
Abstract—Reliability-based design optimization (RBDO) is a
valuable tool for optimizing while considering the impact of
uncertainties. However, its application in engineering,
specifically in pile foundation design, is complicated due to
high computational costs and the potential for nonlinear
iteration misconvergence. To address these challenges, we
propose a modified optimization calculation method utilizing
the mean first-order reliability method (MFORM). The revised
function of the reliability index is introduced to ensure
computational accuracy and linear regression is employed for
its calculation. The results of the case study demonstrate that
the modified optimization calculation method not only
improves computational efficiency but also enhances
computational accuracy. While the form of the performance
function significantly influences initial and local optimizations,
it has minimal impact on global optimization. Through local
and global optimizations, the objective function values are
reduced by 20.2% and 24.9%, respectively, for the first form
of the performance function. For the second form of the
performance function, reductions of 15.0% and 24.9%,
respectively, are achieved through local and global
optimizations.
Index Terms—reliability optimization; first-order reliability
method; revised function; linear regression; objective function

Ⅰ. INTRODUCTION

revious researchers have conducted numerous studies on
the reliability of pile capacity, yielding significant

research findings. For instance, Yang [1] used three
standard methods, namely Classification and Regression
Tree (CART), Artificial Neural Network (ANN), and
Support Vector Machine (SVM), to examine and evaluate
the performance of reliability state methods in a ten-bar
truss project. Huang [2] developed a general stochastic
method to verify the reliability index of single piles and pile

groups based on load tests. Bian [3] introduced setup effects
and proposed a methodology for separately calculating the
ultimate base and shaft resistance factors in reliability-based
design (RBD) for driven piles. Fan [4] considered multiple
failure modes and developed a probabilistic reliability
analysis framework that accounted for soil spatial variability
to assess serviceability performance. Fan 5] presented a
sampling-based algorithm for efficient reliability
evaluations of axially loaded piles to enhance computational
efficiency. Li [6] employed a bootstrap method to
characterize uncertainty in probabilistic models and analyze
its impact on pile reliability. Zhang [7] demonstrated how to
characterize the uncertainty of a pile capacity prediction
model and formulate resistance factors for designing
large-diameter bored piles, explicitly considering both types
of uncertainties. Zheng [8] utilized the entropy principle and
Newton iteration method to establish a reliability research
approach for the vertical bearing capacity of single piles.
Zhang et al. [9] employed the bearing capacity reduction
factor of single piles to investigate the influence of the
debris on the reliability index. Dithide [10] defined the
model factor of pile bearing capacity and examined the
influence of model factors on the reliability index by
analyzing data collected from 87 driven and 87 bored piles.
Kwak [11] compiled field measurement data from 52 steel
pipe piles, optimized the data using Bayesian theory and
subsequently studied the reliability index and target
reliability index of driven steel piles. ZHANG [12] collected
extensive settlement data for piles in bridge engineering and
proposed a settlement reliability research method utilizing
probability theory. The research above primarily focuses on
the ultimate bearing or serviceability limit state without
considering economic benefits. However, in engineering
practice, construction costs profoundly impact the project.
Therefore, optimizing engineering design becomes
increasingly crucial.

Implementing the reliability-based design optimization
process faces challenges such as high computation costs and
potential misconvergence of nonlinear iterations. Currently,
there is limited research on the reliability-based
optimization design of single piles under vertical load. In
the geotechnical engineering field, Zheng [13] proposes a
Bayesian optimization method for geotechnical data based
on the findings in reference [5]. Furthermore, Wang [14, 15]
introduces an optimization design method for foundation
engineering and extended foundations, considering bearing
capacity limit state, serviceability limit state, and economic
benefits. Zhang [16] presents a reliability optimization
design method for geotechnical engineering systems. Babu
[17], on the other hand, describes an inverse reliability
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method for determining the depth and section modulus of a
cantilever sheet pile wall. Basha [18] investigates stability
in sandy soils using reliability analysis and formulates an
optimization problem for targeted stability. Ching [19, 20]
establishes a sufficient condition for equivalence between
reliability and the factor of safety in reliability-based design
optimization.

Reliability-based design optimization has also been
applied in various other fields. For instance, Caitlyn [21]
synthesizes information on reliability-based optimization in
systems similar to offshore renewable energy systems.
Kamjoo [22] utilizes RBDO to develop a design load model
for bridge girders subjected to location-specific traffic loads.
Ho-Huu [23] proposes a novel approach combining
multi-objective evolutionary optimization and reliability
analysis. Meng [24], on the other hand, suggests a target
performance approach (TPA) to reduce computational costs
in nonprobabilistic reliability analyses.

