2 represent the intrinsic growth rates of the
first and second populations respectively , bi represents the
intraspecific competition coefficient of the two populations,
and c1 represents the influence coefficient of the second
population on the first population. Zhu and Chen [12] studied
the stability of each equilibrium point of the system (1) and
the trajectory of the system using vector field analysis. The
author obtained the following results:
Theorem A. If

a1
c1

>
a2
c2

(2)

holds, the unique positive equilibrium point
A(a1c2−c1a2

b1c2
, a2

c2
) of the system (1) is globally stable.

If
a1
c1

<
a2
c2

(3)

holds, then the boundary equilibrium point B(0, a2

c2
) of the

system (1) is globally stable.
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In the above system (1), a1 represents the intrinsic growth
rate of the first population, a1 = e1−e2, where e1 is the birth
rate and e2 is the death rate. As mentioned earlier, the birth
rate and death rate of the first population will be negatively
affected by the second species, so it is not enough to assume
that e1 and e2 are constants in the system (1). To be precise,
we propose the following model:

dx

dt
= x

( e1
1 + k1y

− (1 + k2y)e2 − b1x− c1y
)
,

dy

dt
= y

(
a2 − c2y

)
.

(4)

Here, we use
1

1 + k1y
and 1 + k2y to represent the fear

effect, and ki, i = 1, 2 to represent the fear factor. When
ki = 0, that is, when the first population is not affected by
fear, system (4) degenerates into system (1). The purpose of
this paper is to study the dynamic behaviors of the system

(4), and to find out the influence of the fear term
1

1 + k1y
and 1 + k2y.

The subsequent sections of the paper are organized in the
following manner: In the subsequent part, we shall examine
the presence and regional stability of the equilibria of the
system. Following this, in part III, we will analyze the
equilibria’s global stability characteristic. Section IV of this
study examines the persistent, extinct, and global stability
characteristics of the nonautonomous situation. Two specific
instances are presented, along with numerical simulations,
to demonstrate the practicality of the primary findings in
Section V. The present paper concludes with a concise
discussion.

II. LOCAL STABILITY OF THE EQUILIBRIA

The equilibrium points of the system (4) satisfy the
equation

x
( e1
1 + k1y

− e2(1 + k2y)− b1x− c1y
)

= 0,

y
(
a2 − c2y

)
= 0.

(5)

The calculation shows that the system always has boundary
equilibrium points A1(0, 0), A2(0,

a2

c2
), in addition, if

e1 > e2 (6)

holds, there is a boundary equilibrium point A3(
e1−e2

b1
, 0), if

e1c
2
2 > (a2k1 + c2)(e2k2a2 + c1a2 + c2e2) (7)

holds, the system has a unique positive equilibrium point
A4(x

∗, y∗), where

x∗ =
e1c

2
2 − (a2k1 + c2)(e2k2a2 + c1a2 + c2e2)

b1c2(c2 + k1a2)
,

y∗ =
a2
c2

.

(8)
Remark 2.1. Condition (7) is equivalent to the following
condition

e1
1 + k1y∗

− e2(1 + k2y
∗) > c1y

∗. (9)

Regarding the local stability of these equilibria, we have
the following result:

Theorem 2.1. Assume that (6) holds, the equilibrium points
A1, A3 are unstable; if

e1
1 + k1y∗

− e2(1 + k2y
∗) < c1y

∗ (10)

holds, the equilibrium point A2 is locally asymptotically
stable; the positive equilibrium point A4 is locally asymp-
totically stable if (9) holds.
Proof.The variational matrix of the system represented by
equation (4) evaluated at the point (x, y) is given by

J(x, y) =

 A11 A12

0 −2c2y + a2

 , (11)

where

A11 =
e1

k1y + 1
− e2(k2y + 1)− 2b1x− c1y,

A12 = x
(
− e1k1

(k1y + 1)2
− e2k2 − c1

)
.

