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Abstract—The electric logging image (ELI) is a valuable tool
for revealing the underlying geological characteristics. However,
due to the well structure and logging equipment limitations,
ELIs can hardly cover 100% of the well perimeter and contain
blank bands. Neural networks are widely adopted in image
processing applications due to their excellent ability to capture
image information. Therefore, based on convolutional neural
networks (CNNs), this work proposes a method based on
generative adversarial networks (GANs) for the completion
of blank bands in ELIs. Specifically, it includes a generator
network and two discriminator networks. The former is used
to complete the blank bands to deceive the latter, and the latter
is used to discriminate whether the ELIs are real or completed
by the former. Optimization by adversarial training enables
the generator network to generate more challenging adversarial
samples, while the discriminator network can judge the authen-
ticity of the input samples more accurately. In addition, to cope
with ELIs with a large range of contextual information such
as gravelly rock images with complex structures and textures,
dilated convolutional layers are introduced into the generator
network to increase the range of the network’s receptive field
and thus improve the model’s performance. Ultimately, it is
verified that the proposed method can effectively complete ELIs
with blank bands.

Index Terms—Electric Logging Imaging, Generative Adver-
sarial Network, Completion of Blank Bands, Convolutional
Neural Network

I. INTRODUCTION

ELECTRIC logging images (ELIs) show the formation
and geological features obtained through electric log-

ging measurements [1], [2], [3]. This technique measures the
electrical properties of the wellbore’s surrounding formation.
The measurements are recorded as electrical resistivity or
conductivity and transformed into an image that displays
the variations in electrical properties along the wellbore [4].
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These images provide valuable information about the subsur-
face formation, including formation lithology, porosity and
permeability, bed boundaries and stratigraphy, fluid satura-
tion, etc.

• Formation lithology: Variations in electrical properties
identify different lithologies (sandstone, shale, lime-
stone) crucial for reservoir characterization and under-
standing rock types.

• Porosity and permeability: ELIs indicate porous and
permeable zones within the formation, determining the
reservoir’s potential fluid storage and flow capacity.

• Bed boundaries and stratigraphy: ELIs reveal layering
and stratigraphic boundaries within the formation, aid-
ing in understanding the geological history and arrange-
ment of rock layers.

• Fluid saturation: ELIs indicate fluid saturation within
the formation. Analyzing resistivity or conductivity vari-
ations helps estimate the presence and distribution of
hydrocarbons or water.

However, due to limitations in wellbore structure and
ELIs instruments, there may be unmeasured sections during
scanning, resulting in less than 100% coverage and the
appearance of blank bands on the ELIs [5]. To facilitate
subsequent work by geological researchers, it is necessary
to fill these blank bands [6], [7]. Here are some commonly
used methods for filling these gaps:

• Interpolation method: Interpolation algorithms can infer
missing data based on existing measurement data. Com-
mon interpolation methods include linear interpolation,
spline interpolation, and Kriging interpolation. These
methods can be used to fill the blank stripes based on
the available data [8].

• Simulation method: By analyzing the characteristics of
existing data, a model can be established to simulate the
missing data [9]. For example, a geological model can
be used to simulate the distribution of missing data and
fill the blank stripes accordingly.

• Neighboring reference method: Based on the charac-
teristics of existing data, find the adjacent data to the
blank stripes and use them as reference values to fill the
gaps [10]. This method is suitable when the wellbore
structure changes minimally.

• Statistical method: By conducting statistical analysis on
existing data and obtaining the distribution pattern, the
blank stripes can be filled according to this pattern. For
example, mean, median, and other statistical measures
can be used to fill the gaps.

With the advancement of deep learning (DL) theory, neural
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networks have found success in image processing [11], [12],
[13], [14], [15], [16]. In recent years, researchers have started
applying neural networks to ELIs. For instance, Wang et
al. [17] utilized neural networks to fill in ELIs. They adopted
the concept of deep neural network architecture and created
an Encoder-Decode network model. This model extracts fea-
tures through the encoder layer and restores images through
the decoder layer. Zhang et al. [18] proposed a method of
filling the blank bands based on convolutional neural net-
works (CNNs), which constructs an improved U-net network
structure using the TensorFlow framework, and then obtains
the image filling model through multiple training.