This paper uses reliability theory to present a research
model for optimizing the design of single piles under
vertical loads. We propose an improved optimization
calculation method to tackle challenges such as high
computation costs and the misconvergence of nonlinear
iterations. Additionally, we validate the effectiveness of our
approach through a case study.

Ⅱ. ESTABLISHMENT OF RELIABILITY-BASED OPTIMIZATION
MODEL

The reliability optimization design method is considered
superior to traditional approaches as it takes uncertainties
into account. Fig. 1 illustrates two design methods [25].
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Fig. 1. Reliability optimization diagram

Assuming that 1 2 M( , , , )X X X X  are the design
parameters, which should be treated as random variables. In
civil engineering, the optimization design should consider
construction costs, such as material costs, labor costs, and
quality inspection fees. However, it is challenging to fully
account for all aspects of construction costs due to various
uncertainties. This paper primarily focuses on construction
material costs, making the objective function the quantity of
construction materials. According to optimization principles,

the reliability-based optimization design model is as follows
[16, 22-24]:
Objective
function

min ( )m X (1a)

Boundary
conditions

T
f

L U
( ) >     1, 2, ,

 1, 2, ,
i i

j j j

X i n
X X X j M
  

   

 (1b)

Where ( )m X is the objective function; i and T
j

are the reliability index and target reliability index,
respectively, based on the i-th failure mode; L

jX and U
jX

are the minimum and maximum values of Xj, respectively.
Based on Eq. (1), the reliability optimization design model
uses the target reliability index as a boundary condition to
overcome uncertainties in civil engineering.

In Eq. (1), the reliability index is often calculated using
the advanced first-order reliability method (AFORM), and
the calculation formula is [26]

T 1min ( ) ( )
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X C X 


  μ μ (2)

or

T 1min ( ) ( )i i i i

X F
i i

x x
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 (3)

Where  is the mean of X; C is the covariance
matrix; R is the matrix of correlation coefficients; F is
the failure zone; i and i are the mean and standard
variance of ix , respectively. Fig.2 shows the schematic
diagram of first-order reliability method (FORM). Based on
Fig.2, scholars have improved this method and obtained
meaningful results.

It can be known from Eq. (2) that the reliability index is
an optimization problem based on first order reliability
method (FORM). Therefore, the reliability optimization
design model is actually a dual optimization model, and
solving Eq. (1) is difficult. To solve this problem, this paper
proposes an improved reliability optimization calculation
method.
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Fig. 2. Schematic diagram of a reliability method

Ⅲ. IMPROVED RELIABILITY OPTIMIZATION ALGORITHM

From Eq. 1, reliability boundary conditions complicate
the optimization calculations. According to reliability theory,
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regardless of whether the limit state equation is linear or
nonlinear, the reliability is calculated using the mean first
order reliability method (MFORM), and the formula is [26]

 M

T

 ( )

G C G

g 
μ

(4)

1 2 n

( ) ( ) ( )| , | , , |x x x
g x g x g xG
x x x  

   
  

   
μ μ μ (5)

Where M is the reliability index based on the
MFORM. If Eq. (4) is used instead of Eq. (2), the
calculation of Eq. 3 is greatly simplified. However, the
calculation accuracy of the mean first-order reliability
method (MFORM) described by Eq. (4) is low, yielding
questionable optimization design results. To solve the above
problem, a revised function is established as follows:

M ( )t  (6)
Where ( )t  is the revised function, and  is the

reliability index calculated from Eq.4.
Eq. (6) is a monotonically increasing function. To

introduce Eq. (6) into Eq.1, the following lemma is
established:
Lemma: T( ) >i iX  and M MT( ) >i iX  are

equivalent. Where M ( )i X and MT
i are the reliability

index and the target reliability index, respectively, based on
Eq.6, and f 1, 2, ,i n  .

Proof: (1) T( ) >i iX  can infer M MT( ) >i iX  .

∵ ( )t  is a monotonically increasing function, and
T( ) >i iX  .

∴ T( ( )) > ( )i it X t  .

∵ M ( )t  .

∴ M( ( )) ( )i it X X  and  T  MT( )i it   can be
obtained.

∴ M MT( ) >i iX  .

(2) M MT( ) >i iX  can infer T( ) >i iX  .