The characteristic equation of the variational matrix is

λ2 − tr(J)λ+ det(J) = 0. (12)

Obviously, if tr(J) < 0 and det(J) > 0 hold true, the
equation mentioned above has two roots with negative real
parts. As a result, the characteristic roots of equation (4)
also possess negative real parts. Consequently, the associated
equilibrium point is locally asymptotically stable.
(1) For the equilibrium point A1(0, 0), there is

tr
(
J(0, 0)

)
= e1 − e2 + a2,

det
(
J(0, 0)

)
= (e1 − e2)a2.

Then tr(J(0, 0)) > 0, det(J(0, 0)) > 0 if (6) holds, so
A1(0, 0) is unstable;
(2) The Jacobian matrix of the system (4) at the equilibrium
point A3(

e1−e2
b1

, 0) is

J((
e1 − e2

b1
, 0)) =

(
−e1 + e2

∆1

b1

0 a2

)
, (13)

where
∆1 = (e1 − e2)(−e1k1 − e2k2 − c1).

Assume that (6) holds, then the two eigenvalues of the matrix
satisfy λ1 = −e1 + e2 < 0, λ2 = a2 > 0. It can be seen that
A3(

e1−e2
b1

, 0) is unstable;

(3) The Jacobian matrix of the system (4) at the equilibrium
point A2(0,

a2

c2
) is

J((0, a2

c2
))

=

(
∆2 0

0 −a2

)

=

(
∆∗

2 0

0 −a2

)
.

(14)

where

∆2 =
e1

k1
a2

c2
+ 1

− e2(1 + k2
a2
c2

)− c1
a2
c2

,

∆∗
2 =

e1
k1y∗ + 1

− e2(1 + k2y
∗)− c1y

∗.
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Under assumption (10), it is clear that

λ1 =
e1

ky∗ + 1
− e2 − c1y

∗ < 0,

λ2 = −a2 < 0.

Correspondingly, A2(0,
a2

c2
) is locally asymptotically stable.

On the contrary, if (9) holds, then λ1 > 0, thus A2(0,
a2

c2
) is

unstable;

(4) It should be noted that the positive equilibrium point
A4(x

∗, y∗) satisfies the following equation

e1
1 + k1y∗

− e2(1 + k2y
∗)− b1x

∗ − c1y
∗ = 0,

a2 − c2y
∗ = 0.

(15)

With the help of (15), the Jacobian matrix of the system (4)
at the positive equilibrium point A4(x

∗, y∗) is

J((x∗, y∗)) =

 −b1x
∗ ∆3

0 −c2y
∗

 , (16)

where

∆3 = x∗
(
− e1k

(k1y∗ + 1)2
− e2k2 − c1

)
.

It is easy to see that

tr
(
J(x∗, y∗)

)
= −b1x

∗ − c2y
∗ < 0,

det
(
J(x∗, y∗)

)
= b1x

∗c2y
∗ > 0.

The local asymptotic stability of A4(x
∗, y∗) can be observed.

Theorem 2.1 is proved.

III. GLOBAL ATTRACTIVITY

The research in the previous section shows that un-
der appropriate conditions, the boundary equilibrium point
A2(0,

a2

c2
) and the positive equilibrium point A4(x

∗, y∗) can
be locally asymptotically stable. Now, an interesting question
is whether or not they can be globally stable. This section
further discusses this matter.

