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Abstract—In this article, certain equivalent conditions for
the existence of the secondary generalized inverse are obtained.
Several new characterizations of secondary generalized inverse
are presented. Also, the representation of {1,3θ}, {1,4θ},
{1,2,3θ} and {1,2,4θ} are given here.

Index Terms—Moore-Penrose inverse, secondary generalized
inverse, secondary transpose

I. Introduction

THE concept of secondary transpose of a matrix is
introduced by Anna Lee [4] by reflecting the entries

through the secondary diagonal. The secondary transpose
As (denoted as Aθ in the case of conjugate secondary
transpose) is related to the classical transpose by the
relation Aθ = VA∗V where V is a unit secondary diagonal
matrix, i.e., the matrix V has entries ‘1‘ on its secondary
diagonal and all the remaining entries are zeros. Using
the involution operator ‘θ ’, the secondary generalized
inverse is defined by Vijayakumar [9] and later modified by
Savitha et al. [5]. Even though their definition is similar
to the well-known Moore-Penrose inverse and Minkowski
inverse, it can be noted that the existence of secondary
generalized inverse is not always assured. For different
characterizations of Minkowski inverse, refer [2], [3], [13].
For more ideas related to secondary transpose one can refer
[6], [7], [8], [10]. A determinantal representation and some
characterizations of secondary generalized inverse are given
in [5]. In this article, we further characterize the secondary
generalized inverse in line with the characterization of the
Minkowski inverse [2].

Here are some preliminary results and notations.

II. Preliminaries
Throughout this paper, A∈Cm×n denotes that A is an m×n

matrix over a complex field. C (A) and N (A) are the the
column space and the null space of A, respectively.

Definition 1. [5] An n×m matrix G is called the secondary
generalized inverse of A if it satisfies the following condi-
tions: (1) AGA = A (2) GAG = G
(3)(AG)θ = AG (4)(GA)θ = GA

The matrix G is denoted by A†θ , and is unique whenever
it exists. For any A ∈ Cm×n, let A{1,2,3θ} denotes the set
of matrices satisfying (1),(2),(3) and A{1,2,4θ} is the set
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of matrices satisfying (1),(2),(4). PL,M is the projector on L
along M, where L and M are two subspaces of Cn such that
L⊕M = Cn.

Lemma 1. [5] Given an m × n matrix A, the following
statements are equivalent.

1) A has s-cancellation property.
2) rank(AAθ ) = rank(Aθ A) = rank(A)
3) A†θ exists and

A†θ = Aθ (AAθ )−A(Aθ A)−Aθ

where (AAθ )− and (Aθ A)− are arbitrary generalized in-
verses of AAθ and Aθ A respectively.

The following theorem depicts the application of general-
ized inverses in solving matrix equations.

Theorem 1. [12] Let A ∈ Cm×n,B ∈ Cp×q and D ∈ Cm×q.
Then, there is a solution X ∈ Cn×p to the matrix equation
AXB = D if and only if, for some A(1) ∈ A{1} and B(1) ∈
B{1}, AA(1)DB(1)B = D; In this case, the general soltion is

X = A(1)DB(1)+(In −A(1)A)Y +Z(Ip −BB(1))

where A(1) ∈ A{1} and B(1) ∈ B{1} are fixed but arbitrary;
and Y ∈ Cn×p and Z ∈ Cn×p are arbitrary.

III. Results
A determinantal formula for secondary generalized inverse

is given by Savitha et al. [5]. Further characterizations for
secondary generalized inverse in terms of rank factorizations,
rank conditions and projectors are obtained here.
The following lemma gives a formula for calculating the
secondary generalized inverse (s-g inverse) of a secondary
diagonal matrix (s – diagonal matrix).

Lemma 2. If D is a secondary diagonal matrix,
such that D = s − diag(d1,d2, ...,dn), then D†θ = s −
diag(d†θ

n ,d†θ

n−1, ...,d
†θ

1 ), whenever D†θ exists.

Proof: The result can be directly verified by the defini-
tion of secondary generalized inverse. Also, note that

d†θ

i =


1
di

if di ̸= 0

0 if di = 0
f or i = 1,2, ...n.

The following example demonstrates Lemma 2.

