
 

  

Abstract—Rice Tungro Bacilliform Virus (RTBV) and Rice 

Tungro Spherical Virus (RTSV) cause Tungro virus disease. 

Although the two viruses have different characteristics, the 

green leafhopper, which only sucks on RTSV-infected plants, 

can catch and transmit RTSV. However, green leafhoppers, 

which only feed on RTBV-infected rice plants, cannot notice 

RTBV, and no transmission occurs. Meanwhile, when a green 

leafhopper sucks a plant infected with RTSV and then sucks a 

plant infected with RTBV, the green leafhopper can transmit 

both viruses. Pesticides can control the spread of tungro, but 

excessive use can cause losses to farmers. Furthermore, control 

theory and dynamic analysis are used to analyze the spread of 

the disease and determine the best use of pesticides to get the 

optimal solution. The results show that using specifications can 

reduce the intensity of the infected population. 

 

 
Index Terms—Tungro disease, mathematical modeling, 

Characteristics of the Virus, dynamical analysis, optimal 

control. 

 

I. INTRODUCTION 

HE rice plant (Oryza sativa L.) is a plant that has an 

essential role in the Indonesian economy. Apart from 

enabling poverty alleviation, this can also increase income 

and create jobs. However, farmers often experience 

problems cultivating rice, such as being attacked by pests 

and diseases [1-3]. 

Farmers often face diseases while growing rice, including 

the tungro virus. It is caused by RTSV and RTBV, 

transmitted by the green leafhopper (Nephotettix virescens) 

in a semipersistent manner without a latent period. The two 

viruses have distinct characteristics, and the leafhopper can 

spread both simultaneously. Furthermore, when the 

leafhopper feeds on plants infected with RTSV, it can 
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transmit the virus but cannot transmit RTBV when feeding 

on RTBV-infected plants. However, feeding on RTSV-

infected and RTBV-infected plants can transmit both viruses 

[4-7]. 

Infected vectors play an essential role in the spread of 

tungro virus disease. Therefore, studying population 

dynamics in the spread of Tungro Virus Disease (TVD) by 

considering virus characteristics is very important. Further 

analysis can be obtained by constructing a mathematical 

model [8]. The spread of TVD can be controlled through 

pesticides, but excessive pesticide use can negatively impact 

farmers. Therefore, an optimal control model must be 

developed to maintain and optimize pesticide use. Many 

mathematical models of the spread of plant diseases have 

been created by previous researchers, such as mathematical 

models of yellow disease in chili plants [9-11], 

mathematical models considering control using fungicides 

[12-14], mathematical models considering curative factors, 

roguing, replanting, and preventive [15-21], and 

mathematical models of TVD [22-28]. 

Based on previous models, only some researchers are still 

discussing mathematical models for spreading TVD. This 

can be seen in Figure 1, which shows the results of a 

literature search using the keywords used by Amelia [28] 

(see Figure 1).  

 
Fig. 1. The search results diagram on the Scopus, Dimension, and Google 

Scholar databases. 

Only seven articles addressed the spread of the tungro 

virus disease in rice plants. In one study, Anggriani [18] 

reported the impact of insecticide usage on tungro disease 
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vectors, while Suryaningrat [23] expanded the model to 

include biological factors and optimize control. 

Furthermore, the model was improved in 2022 with a 

spatiotemporal model [24]. Maryati [25] created a 

mathematical model that focuses on the growth phases of 

rice plants, dividing them into vegetative and generative 

phases. 

Blas considered the characteristics of the virus in the 

constructed mathematical model of the spread of TVD [26] 

and the roguing factor in the model [27]. Research that 

researchers had previously carried out was analyzed before 

developing the mathematical model, which was then proven 

by mapping the seven articles in Figure 2 using VOSviewer. 

Fig. 2. Mapping results of seven articles discussing the model of the spread 

of TVD. 

 

Figure 2 shows no nodes representing virus 

characteristics, no lines connecting the dynamic analysis 

(represented by the solution nodes of the equilibrium point 

and existence), and optimal control with characteristic virus 

nodes. This was also explained by Amelia [28] in her 

research, which stated that there had been no research 

discussing the analysis of mathematical models of the 

spread of TVD by considering the dynamic characteristics 

of the virus and determining its optimal control. Therefore, 

this research is intended to dynamically and numerically 

analyze Blas's mathematical model and create an optimal 

control model to determine the best pesticide dose. Thus, 

dynamic analysis is considered very important in studying 

the dynamic behavior of the model, while numerical 

simulations are carried out to confirm the analysis results. 