Theorem 3.1. Assuming that (10) holds, then A2(0,
a2

c2
) is

globally attractive.
Proof. Inequality (10) shows that for sufficiently small pos-
itive numbers ε > 0, the following inequality holds:

e1
1 + k1(y∗ − ε)

− e2(1 + k2(y
∗ − ε)) < c1(y

∗ − ε). (17)

Note that the second equation of the system (4)

dy

dt
= y
(
a2 − c2y

)
(18)

is the famous Logistic equation, and so

lim
t→+∞

y(t) =
a2
c2

. (19)

For ε > 0 satisfying (17), from (19) we know that there is a
sufficiently large T1, so that when t > T1, we have

y∗ − ε =
a2
c2

− ε < y(t) <
a2
c2

+ ε = y∗ + ε. (20)

When t exceeds T1, it could be inferred from the first
equation of (20) and (4) that

dx

dt
= x

( e1
1 + k1y

− e2(1 + k2y)− b1x− c1y
)

≤ x
( e1
1 + k1(y∗ − ε)

− e2(1 + k2(y
∗ − ε))

−c1(y
∗ − ε)

)
def
= Γx.

(21)
Therefore, combined with (17), it can be seen that when

t → +∞, there is

x(t) ≤ x(T1) exp
{
Γ(t− T1)

}
→ 0.

That is to say, there are

lim
t→+∞

x(t) = 0. (22)

(19) and (22) show that A2(0,
a2

c2
) is globally attractive.

Theorem 3.1 has been proved.

Theorem 3.2. Assuming (9) holds, then the unique posi-
tive equilibrium point A4(x

∗, y∗) of the system is globally
asymptotically stable.
Proof. If the condition (9) holds, it can be known from
Theorem 2.1 that the boundary equilibrium points A1, A2,
and A3 are all unstable; the positive equilibrium point
A4(x

∗, y∗) is locally asymptotically stable.
If it can be established that the solution of the system (4)

is bounded and limit cycles are absent, then, by the limit
set theory of the planar system, it can be concluded that the
solution of the system will approach the positive equilibrium
point as time progresses. This implies that the positive equi-
librium point A4(x

∗, y∗) exhibits global asymptotic stability.
First, we prove that the solution of the system (4) with

positive initial values is uniformly bounded. From the second
equation of system (4), similar to the analysis of (18)-(19)
in Theorem 3.1, we have

lim
t→+∞

y(t) =
a2
c2

def
= y∗. (23)

It can be seen that for sufficiently small ε > 0, there exists
T2 > 0 such that when t ≥ T2, there is

y∗ − ε < y(t) < y∗ + ε. (24)

Similar to the analysis of (21), from the first equations of
the system (4) and (24), it can be seen that when t > T2,
there is

dx

dt
= x

( e1
1 + k1y

− e2(1 + k2y)− b1x− c1y
)

≤ x
( e1
1 + k(y∗ − ε)

− e2(1 + k2(y
∗ − ε)

−b1x− c1(y
∗ − ε)

)
,

(25)

Now, let us consider the equation

du

dt
= u

( e1
1 + k(y∗ − ε)

− e2(1 + k2(y
∗ − ε))

−b1u− c1(y
∗ − ε)

)
,

(26)
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From Lemma 3.1, we know that there are

lim
t→+∞

u(t) = W1(ε), (27)

where

W1(ε) =

e1
1 + k(y∗ − ε)

− e2(1 + k2(y
∗ − ε))− c1(y

∗ − ε)

b1
.

From (26) and (27), with the help of differential inequality
theory, we have

lim sup
t→+∞

x(t) ≤ W1(ε). (28)

It can be seen that there is T3 > T2, when t > T3,

x(t) < W1(ε) + ε
def
= Γ1(ε). (29)

Let

D = {(x, y) ∈ R2
+ : x < Γ1(ε), y < y∗ + ε}.

Then, the solution of system (4) with positive initial value
is eventually uniformly bounded in D. Now let us show that
system (4) could not admits limit cycle in D. Consider the
Dulac function B(x, y) = x−1y−1,

∂(BF1)

∂x
+

∂(BF2)

∂y
= −b1

y
− c2

x
< 0,

where

F1(x, y) = x
( e1
1 + k1y

− e2(1 + k2y)− b1x− c1y
)
,

F2(x, y) = y
(
a2 − c2y

)
.

According to the Dulac criterion [43], the system (4) does
not have closed orbits in D. The global asymptotic stability
of A4(x

∗, y∗) is evident, and the proof of Theorem 3.2 is
ended.