However, the current neural network techniques used in
blank strip-filling methods are limited and lack specificity.
Adversarial neural networks (ANNs) offer a solution to
enhance generator networks by generating more challenging
adversarial samples through adversarial training [19], [20],
[21]. Meanwhile, discriminator networks can more accurately
determine the authenticity of input samples. ANNs are exten-
sively employed in image generation, image restoration [22],
image classification [13], and other fields [23], [24]. Inspired
by this concept, this study proposes a method based on
generative adversarial networks (GANs) to complete blank
bands in ELIs. The contribution of this work is summarized
as follows:

1) A GANs-based method for completing blank bands in
ELIs is proposed. Adversarial training optimization is
used to enable the generator to generate more chal-
lenging adversarial samples, while the discriminator
network can determine the authenticity of the input
samples more accurately.

2) For ELIs that may contain complex structures and
textures, dilated convolutional layers are introduced
to increase the range of the network’s receptive field
without increasing the parameters and computational
burden, thus improving the model’s performance.

II. MODEL CONFIGURATION

The model structure, as depicted in Fig. 1, is based on
the utilization of CNNs and GANs. Specifically, the model
comprises three main components: a global discriminator
network, a local discriminator network, and a generator
network. The generator network is specifically employed to
fill in the blank bands of the images, whereas the other two
networks assist in the training process. It is important to
note that during each training iteration, the discriminator
is updated first, followed by the generator network. The
objective of the discriminator is to effectively distinguish
whether the image is real or completed by the generator
network, while the generator network aims to deceive the
discriminator by accurately filling in the blank bands. During
the testing phase, neither of the discriminator networks are
utilized.

A. Generator network

CNNs are widely utilized in various image-processing
tasks, including image classification, detection, generation,
and restoration [25], [26], [27]. Nonetheless, when con-
fronted with signals containing extensive contextual informa-
tion, such as images of rocky terrain with complex structures

TABLE I
THE DETAILED CONFIGURATION OF THE GENERATOR NETWORK.

Layer Configuration

1 kernel.64× 5× 5; st.1× 1;µ.1;ReLU

2 kernel.128× 3× 3; st.2× 2;µ.1;ReLU

3 kernel.128× 3× 3; st.1× 1;µ.1;ReLU

4 kernel.256× 3× 3; st.2× 2;µ.1;ReLU

5 kernel.256× 3× 3; st.1× 1;µ.1;ReLU

6 kernel.256× 3× 3; st.1× 1;µ.1;ReLU

7 kernel.256× 3× 3; st.1× 1;µ.2;ReLU

8 kernel.256× 3× 3; st.1× 1;µ.4;ReLU

9 kernel.256× 3× 3; st.1× 1;µ.8;ReLU

10 kernel.256× 3× 3; st.1× 1;µ.16;ReLU

11 kernel.256× 3× 3; st.1× 1;µ.1;ReLU

12 kernel.256× 3× 3; st.1× 1;µ.1;ReLU

13 kernel.128× 4× 4; st. 1
2
× 1

2
;µ.1;ReLU

14 kernel.128× 3× 3; st.1× 1;µ.1;ReLU

15 kernel.64× 4× 4; st. 1
2
× 1

2
;µ.1;ReLU

16 kernel.32× 3× 3; st.1× 1;µ.1;ReLU

17 kernel.3× 3× 3; st.1× 1;µ.1;Sigmoida

a For data normalization.