∵ ( )t  is a monotonically increasing function, and
M MT( ) >i iX  .

∴ M MT( ( )) > ( )i it X t  .

∵ M ( )t  .

∴ M( ( )) ( )i it X X  and MT T( )i it   can be
obtained.

∴ T( ) >i iX  .
Thus, the lemma is established, and Eq. (1) can be

converted into the following:
Objective
function

min ( )m X (7a)

Boundary
conditions

T
f

L U
( ) >     1, 2, ,

 1, 2, ,
i i

j j j

X i n
X X X j M
  

   

 (7b)

Where M
i and MT

i are the reliability index and the
target reliability index, respectively, based on the MFORM,
and f1,2, ,i n  . Eq. (7) solves computational efficiency
and accuracy problems.

Linear regression method is used to determine the
expression of the revised function. The specific steps are as
follows:
Step 1: In the range of design variables (i.e., for pile

foundation engineering, pile length, and pile diameter),
different design values are selected and used to calculate
 and M based on Eq. (1) and Eq. (4).
Step 2: On the basis of step 1, linear regression method is

used to calculate the revised function.

Ⅳ. OPTIMIZATION DESIGN CALIBRATION

The linear regression method is a numerical approach that
requires the calibration of the revised function. Fig.3
illustrates the calibration of the optimal design point on a
two-dimensional plane. In Fig.3(a), the design point
coincides with the optimization point, allowing for
optimization design without needing for calibration. Fig.3(b)
reveals that the design point falls within the unsafe zone,
rendering the design parameters infeasible. Conversely,
Fig.3(c) demonstrates that the design point lies within the
feasibility domain, meeting the optimal design requirements.
However, this design point may entail unnecessary
economic losses, necessitating calibration. Therefore,
calibration is necessary for the two scenarios depicted in
Fig.3(b) and Fig.3(c). Appropriate calibration of design
parameter values, such as pile diameter and length, is
required to align the design points with the optimal design
point.
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Fig. 3. Calibration of optimal design points: (a) perfect mapping function;
(b) optimal design in the infeasible zone; (c) optimal design has potential to
be further optimized.

Based on the above analysis, the reliability optimization
design process is summarized as follows:
Step 1: Given the design parameters X, objective

function ( )m X and reliability boundary conditions, Eq. (1)
is used to establish the reliability optimization design
model.
Step 2: The revised function is solved by linear

regression ( M ( )t  ), and Eq. (7) is used to establish the
updated optimization design model.
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Step 3: Based on step 2, Eq. (7) is solved using an
optimization solution method, such as the linear
programming technique.
Step 4: According to Fig.(3), the optimization design

points are locally and globally calibrated.

Ⅴ. CASE STUDY

To verify the proposed method, this paper will take the
single piles under vertical load, for example, shown in Fig.4.
The basic parameters are shown in Tab.1. For the reliability
optimization design, the influence of groundwater on the
pile is not considered.
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Fig. 4. Schematic diagram of single piles under vertical loads

TABLE Ⅰ
BASIC PARAMETERS OF SOIL

Soil thickness
[mm]

s kiq [kPa
]

rkq [kPa
]

Sediment
thickness [mm]

0E [MP
a]

1000 85 6000 0 30

According to pile foundation engineering, two failure
modes are considered: (1) the vertical load is greater than
the ultimate bearing capacity of the pile, and (2) the vertical
settlement is greater than the allowable settlement specified
in the specification. The limit state equations of the two
failure modes are [26]

1 D Lg R Q Q   (8)

2 0g s s  (9)
Where 1g and 2g are the limit state equations of

vertical bearing capacity and settlement, respectively; R
is the ultimate vertical bearing capacity (kN);  DQ and

 LQ are the dead load and live load (kN), respectively; s
is the vertical settlement amount(mm) of single piles under

vertical load, and 0s is the vertical allowable
settlement(mm), the specific value of which is based on
relevant specifications. Many calculation formulas exist for
the vertical bearing capacity and settlement of single piles.
This paper adopts the formulas in the technical code for
building pile foundations in China to calculate the vertical
bearing capacity and settlement. The design parameters that
should be random variables are Poisson's ratio ( v ), the
Elastic Modulus ( sE ), the dead load (QD), and the live load
(QD) in Eq. (8) and Eq. (9), respectively. That is

D L s{ , , , }X Q Q v E . The statistical characteristics of the
parameters are shown in Table 2. Therefore, in the objective
function, the design variables are the pile length (l) and the
pile diameter (d).