Remark 3.1. If the system (4) has a unique positive equi-
librium point, then the positive equilibrium point is globally
asymptotically stable, according to Theorem 3.2.

Remark 3.2. According to Theorems 2.1, 3.1, and 3.2, the
conditions that guarantee the local stability of the equilibrium
point are adequate to guarantee its global asymptotic stability.

Remark 3.3. Noting that

∂x∗

∂k1
= − a2e1c2

b1(k1a2 + c2)2
< 0,

∂y∗

∂k1
= 0,

∂x∗

∂k2
= −a22e2k1 + a2c2e2

b1c2(a2k1 + c2)
< 0,

∂y∗

∂k2
= 0.

(30)

It can be seen that x∗ is a monotonically decreasing function
of the parameter k1 and k2, and the fear effect has no effect
on the y species. The fear effect reduces the final density of
the first species.

IV. NONAUTONOMOUS CASE

As we all know, the natural environment is constantly
changes with time, so it is necessary to consider the non-
autonomous case. However, as the coefficients change with
time, the study becomes difficult.

In this section, we will study the non-autonomous case of
the system

dx

dt
= x

( e1(t)

1 + k1(t)y
− (1 + k2(t)y)e2(t)

−b1(t)x− c1(t)y
)
,

dy

dt
= y

(
a2(t)− c2(t)y

)
.

(31)

Throughout this section, for a continuous and bounded
function, we let f l = inft∈R f(t) and fu = supt∈R f(t).

In system (31), we always assume:

(H1) e1(t), k1(t), k2(t), e2(t), b1(t), c1(t), a2(t), and
c2(t) are all continuous and strictly positive functions that
satisfy

min{el1, kl1, kl2, el2, bl1, cl1, al2, cl2} > 0,

max{eu1 , ku1 , ku2 , eu2 , bu1 , cu1 , au2 , cu2} < +∞.

Set

yl
def
=

al2
cu2

, yu
def
=

au2
cl2

. (32)

As far as nonautonomous biosystem is concerned, per-
sistence, global attractivity, and extinction are the most
important topics, which represent the survival or extinction
of the species. Now we state and prove the main results of
this section.
Theorem 4.1.
(1) Assuming

eu1
1 + kl1y

l
< el2(1 + kl2y

l) + cl1y
l (33)

holds, then the first species x(t) will be driven to extinction;
(2) Assuming

el1
1 + ku1 y

u
> eu2 (1 + ku2 y

u) + cu1y
u (34)

holds, then the system is permanent.
Proof. It follows from (33) and (34) that for enough small
ε > 0, the following inequalities hold:

eu1
1 + kl1(y

l − ε)
< el2(1 + kl2(y

l − ε)) + cl1(y
l − ε), (35)

el1
1 + ku1 (y

u + ε)
> eu2 (1 + ku2 (y

u + ε)) + cu1 (y
u + ε). (36)

From the second equation of system (31) we have

y
(
al2 − cu2y

)
≤ dy

dt
≤ y
(
au2 − cl2y

)
, (37)

thus, one has

yl
def
=

al2
cu2

≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ au2
cl2

def
= yu. (38)
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For ε > 0 enough small, which satisfies the inequality (35)
and (36), there exists a T > 0 such that

yl − ε < y(t) < yu + ε, t ≥ T. (39)

Now, from the first equation of (31) and (39), one has

dx

dt
= x

( e1(t)

1 + k1(t)y
− (1 + k2(t)y)e2(t)

−b1(t)x− c1(t)y
)

≤ x
( eu1
1 + kl1(y

l − ε)
− (1 + kl2(y

l − ε))el2

−b1(t)x− cl1(y
l − ε)

)
.