and textures, traditional CNNs may struggle to effectively
capture this information. To address this issue, dilated con-
volutional layers have been introduced. These layers expand
the receptive field by incorporating voids (dilation) in the
convolutional kernel [28]. The computation is performed as
follows:

y[i, j] =
∑
m

∑
n

(x[i+ µm, j + µn]]× w[m,n] + b) , (1)

where x represents the input feature map, y represents the
output feature map, w denotes the convolution kernel, µ
denotes the dilation rate, (i, j) represents the coordinates of
the output feature map, (m,n) represents the coordinates
of the convolution kernel, and b denotes the bias term.
Here, µ determines the spacing between elements in the
convolution kernel. For example, a convolution operation
with a dilation rate of 4 would skip 3 pixels horizontally
and vertically during convolution. A schematic diagram
of dilated convolution is shown in Fig. 2. By employing
dilated convolutional layers, the network’s receptive field can
be expanded without increasing the number of parameters
and computational burden, thereby enhancing the model’s
performance.

Table I records the detailed configuration of the generator
network, where kernel.num×size×size denotes the num-
ber of convolutional kernel channels and size, st.size×size
denotes the stride size, µ.size denotes the dilation rate size,
as well as ReLU and Sigmoid denote the activation function
used respectively.

B. Discriminator network

Similarly, the discriminator network is also built on CNNs.
The configurations of the global discriminator and local
discriminator networks are presented in Table II. The final
layer of the discriminator is a fully connected layer, which
generates an output that predicts the probability of the image
being real or fake. It is important to mention that the local
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Fig. 1. Schematic diagram of the model structure.
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of two-layer convolution is 5×5
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Feature map

Receptive field
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size of two-layer convolution is 9×9

Fig. 2. A schematic diagram of dilated convolution compared to traditional
convolution.

discriminator receives pixel blocks (128× 128) that are cen-
tered on the completed region. Additionally, the global input
image resolution is 256 × 256. Therefore, in comparison to
the local discriminator, the global discriminator incorporates
an additional convolutional layer to decrease the resolution
to 128 × 128. The activation function for all layers except
the last one is ReLU, while the last layer uses Sigmoid to
produce real probability values.

TABLE II
THE DETAILED CONFIGURATION OF THE GLOBAL DISCRIMINATOR AND

LOCAL DISCRIMINATOR NETWORKS.

Global Local

kernel.64× 5× 5; st.2× 2;µ.1 kernel.64× 5× 5; st.2× 2;µ.1

kernel.128× 5× 5; st.2× 2;µ.1 kernel.128× 5× 5; st.2× 2;µ.1

kernel.256× 5× 5; st.2× 2;µ.1 kernel.256× 5× 5; st.2× 2;µ.1

kernel.512× 5× 5; st.2× 2;µ.1 kernel.512× 5× 5; st.2× 2;µ.1

kernel.512× 5× 5; st.2× 2;µ.1 kernel.512× 5× 5; st.2× 2;µ.1

kernel.512× 5× 5; st.2× 2;µ.1 -

fully − connected.1024 fully − connected.1024

fully − connected.2048

1

C. Learning

Let I represent the input image, MG represent the binary
mask of the generator network. In conventional electric
logging imaging software, the pixel value of the blank bands
is typically set to a constant when converting the data from
the polar plate into image data. By scanning point by point
and setting the mask of the region to be completed as 1 and
0 for other regions, we can obtain MG. Let G represent the
generator network, and G(I,MG) represent the output of
the generator network. Similarly, the discriminator network
is defined as D(I,MD).

The loss functions utilized in this work comprise the
Mean Square Error (MSE) loss and the Adversarial loss,
both commonly employed in image completion [29], [30].
The MSE loss quantifies the discrepancy at the pixel level
between the generated image and the real image. It computes
the square of each pixel difference and then averages them.
In this work, MSE is employed in the generator network and
we compute MSE against the filled region. Therefore, it is
essential to multiply the pixel difference by the mask, which
is computed as follows:

MSE = ∥(G(I,MG)− I)×MG∥2. (2)

Adversarial loss utilizes binary cross-entropy loss (BCE),
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which is a loss function employed in training GANs. Ad-
versarial training of the generator and discriminator can
enhance the training stability of GANs and the quality of the
generated images. It’s calculated by min-max optimization as
follows:

BCE = minGmaxDE(log(1−D(I,G(I,MG)),MG)

+ log(D(I,MD))),
(3)

where E denotes the mathematical expectation.