TABLE Ⅱ
STATISTICAL CHARACTERISTICS OF RANDOM VARIABLES

QD[kN] QL[kN] v Es[MPa]
Distribution

type
Log-normal
distribution

Log-normal
distribution

Normal
distribution

Log-normal
distribution

Mean 1500 350 0.35 38
Standard
variance 180 55 0.05 7

3.2 and 2.0 are the target reliability indices of the vertical
bearing capacity and settlement of single piles [26].
According to the technical code for building pile
foundations in China [27], pile length and pile diameter (m)
are

9 16
0.3 1

l
d

 
  (10)

The reliability optimization model obtained by Eq. (1) is
Objective
function

2

min ( , )
4
dm D L l

 (11a)

Boundary
conditions 1( ) > 3.2X (11b)

2 ( ) > 2.0X (11c)
9 16l  (11d)
0.3 1d  (11e)

The least squares method calculates the revised function
described in Eq. (6). Firstly, different pile lengths and pile
diameters are given. Based on Eq. (8) and Eq. (9), the
reliability indexes corresponding to different pile lengths
and pile diameters are calculated, as shown in Tab.3 and
Tab.4. Then, the least squares method is used to fit the
revised function, which is shown in Fig.5 and Fig.6. As seen
from Fig.5 and Fig.6, the revised function is monotonically
increasing, which is consistent with the former results.
Additionally, the fitting accuracy of the quartic polynomial
for the revised function is satisfactory, which meets the
engineering requirement.

TABLE Ⅲ
CALCULATION RESULTS OF Β AND ΒM USING DIFFERENT DESIGN VALUES (BASED ON EQ.(8))

d 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

l 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5

β 0.47 0.83 1.10 1.52 1.87 2.18 2.44 2.72 3.03 3.64 3.92 4.19 4.63

βM 0.48 0.60 0.85 0.99 1.03 1.12 1.19 1.21 1.30 1.34 1.35 1.35 1.37
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TABLE Ⅳ
CALCULATION RESULTS OF Β AND ΒM USING DIFFERENT DESIGN VALUES (BASED ON EQ.(9))

d 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

l 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5

β 0.94 1.08 1.40 1.61 1.99 2.40 2.82 3.01 3.34 3.84 3.90 6.88 8.02

βM 1.06 1.17 1.63 1.98 2.56 3.17 3.89 4.45 5.10 5.91 6.12 6.88 8.03

Fig. 5. Fitting results of reliability index for vertical bearing capacity
(based on Table 3)

Fig. 6. Fitting results of reliability index for vertical bearing capacity
(based on Table 4)

Based on Fig.5 and Fig.6, the updated target reliability
index of vertical bearing capacity and the settlement are
1.33 and 2.46, respectively. According to Eq. (7), the
improved optimization model is
Objective
function

2

min ( , )
4
dm D L l

 (12a)

Boundary
conditions 1( ) > 1.30X (12b)

2 ( ) > 2.0X (12c)
9 16l  (12d)
0.3 1d  (12e)

To illustrate the method of this paper, the initial pile
length and pile diameter values are 13 m and 0.8 m,
respectively [27]. The corresponding objective function is

6.53 m3, and the reliability indexes based on Eq. (2) and Eq.
(4) are 3.41 and 2.62, respectively. The initial reliability
index is in the security domain, according to Fig.3. (13, 0.8)
are taken as the initial design values to optimize the pile
length and the pile diameter using Eq. (7), and the results
are shown in Tab.5. Tab.5 shows that the optimization result
satisfies the reliability boundary condition. 1 nearly
coincides with the boundary conditions and does not need to
be corrected. The objective function m(X) value is 5.215,
which is 20.2% smaller than the initial objective function
value.