(40)

If condition (33) holds, then follows from (40) one has

x(t) ≤ x(T ) exp
{
∆(ε)(t− T )

}
→ 0 as t → +∞, (41)

where

∆(ε) =
eu1

1 + kl1(y
l − ε)

− (1 + kl2(y
l − ε))el2

−cl1(y
l − ε).

(42)

That is, if (33) holds, the first species x(t) will be driven to
extinction. This ends the proof of Theorem 4.1 (i).

Now assume that inequality (34) holds, then it immediately
follows that

eu1
1 + kl1y

l
> el2(1 + kl2y

l) + cl2y
l, (43)

so, for ε > 0 enough small, the following inequality holds

eu1
1 + kl1(y

l − ε)
> el2(1 + kl2(y

l − ε)) + cl1(y
l − ε). (44)

Hence, it follows from (40) that

lim sup
t→+∞

x(t) ≤ ∆(ε)

bu1
, (45)

where ∆(ε) is defined by (42). Setting ε → 0 in (42) leads
to

lim sup
t→+∞

x(t) ≤ ∆

bu1
, (46)

where

∆ =
eu1

1 + kl1y
l
− (1 + kl2y

l)el2 − cl1y
l. (47)

Again, from the first equation of (31) and (39), one has

dx

dt
= x

( e1(t)

1 + k1(t)y
− (1 + k2(t)y)e2(t)

−b1(t)x− c1(t)y
)

≥ x
( el1
1 + ku1 (y

u + ε)
− (1 + ku2 (y

u + ε))eu2

−bu1x− cu1 (y
u + ε)

)
.

(48)
If condition (34) holds, then follows from (36) one has

lim inf
t→+∞

x(t) ≥ ∆1(ε)

bl1
, (49)

where

∆1(ε) =
el1

1 + ku1 (y
u + ε)

− (1 + ku2 (y
u + ε))eu2

−cu1 (y
u + ε).

(50)
Setting ε → 0 in (49) leads to

lim inf
t→+∞

x(t) ≥ ∆1

bl1
, (51)

where

∆1 =
el1

1 + ku1 y
u
− (1 + ku2 y

u)eu2 − cu1y
u. (52)

(38), (46), and (51) show that under the assumption (34)
holds, the system is permanent. This ends the proof of
Theorem 4.1 (ii).

The proof of Theorem 4.1 is ended.
Concerned with the global attractivity of the positive

solutions of the system, we have the following result.
Theorem 4.2 Let (x∗(t), y∗(t)) be a bounded positive
solution of system (31). In addition to (34), assume further
that the following inequality holds:

cl2 >
eu1k

u
1

(1 + kl1y
l)2

+ eu2k
u
2 + cu1 , (53)

where the variables yl are specified by equations (38). Then
(x∗(t), y∗(t)) exhibits global asymptotic stability.

Proof. The condition expressed in inequality (53) indicates
that, for a sufficiently small positive constant ε > 0, it is
possible to assume, without loss of generality, that ε < 1

2y
l.

Under this assumption, the following inequality is valid.

cl2 >
eu1k

u
1

(1 + kl1(y
l − ε))2

+ eu2k
u
2 + cu1 . (54)

Consider the positive solution (x(t), u(t)) of equation (31),
it may be deduced from condition (34) and Theorem 4.1 that,
given any positive value of ε, there exists a positive value of
T such that for all values of t greater than or equal to T ,

yl − ε < y(t), y∗(t) < yu + ε. (55)

For t ≥ T , let us consider a Lyapunov function that is
defined by

V (t) = | ln{x(t)} − ln{x∗(t)}|

+| ln{y(t)} − ln{y∗(t)}|.
(56)

We are now estimating and computing the upper right
derivative of V (t) along the positive solutions of the system

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1233-1242

 
______________________________________________________________________________________ 



(31) for t > T . Applying (54) yields the following results:

D+V (t)

= sgn(x(t)− x∗(t))
[
− e1(t)

1 + k1(t)y∗(t)

+e2(t)(1 + k2(t)y
∗(t))− e2(t)(1 + k2(t)y(t))