Algorithm 1 The algorithm flow of the model learning
process

1: while Training cycle¡ Iteration limit do
2: Build mini-batch electric logging images I .
3: Build the binary mask of I .
4: while G training cycle¡ G iteration limit do
5: Train the generator network.
6: Update parameters of the generator network.
7: end while
8: while D training cycle¡ D iteration limit do
9: Fix the generator network.

10: Train the discriminator networks.
11: Update parameters of the discriminator networks.
12: end while
13: while Convergence or not do
14: Train the two types of networks alternately
15: Update parameters of the generator network.
16: Update parameters of the discriminator networks.
17: end while
18: end while

By combining Eq. 2 and Eq. 3, the loss function is defined
as:

Loss =minGmaxDE(MSE

+γ log(1−D(I,G(I,MG)),MG) + log(D(I,MD))),
(4)

where γ denotes the hyperparameter, which was set to 0.0004
after validation set testing.

The algorithm flow of the model learning process is shown
in Algorithm 1. Specifically, the generator network is trained
first. Secondly, fix the generator network and train two dis-
criminator networks. Finally, train the two types of networks
alternately until the loss value reaches an acceptable range.
In the testing phase, only the generative network is used, and
the electric logging images to be completed are fed into the
generator network to obtain the completed electric logging
images.

III. EXPERIMENT ANALYSIS

A. Experiment Dataset

The dataset is derived from the actual electric logging
images provided by China National Petroleum Corporation
at around 700m downhole of the C2 well under the Bo
block. The batch size is set to 64. The generator network is
trained for 5, 000 iterations. The discriminator is trained for
1, 000 iterations. Alternate training iterations 5, 000 times. In
addition, it runs in the TeslaP100 environment.

B. Testing Performance

Take six sets of ELIs as samples, the comparison between
the original ELIs and the completed ELIs using our method is
shown in Fig. 3. It can be observed that the original logging
images display blank bands of varying sizes and patterns due
to the limitations of the well structure and logging equipment.
Additionally, the texture of the formation lacks continuity
and has distinct boundaries.

Our method incorporates detailed convolutional layers and
uses GAN for adversarial training. As a result, the generated
samples more accurately reproduce the texture details of
ELIs. Furthermore, the completion of the geological structure
texture appears natural, continuous, and complete. This will
greatly facilitate the investigation of formation structure,
lithology, and other factors during the logging process.

To further validate the effectiveness of the proposed
method, we complete images from the Place2 dataset [31] for
validation. Specifically, we set a random mask on the images
and completed them using our method. In Fig. 4, we show 4
sets of samples. The correctness of our method completion
can be verified by comparing the completed image with the
original image.

C. Comparative analysis on SSIM and PNSR

Not only that, but we also compare with related works
on two common evaluation indicators to fully illustrate the
effectiveness of this work. They are:

1) Structural similarity index metric (SSIM) is a common
indicator of similarity between two images. It considers the
similarity of brightness, contrast, and structure, and can pro-
vide a more comprehensive image-filling quality assessment.
In addition, the closer its value is to 1, the higher the
similarity of the two images. The calculation is as follows:

SSIM(Ij , Ik) =
(2µjµk + C1)× (2σjk + C2)

(µj
2 + µk

2 + C1)× (σj
2 + σk

2 + C2)
,

(5)
where µj and µk represent the mean of images Ij and Ij ,
respectively; σj and σk represent the variance of images Ij
and Ij , respectively; σjk represents the covariance of images
Ij and Ij ; C1 and C2 are constants to avoid denominator 0,
and their values are,

C1 = (c1 × L)
2
, C2 = (c2 × L)

2
, (6)

where L represents the maximum possible value of the input
pixel value, and c1 and c2 are constants with values of 0.01
and 0.03 respectively.