TABLE Ⅴ
RELIABILITY OPTIMIZATION RESULTS BASED ON EQ.(8) AND EQ.(9)

X MFORM m(X)
[m3]d [m] l [m] β1 β2

Initial value 0.800 13.000 3.410 2.620 6.531
Initial

optimization 0.736 12.332 3.201 2.493 5.215

Local updating 0.736 12.332 3.201 2.493 5.215
Global updating 0.758 10.874 3.206 2.010 4.905

From the optimization theory, the initial optimization
results in Tab.5 are only local optimizations. For example,
in Tab.5, β2 is much larger than the target reliability, and
the initial result needs to be globally optimal. In addition,
the dead load (QD), live load (QL), modulus of elasticity
( sE ), and Poisson’s ratio (v) have significant impacts on the
optimization results. Therefore, according to the global
optimization theory, the initial optimization results are
globally calibrated considering random
variables D L s{ , , , }X Q Q v E . Table 5 shows that β1 and β2
substantially coincide with the target reliability boundary
conditions. Therefore, the global calibrations are the
optimization results. The objective function value (m(X)) is
4.905, reduced by 24.9% and 4.7% from the initial function
value and the optimization result, respectively. Therefore,
the design parameters after local and global optimization
can significantly reduce construction costs.

According to the reliability theory, if the form
performance function changes, the reliability will change
based on the MFORM for the same failure mode.
Accordingly, the boundary conditions in Eq. (1) or Eq. (7)
differ. Eq. (8) and Eq. (9) are equivalently converted into
the following forms:

3
D L

ln Rg
Q Q




(13)

4
0

ln sg
s

 (14)
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TABLE Ⅵ
CALCULATION RESULTS OF Β AND ΒM USING DIFFERENT DESIGN VALUES   (BASED ON EQ.(13))

d 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

l 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5

β 0.34 0.78 1.09 1.42 1.81 2.18 2.32 2.75 3.03 3.53 4.03 4.29 4.62

βM 0.48 0.82 1.07 1.35 1.57 1.97 2.01 2.16 2.46 2.82 3.00 3.10 3.34

TABLE Ⅶ
CALCULATION RESULTS OF Β AND ΒM USING DIFFERENT DESIGN VALUES   (BASED ON EQ.(14))

d 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

l 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5

β 0.96 1.01 1.24 1.58 1.97 2.43 2.85 3.11 3.30 3.89 4.27 4.61 4.91

βM 0.92 1.01 1.15 2.00 2.00 2.54 2.93 3.17 3.45 3.99 4.39 4.74 4.98

Fig. 7. Fitting results of bearing capacity reliability indicators (based on
Table 6)

Fig. 8. Fitting reliability index fitting results (based on Table 7)

TABLE Ⅷ
RELIABILITY OPTIMIZATION RESULTS BASED ON EQ.(15) AND EQ.(16)

X MFORM m(X)
[m3]d [m] l [m] βa βb

Initial value 0.800 13.000 3.410 2.620 6.531
Initial optimization 0.772 11.864 3.204 2.647 5.551

Local updating 0.772 11.864 3.204 2.647 5.551
Global updating 0.749 11.131 3.197 2.001 4.902

According to foregoing calculation method, the reliability
index is calculated using different pile lengths and pile
diameters.  and  M are shown in Tab.6 and Tab.7 based
on Eq. (13) and Eq. (14).

According to Table 6 and Table 7, the quartic polynomial
fits the reliability index using MATLAB software. The
fitting results are shown in Fig.7 and Fig.8.

From Fig.7 and Fig.8, the revised functions based on Eq.
(13) and Eq. (14) are

M 4 3 20.0028 0.0297 0.059 0.7498 0.2178         (13)
M 4 3 20.0285 0.3548 1.5579 3.8173 1.6193          (14)
It can be seen from Eq. (15) and Eq. (16) that as the form

of the performance function changes, the revised function
also changes. Given (13, 0.8) as the initial design values, the
design variables are optimized and updated according to the
methods above. The results in Table 8 show that the initial
optimization and local calibration results are 5.551 m3,
which is different from the previous analysis. Therefore, the
form of the performance function has a specific influence on
local optimization. Table 8 also shows that the global
optimization result is near the previous analysis results.
Therefore, the effect of the form of the performance
function on the global optimization result is negligible.

Ⅵ. SUMMARY AND CONCLUSIONS

The reliability optimization design method of single piles
under vertical loads is proposed. The conclusions are
summarized as follows:

This article proposes a reliability-based design
optimization (RBDO) method, which simplifies reliability
analysis by using the mean first-order reliability method
(MFORM), with high computational efficiency and strong
generalizability.

In order to ensure calculation accuracy, a modification
function was established between the reliability index and
the target reliability index, and the calculation results were
corrected, greatly improving the calculation accuracy.

For the same pile failure mode, the reliability correction
function varies with different functional functions, leading
to diverse local optimization results. Nevertheless, the
disparity in global optimization results is negligible,
allowing us to disregard the impact of the functional
function's form on the overall optimization outcomes.
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