II. MATHEMATICAL MODEL 

This research will discuss the 2016 Blas mathematical 

model [26], using descriptions of parameters and variables 

and several parameter values used by Blas [26-27]. 
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III. DYNAMICAL ANALYSIS 

A. Positivity 

Positivity is proven by stating the lemma below.  
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In the same way it is obtained 
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B. Boundary 

Lemma 2: All solutions of system (1)-(8) are bounded for 
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So, we get:  
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C. Disease-Free Equilibrium Poit (DFEP) 

Make the infected compartment equal to zero to determine 

the DFEP obtained in equation (9). 
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 (9) 

D.  Basic Reproduction Number (BRN) 

The BRN measures the average secondary infections 

produced by contagious individuals in a susceptible 

population, considering the virus transmission 

characteristics. The BRN is calculated using the next-

generation matrix method since the spread of TVD does not 

have a latent population compartment. The process is based 

on Driessche's formulation [29]. So, obtained:  
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F and V are the Jacobian matrices of matrix of movement 

rates in and out of the compartment calculated at the DFEP. 

E. Stability analysis of DFEP 

Theorem 1: The DFEP for the model of the spread of TVD 

considering the differences in the characteristics of the virus 

and roguing will be stable when 
0 1.R   

Proof: The stability of DFEP is obtained from the 

eigenvalues of substitution of DFEP into the Jacobian 

matrix model. The characteristic equation is obtained as 

follows 
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From the explanation above, it can be seen that 0,ia  for 

1,...,4i =  if 
01 02, 1.R R   This means 0i  for 5,...,8,i = if 

01 02, 1.R R  This proves that, a mathematical model of the 

spread of TVD taking into account the different 

characteristics of the virus will be asymptotically stable if 

01 02, 1.R R    

IV. NUMERICAL SIMULATION 

This numerical simulation supports the analytical results 

in the previous sub-chapter. The initial values and 

parameters used are shown in Table I. 

TABLE I 

VALUE OF PARAMETERS AND VARIABLES 

Variable/ 

Parameter 
Value Unit Citation 

0V  0 Vector [27] 

1V  0 Vector [27] 

2V  0 Vector [27] 

3V  4000 Vector [27] 

0P  0 Plant [27] 

1P  0 Plant [27] 

2P  0 Plant [27] 

3P  20000 Plant [27] 

  0.035 Plant

Vector Day
  

[26] 

  0.09 Plant

Vector Day
 

[26] 

  0.01 Plant

Vector Day
 

[26] 

  0.08 Plant

Vector Day
 

[26] 

  0.06 Plant

Vector Day
 

[26] 

a  0.996 Plant

Vector Day
 

[26] 

b  0.996 Plant

Vector Day
 

[26] 

c  0.5 Plant

Vector Day
 

[26] 

f  0.33 Plant

Vector Day
 

[26] 

g  0.996 Plant

Vector Day
 

[26] 

0q  0.008 1

Day
 

[26] 

1q  0.009 1

Day
 

[26] 

2q  0.0125 1

Day
 

[26] 

3q  0.0125 1

Day
 

[26] 

r  0.001 1

Day
  

[26] 

B  0.033 1

Day
 

[26] 

V  100000 Vector [26] 
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Variable/ 

Parameter 
Value Unit Citation 

K  30000 Plant Assumption 

  0.07 Plant

Vector Day
 

[26] 

  0.03 Plant

Vector Day
 

[26] 

  0.033 Plant

Vector Day
 

[26] 

 

Using the values in Table I, a graph is obtained to study 

population dynamics numerically.  

 
Fig. 3. Population dynamics of rice plants when 

0 1R   

 
Fig. 4. Vector population dynamics when 

0 1.R   

Figure 3 shows the evolution of 
3P  and 

2 ,P  as well as 

those that are susceptible. At the start of planting, 
3P  

increased, then declined until extinction after three months. 

1P  also experienced an increase, followed by a drop until 

extinction after four months. In contrast, 
0P  decreased 

initially, but this was due to a high number of infected 

plants, leading to a drastic decrease. Meanwhile, those 
1P  

showed an increase in the first three months, then a 

reduction for the next five, ultimately stabilizing at 

approximately 900 plants. 

Figure 4 shows the population changes of 
3 2 and V V . The 

population declined drastically in the first month and 

became extinct after the sixth. On the other hand, 
1V  

experienced an increase in population initially, followed by 

a decrease before extinction after the sixth month. 
0V  

increased in the first month, then a drastic reduction, before 

experiencing another increase after the sixth month. This is 

because some infected vector became susceptible through 

retention. Furthermore, 
1V  experienced an increase in 

population at the start of the first month, followed by a 

decrease after the sixth. 