Example 1. Consider a secondary diagonal matrix

D =

0 0 3
0 0 0
2 0 0

, the s-g inverse is D†θ =

0 0 1
2

0 0 0
1
3 0 0


The Moore-Penrose inverse exists for all matrices, and

Greville [1] gives a formula for the same using rank fac-
torization. However, the secondary generalized inverse does
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not exist for all matrices. The following example depicts the
importance of imposing certain restrictions on the factors
of rank factorization of a matrix to obtain the secondary
generalized inverse.

Example 2. Let A =

0 1 0
0 0 1
0 0 0

. Clearly, the rank of the

matrix is two, and the rank factorization is given by

A = FG =

0 1 0
0 0 1
0 0 0

 =

0 1
1 0
0 0

 [
0 0 1
0 1 0

]
Here, Fθ AGθ =

[
0 0
0 0

]
and hence we can not proceed

further.

This leads to imposing certain restrictions on F and G to
obtain a formula for secondary generalized inverse, whenever
exists.

Theorem 2. Let A ∈ Cm×n matrix with rank r be written as
the product of two matrices F and G, i.e.,

A = FG (1)

where F ∈ Cm×r and G ∈ Cr×n have full column rank
and full row rank, respectively. Then secondary generalized
inverse of A,

A†θ = Gθ (Fθ AGθ )−1Fθ . (2)

where Fθ and Gθ are the secondary conjugate transpose of
matrices F and G satisfying the conditions
rank(F) = rank(Fθ ) = rank(FFθ ) = rank(Fθ F) and
rank(G) = rank(Gθ ) = rank(GGθ ) = rank(Gθ G)
respectively.

Proof: To show that Fθ AGθ is nonsingular, by (1) we
have

Fθ AGθ = (Fθ F)(GGθ ) (3)

And both the factors of RHS of (3) are r × r matrices. Thus,
Fθ AGθ is the product of two nonsingular matrices
∴ Fθ AGθ is nonsingular and hence

(Fθ AGθ )−1 = (Gθ G)−1(Fθ F)−1.

Now, it can be easily verified that

X = Gθ (Gθ G)−1(Fθ F)−1Fθ

satisfies all conditions given in definition 1.
This is demonstrated using example 3.

Example 3. Let A =

3 6 13
2 4 9
1 2 3

. Here, rank of the matrix

is 2 and the rank factorization is

A =

3 6 13
2 4 9
1 2 3

= FG =

3 13
2 9
1 3

[
1 2 0
0 0 1

]
.

Now,

A†θ = Gθ (Fθ AGθ )−1Fθ

=

1 0
0 2
0 1

[
8 −319/10
−1 4

][
3 9 13
1 2 3

]

=

−79/10 41/5 83/10
2 −2 −2
1 −1 −1


Also, it can be noted that the Moore Penrose inverse A† =−3/130 −11/65 79/130
−3/65 −22/65 79/65
1/13 3/13 −9/13

 of the matrix A is different

from the secondary generalized inverse A†θ of A.

Lemma 3. Consider two matrices A ∈Cm×p and B ∈Cq×m.
Then

(PC (A),N (B))
θ = PC (Bθ ),N (Aθ )

Proof: Let R = (PC (A),N (B))
θ = V P(N (B))⊥,(C (A))⊥V .

Now R2 = R, and hence

C (R) =V (N (B))⊥ =C (V B∗) =C (Bθ ),

Now,
(N (R))⊥ = (N (P(N (B)⊥,C (B)⊥)V ))⊥ = C (V (PC (A),N (B)) =

C (VA) = C (Aθ )∗), implies N (R) = (C (Aθ )∗)⊥ =N (Aθ ).
Hence, R = PC (Bθ ),N (Aθ ).

Characterizations for A{1,2,3θ}, and A{1,2,4θ} using
rank factorization are given below:

Theorem 3. Consider A ∈ Cm×n and G ∈ Cn×m. Then, the
following statements are equivalent.

1) G ∈ A{1,3θ};
2) Aθ AG = Aθ ;
3) AG = PC (A),N (Aθ )

In this case, A{1,3θ} = {A(1,3θ ) + (In − A(1,3θ )A)Y |Y ∈
Cn×m} where A1,3θ ∈ A{1,3θ} is fixed, but arbitrary.