+
e1(t)

1 + k1(t)y(t)
+ b1(t)x

∗(t)− b1(t)x(t)

+c1(t)y
∗(t)− c1(t)y(t)

]
+sgn(y(t)− y∗(t))

[
− c2(t)y

∗(t) + c2(t)y(t)
]

= sgn(x(t)− x∗(t))
[ e1(t)k1(t)(y(t)− y∗(t))

(1 + k1(t)y∗(t))(1 + k1(t)y(t))

−e2(t)k2(t)(y(t)− y∗(t))− b1(t)(x(t)− x∗(t))

−c1(t)(y(t)− y∗(t))
]

+sgn(y(t)− y∗(t))
[
− c2(t)y

∗(t) + c2(t)y(t)
]

≤ −Γ1|x(t)− x∗(t)| − Γ2|u(t)− u∗(t)|,
(57)

where

Γ1 = bl1 > 0,

Γε
2 = cl2 −

eu1k
u
1

(1 + kl1(y
l − ε))2

− eu2k
u
2 − cu1 > 0.

(58)
For t ≥ T , one thus has

D+V (t) ≤ −µ
(
|x(t)− x∗(t)|+ |y(t)− y∗(t)|

)
, (59)

where µ = min{Γ1,Γ
ε
2}. Performing integration on both

sides of equation (59) with respect to the variable t across
the interval from T to t yields

V (t) +µ

∫ t

T

(
|x(s)− x∗(s)|+ |y(s)− y∗(s)|

)
ds

≤ V (T ) < +∞, t ≥ T.

Then, for all t ≥ T ,∫ t

T

(
|x(s)−x∗(s)|+ |y(s)−y∗(s)|

)
ds ≤ µ−1V (T ) < +∞,

and hence,

|x(t)− x∗(t)|+ |y(t)− y∗(t)| ∈ L1([T,+∞)).

The fact that x∗(t) and y∗(t) are bounded, and that x(t) and
y(t) are ultimately bounded, implies that the derivatives of
x(t), x∗(t), y(t), and y∗(t) are all bounded for t ≥ T , as
indicated by the equations that govern their behavior. Conse-
quently, it may be inferred that |x(t)−x∗(t)|+ |y(t)−y∗(t)|
is uniformly continuous on [T,+∞). Thus, by Barbălat’s
Lemma[38], we have

lim
t→+∞

(
|x(t)− x∗(t)|+ |y(t)− y∗(t)|

)
= 0.

The proof is completed.
Example 5.3. Now let’s consider the following non-
autonomous case. Take e2 = a1 = b1 = 1, c1 = 1

2 , a2 =

3+cos(t), c2 = 3− sin(t), e1 = 5− sin(t), k1 = 1
10 , k2 = 1

2 .
Then, by simple computation, we have yl = 1

2 , y
u = 2, thus

el1
1 + ku1 y

u
=

10

3
> 3 = eu2 (1 + ku2 y

u) + cu1y
u (60)

and

cl2 = 2 >
0.6

(1.05)2
+ 1 =

eu1k
u
1

(1 + kl1y
l)2

+ eu2k
u
2 + cu1 . (61)

From Theorem 4.2, we know that the system is permanent
and the positive solution of the system is globally
asymptotically stable. Figures 6 verifies this fact.

V. NUMERIC SIMULATIONS

Now let us consider the following three examples.

Example 5.1. Take e2 = b1 = c1 = a2 = c2 = 1.
(1) Take e1 = 2, k1 = 0.5, and k2 = 1. At this time, the
calculation shows that y∗ = 1,

e1
1 + k1y∗

− e2(1 + k2y
∗) = −2

3
< 1 = c1y

∗. (62)

From Theorem 3.1, we know that A2(0, 1) is globally
attractive. Figures 1 and 2 verify this fact;
(2) Take e1 = 3, k = 0.1, k2 = 1. At this time, the
calculation shows that y∗ = 1,

e1
1 + k1y∗

− e2(1 + k2y
∗) =

18

11
> 1 = c1y

∗. (63)

From Theorem 3.2, we know that A4(0.6363636364, 1) is
globally asymptotically stable. Figure 3 verifies this fact.