 
Fig. 5. Population dynamics of rice plants when 

0 1.R   

Figure 5 shows the population changes of susceptible and 

infected rice plants. 
0P  decreased in population early on, 

stabilizing at 1000 plants in the first three months because 

infected vector fed on them. Regardless of being 

1 2 3, ,  and P P P  experienced an increase in population at the 

beginning of the first month due to 
0P  being infected by 

vector. This shows that endemic occurs when 0 1.R    

 
Fig. 6. Vector population dynamics when

0 1.R   
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Figure 6 shows the population changes of susceptible and 

infected vector. 
0V  increased at the beginning of the first 

month, followed by a decrease. On the other hand, 
3V  

increased until it stabilized at 80,000. Meanwhile, 
2V  

stabilized at a higher population of more than 110,000. 
1V  

increased and stabilized at a population of 500. This 

suggests that it is endemic when
0 1.R   

V.  SENSITIVITY ANALYSIS AND NUMERICAL SIMULATION 

The sensitivity analysis carried out in this section consists 

of local sensitivity analysis and global sensitivity analysis. 

An example of a numerical simulation is given by varying 

the parameter value of  . 

A. Local Sensitivity Analysis 

A sensitivity analysis of the basic reproduction number 

was done using a partial derivative [30]. From the results of 

this analysis, the sensitivity index values for case 1 and case 

2 were obtained, respectively, as seen in Table II. 

TABLE II 

LOCAL SENSITIVITY ANALYSIS 

Parameter 
Sensitivity 

index for
01R  

Parameter 
Sensitivity 

index for
02R  

B  0.50000000 B  0.500000 

  0.50000000 a  0.500000 

b  0.50000000   0.500000 

r  0.50000000 r  0.500000 

0q  -0.49999980 0q  -0.500000 

1q  -0.49999999 3q  -0.500000 

  -1.00000000   -0.530956 

  c  -0.469043 

 

The results in Table II, the first and second columns, show 

that the parameters that really influence
01R are the 

parameters 
0 1, , , , , ,  and .q q r b B   The parameters that have 

a positive influence on increasing or decreasing the value of 

01R  are
0 1, ,  and .q q  Meanwhile, the other four parameters 

negatively relate to the
01R value. This means that if the 

value of the parameters , , ,  and r b B increases, the value 

of
01R decreases. 

The results in Table II, the third and fourth columns, show 

that the parameters influencing 
02R  are 

parameters
0 3, , , , , , ,  and .c q q r a B   The parameters that 

positively influence increasing or decreasing the value of 

02R  are 
0 3, , ,  and .c q q  Meanwhile, the other four 

parameters have a negative relationship with the 
02R value. 

This means that if the value of the parameters , , ,  and r a B  

increases, the value of 
02R decreases.  

B. Global Sensitivity Analysis 

The Latin Hypercube Sampling method and the Partial 

Rank Correlation Coefficient method were used for 

sensitivity analysis [31]. Five thousand samples were used 

to determine the parameters that influence the BRN, with 

each parameter assumed to have a value between 0 and 1. 

The results can be seen in Table III. 

The results in Table III, the first and second columns, 

show that the parameters that influence
01R are the 

parameters 
0 1, , , , , ,  and .q q r b B   The parameters that 

positively influence increasing or decreasing the value of
01R  

are
0 1, ,  and .q q  Meanwhile, the other four parameters 

negatively relate to the 
01R  value. This means that if the 

value of the parameters , , ,  and r b B increases, the value of 

01R decreases.  

The results in Table III, the two and fourth columns, show 

that the parameters that influence 
02R  are 

parameters
0 3, , , , , , ,  and .c q q r a B   The parameters that 

have a positive influence on increasing or decreasing the 

value of 
02R are 

0 3, , ,  and .c q q  Meanwhile, the other four 

parameters negatively relate to the
02R value. This means 

that if the value of the parameters , , ,  and r a B  increases, 

the value
02R decreases. 

TABLE III 

GLOBAL SENSITIVITY ANALYSIS RESULTS 

Parameter 
Correlation 

Value 
Parameter 

Correlation 

Value 

B  0.51526 B  0.55090 

  0.54232 a  0.57292 

b  0.54200   0.57484 

r  0.53966 r  0.57135 

0q  -0.51517 0q  -0.54296 

1q  -0.52531 3q  -0.55587 

  -0.52531   -0.68472 

  c  -0.26881 

C. Numerical Simulation 

The sensitivity analysis graphs for each population are 

presented by providing varying   parameter values. This is 

done to see the influence of these parameters on each 

population. 