2) Peak signal-to-noise ratio (PSNR) is a common indica-
tor for measuring the quality of the image, which is used to
compare the difference between the original image and the
image after processing. In addition, the higher the value, the
higher the similarity between the quality of the image to the
original image. The calculation method is as follows:

PSNR(Ij , Ik) = 10× log10

(
L2

MSE(Ij , Ik)

)
. (7)

Furthermore, the comparison methods include a traditional
blank bands completion algorithm based on the interpolation
method (I-BBC) [8] and a blank bands completion algorithm
based on CNNs (CNN-BBC) [18]. We conducted experi-
ments on the dataset derived from the actual electric logging
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Fig. 3. Comparison between the original ELIs and the completed ELIs. In each set of sample, the original ELIs are shown on the left, and the completed
ELIs by our method are shown on the right.

TABLE III
THE COMPARATIVE RESULTS ON SSIM WITH DIFFERENT IMAGE

MISSING RATIOS.

Method 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5
I-BBC 0.8815 0.8378 0.8086 0.7412 0.6815

CNN-BBC 0.9314 0.9090 0.8518 0.8214 0.7922

CA-BBC 0.8509 0.8123 0.7838 0.7547 0.7019

PCNN-BBC 0.8968 0.8512 0.8167 0.7634 0.7155

RFS-BBC 0.9318 0.9087 0.8427 0.8199 0.7850

Our proposed 0.9678 0.9283 0.8701 0.834 0.8054

images provided by China National Petroleum Corporation
at around 700m downhole of the C2 well under the Bo
block and recorded the results based on these indicators,
as shown in Fig 5. It can be observed that the proposed
algorithm outperforms the experimental benchmarks in terms
of both SSIM and PSNR. This demonstrates the ability of
our algorithm to preserve image structure. A higher SSIM
value indicates that the algorithm can accurately restore
structural details in ELIs, which is crucial for revealing
potential geological features. Additionally, a higher PSNR
also illustrates the algorithm’s capability to reduce image
distortion, resulting in a visually closer resemblance between
the filled image and the original one. It better retains the
detailed information of the image and minimizes potential
blurring, noise, or other distortions that may arise from the
completion process.

D. Comparative analysis on different image missing ratios

Furthermore, we conducted a comparative analysis of
the SSIM and PSNR across different image missing ratios:
(0−0.1), (0.1−0.2), (0.2−0.3), (0.3−0.4), and (0.4−0.5),
by applying masks. In addition, our approach was compared

TABLE IV
THE COMPARATIVE RESULTS ON PNSR WITH DIFFERENT IMAGE

MISSING RATIOS.

Method 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5
I-BBC 25.8123 23.7102 20.5105 18.757 16.8486

CNN-BBC 28.1546 27.0548 25.899 24.7463 22.1551

CA-BBC 26.2934 24.1861 21.1580 19.1515 18.3821

PCNN-BBC 27.8543 26.4346 25.6843 23.1861 21.9480

RFS-BBC 30.1382 28.5860 27.1532 25.7498 24.1883

Our proposed 31.7059 29.8137 28.4530 26.1281 25.4837

with the blank bands completion algorithm based on context
attention (CA-BBC) [32], the blank bands completion algo-
rithm using partial convolution (PCNN-BBC) [33], and the
blank bands completion algorithm based on recurrent feature
reasoning (RFS-BBC) [34]. The comparative results are
presented in Table III and Table IV. It can be observed that
under different image missing ratios, our proposed method
consistently achieves the best performance in both SSIM and
PSNR metrics, with an average improvement of 7.74% and
18.87%, respectively, compared to other algorithms.

IV. CONCLUSION

This work proposes a GANs-based method for the com-
pletion of ELI blank bands. By introducing detailed convolu-
tional layers and adversarial training, the geological structure
texture of the completed ELIs is restored correctly, naturally,
continuously, and completely. It will be more conducive to
investigating formation structure and lithology in the logging
process. In the follow-up work, we expect to study the
completion method for finer-grained and complex ELIs to
promote the practical application of logging exploration.
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Fig. 4. Effectiveness verification on Place2 dataset. In each sample set, the original image is shown on the left, the random mask image in the middle,
and the completed image on the right.
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