Example 5.2. Take e1 = 4, e2 = 0.1, b1 = c1 = a2 = c2 =
1. In this instance, x∗ is a solution to the equation

4

1 + k1
− 1.1− 0.1k2 − x = 0. (64)

(1) Take k2 = 1. According to the data presented in Figure
4, the variable x∗ exhibits a consistent pattern of decreasing
values as the parameter k1 increases. Furthermore, as k1
reaches sufficiently large values, the variable x∗ converges
towards zero, which means that the first population
eventually tends to extinction.
(2) Take k1 = 1. According to the data presented in
Figure 5, the variable x∗ exhibits a consistent pattern
of decreasing values as the parameter k2 increases.
Additionally, as k2 reaches sufficiently large values, it
can be inferred that x∗ approaches a limit of zero, which
means that the first population eventually tends to extinction.

Example 5.3. Now, let us consider the following non-
autonomous case. Take e2 = a1 = b1 = 1, c1 = 1

2 , a2 =
3+cos(t), c2 = 3− sin(t), e1 = 5− sin(t), k1 = 1

10 , k2 = 1
2 .

Then, by simple computation, we have yl = 1
2 , y

u = 2, thus

el1
1 + ku1 y

u
=

10

3
> 3 = eu2 (1 + ku2 y

u) + cu1y
u (65)

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1233-1242

 
______________________________________________________________________________________ 



0.8 

0.6 

x(t) 

0.4 

0.2 

。
。 2 4 6 8 10 

t 

Fig. 1. Numeric simulations of x(t) in Example 5.1, Case 1, the initial condition (x(0), y(0)) = (1, 0.1),
(0.8, 0.2), (0.2, 0.8), and (0.5, 0.5), respectively.

Fig. 2. Numeric simulations of y(t) in Example 5.1, Case 1, the initial condition (x(0), y(0)) = (1, 0.1),
(0.8, 0.2), (0.2, 0.8), and (0.5, 0.5), respectively.

and

cl2 = 2 >
0.6

(1.05)2
+ 1 =

eu1k
u
1

(1 + kl1y
l)2

+ eu2k
u
2 + cu1 . (66)

From Theorem 4.2, we know that the system is permanent,
and the positive solution of the system is globally
asymptotically stable. Figure 6 verifies this fact.

VI. DISCUSSION

Xi, Griffin, and Sun[1] pointed out that grassland cater-
pillars and grasshoppers are two main herbivorous insects.
Among them, the grasshoppers’ natural jumping seriously
reduces the feeding time of grassland caterpillars, ultimately

leading to a decline in the number of female caterpillars
laying eggs. The study of fear in this amensalism relationship
has yet to be reported. Assuming that amensalism can reduce
the birth rate and increase the death rate of the affected
species, this paper proposes an amensalism model with
fear effects for the first time and discusses its dynamic
behaviors. This study demonstrates that the fear effect played
a significant role in driving the extinction of the first species.

Note that our Theorems 3.1 and 3.2 reduce to Theorem
A when k1 = k2 = 0. That is, we generalize the main
results of Zhu and Chen[12] to more general cases. Our study
shows that the fear effect is an important ecological factor
influencing the dynamic behavior of amensalism systems.
However, this is only a theoretical study, and it is necessary
to combine the observations of field experiments to further
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Fig. 3. Phase trajectories of (x(t), y(t)) in Example 5.1, Case 2, the initial condition (x(0), y(0)) = (2, 2),
(2, 1.2), (0.1, 0.2), and (2, 0.5), respectively.

Fig. 4. Relationship of x∗ and k1.

propose a more reasonable model and carry out more targeted
research.
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