From Figure 7 to Figure 10, it can be seen that the slow 

parameter has little effect on 
0P  and 

2P . It can be seen from 

Figure 7 and Figure 9 that there is no significant change. 

Meanwhile, the parameter   greatly influences 

1 3 and P P (shown in Figure 8 and Figure 10). 

 
Fig. 7. Susceptible rice populations 
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Fig. 8. Population of 
1P  

 

Fig. 9. Population of 
2P  

 

Fig. 10. Population of 
3P  

 

Fig. 11. Population of 
0V  

 

Fig. 12. Population of 
1V  

 

Fig. 13. Population of 
2V  
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Fig. 14. Population of 

3V  

In contrast to rice plant populations, the   parameter 

influences 
0 1 2, ,  and V V V . This can be seen from Figure 11 

to Figure 13, which shows a decrease or increase for each 

population when these parameters are changed. Meanwhile, 

3V  had no significant effect; as seen in Figure 14, the graph 

shows no significant change for 
3.V  

VI. OPTIMAL CONTROL 

A. Optimal Control Model 

The optimal control model for preventing the spread of 

TVD minimizes the population of 
1 3 and P P  by optimizing 

pesticide application. This is because these infected rice 

plants exacerbate the spread of TVD. Reducing the infected 

rice plant population can indirectly decrease the number of 

1 3 and V V . 
2P  are not treated with pesticides as they are 

believed to have a lower potential for spreading the TVD. 

The objective function used is described in equation (10).   
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With boundary conditions:  
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Optimal control theory, Pontryagin's minimum principle, 

is used in solving the model where u  is the pesticide 

application rate, 
1 2 3 4, , , , 0A A A A C   are the cost 

coefficients, and 
ft  is the final time. Control costs take the 

form of a quadratic function, where there is no linear 

relationship between the intervention's impact and the 

infected population's price [32]. Hamiltonian function is 

obtained as in equation (20). 
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 (19) 

With  where  is a costate variable often 

referred to as a Lagrange multiplier. According to 

Pontryagin's principle [33], the Hamiltonian function 

available in equation (21) must satisfy: 
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Stationary condition: 
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Since 0 ( ) 1u t  ,  

then: 

* 4 1 3 5 1 0 5 3 0 8 3 0max min ,1 ,0 .
2 P

PV PV b PV a PV a
u

CN

      + + − 
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B. Effect of Pesticides 

A numerical simulation of the optimal control model is 

presented using parameter values and variables as in Table 

II to see the effect of pesticides. 

Figures 15 to 22 show the population dynamics of rice 

plants and vectors treated with pesticides on 
1 3 and P P . 

Meanwhile, Figures 15 and 19 show that 
0 0and P V  have 

lower populations when not treated with pesticides. 

Conversely, the 
1 2 3 1 2 3, , , , ,  and P P P V V V  decrease when 

pesticides are applied to 
1P . This indicates that the use of 

pesticides on 
3P  reduce 

1 2 3 1 2 3, , , , ,  and .P P P V V V    

 

Fig. 15. Differences in 
0P  with and without pesticides 

 

Fig. 16. Differences in 
1P with and without pesticides.  

 
Fig. 17. Differences in 

2P with and without pesticides.  

 
Fig. 18. Differences in 

3P  with and without pesticides  

 
Fig. 19. Differences in 

0V with and without pesticides.  
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Fig. 20. Differences in 

1V  with and without pesticides  

 
Fig. 21. Differences in 

2V  with and without pesticides 

 
Fig. 22. Differences in 

3V  with and without pesticides. 

 
Fig. 23. Provision of pesticide control 

Pesticides are administered in increments, starting from 

1% of the usual dose and gradually increasing to 80%. On 

the sixth day, the pesticide application reaches 80%; on day 

seven, the application decreases until the tenth day. This 

dosing strategy aims to minimize costs and prevent the 

spread of the tungro virus disease, which could lead to 

financial losses for farmers and affect soil fertility and rice 

quality.   

VII. CONCLUSION 

The spread of TVD, taking into account the 

characteristics of the virus, will become endemic if 
0 1R  , 

and the DFEP will be asymptotically stable if 
0 1.R   In 

addition, optimal control results show that pesticides can 

control the spread of TVD. This can be seen from the 

optimal control model simulation results, which show that 

pesticide use, 
1 2 3 1 2 3, , , , ,  and P P P V V V  decrease more rapidly 

than those without pesticides. The optimal use of pesticides 

is according to the recommended dose. 
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