Proof: (1) =⇒ (2).Since, G ∈ A{1,3θ},
Aθ AG = Aθ (AG)θ = (AGA)θ = Aθ .
(2) =⇒ (3) Since (AG)θ A = A, from condition (2) we
have, AG = (AG)θ AG, and this results in (AG)θ = AG. Thus,
AG = (AG)θ AG = (AG)2, ie., AG is a projector.
Now, by (AG)θ = AG, we have AGA = A, which, together
with Aθ AG = Aθ , shows that C (AG) =C (A) and N (AG) =
N (Aθ ). Hence AG = PC (A),N (Aθ ).
(3) =⇒ (1). Clearly, AGA = PC (A),N (Aθ )A = A. Applying
Lemma 3 to AG = PC (A),N (Aθ ), we get

(AG)θ = PC (A),N (Aθ ) = AG.

Also, for a fixed A(1,3θ ), we have

A{1,3θ}= {X ∈ Cn×m| AZ = AA(1,3θ )}.

Now by Lemma 3 we get

A{1,3θ}= {A(1,3θ )+(In −A(1,3θ )A)Y |Y ∈ Cn×m}

directly.
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Theorem 4. Consider an m× n matrix A with rank(A) =
rank(Aθ A) = r. Let A = PQ be the full rank factorization of
A such that P ∈ Cm×r

r and Q ∈ Cr×n
r . Then

A{1,2,3θ}=
{Q−1

R (Pθ P)−1Pθ |Q−1
R is an arbitrary right inverse of Q}

Proof: Q−1
R (Pθ P)−1Pθ ∈ A{1,2,3θ} can be verified

easily. To prove the converse, let X ∈ A{1,2,3θ}. Since
X ∈A{1,2}, we have X =Q−1

R P−1
L , for some P−1

L ∈Cr×m
r and

Q−1
R ∈ Cn×r

r . Also, as X ∈ A{3θ} we have that (AX)θ = AX
if and only if (PP−1

L )θ = PP−1
L iff P−1

L = (Pθ P)−1Pθ .
This implies that every X ∈ A{1,2,3θ} must be of the form
Q−1

R (Pθ P)−1Pθ . Hence the proof and the following example.

Example 4. Let the matrix A be as in Example 3.

A =

3 6 13
2 4 9
1 2 3

= PQ =

3 13
2 9
1 3

[
1 2 0
0 0 1

]
.

Choose the arbitrary right inverse Q−1
R of Q be

Q−1
R =

1 0
0 0
0 1

.

Hence,

A{1,2,3θ}= Q−1
R (Pθ P)−1Pθ =

−39/10 21/5 43/10
0 0 0
1 −1 −1

 .

Theorem 5. Consider A ∈ Cm×n and G ∈ Cn×m. Then, the
following statements are equivalent.

1) G ∈ A{1,4θ};
2) GAAθ = Aθ ;
3) GA = PC (Aθ ),N (A)

In this case, A{1,4θ} = {A(1,4θ ) + Z(Im − A(1,4θ )A)|Z ∈
Cn×m} where A(1,4θ ) ∈ A{1,4θ} is fixed, but arbitrary.

Proof of this theorem follows similar lines to theorem 3.

Theorem 6. Consider an m× n matrix A with rank(A) =
rank(Aθ A) = r. Let A = PQ be the full rank factorization of
A such that P ∈ Cm×r

r and Q ∈ Cr×n
r . Then

A{1,2,4θ}=
{Qθ (QQθ )−1P−1

L |P−1
L is an arbitrary right inverse of Q}

This theorem is illustrated in the following example.

Example 5. For

A =

3 6 13
2 4 9
1 2 3

= PQ =

3 13
2 9
1 3

[
1 2 0
0 0 1

]
,

the arbitrary left inverse of P−1
L of P is

[
0 −1 3
0 1/3 −2/3

]
.

Hence,

A{1,2,4θ}= Qθ (QQθ )−1P−1
L =

0 −7/3 17/3
0 2/3 −4/3
0 1/3 −2/3

 .

Theorem 7. For any finite m × n matrix A with rank(A)
= rank(Aθ ) = rank(AAθ ) = rank(Aθ A), then the s-g inverse
A†θ = ZAY where Y = (Aθ A)(1)Aθ and Z = Aθ (AAθ )(1) such
that Y ∈ A{1,2,3θ} and Z ∈ A{1,2,4θ} respectively.

Proof: Since

rank(A) = rank(Aθ ) = rank(AAθ ) = rank(Aθ A),

we have C (Aθ A) =C (A) =C (Aθ ) for a finite matrix A.
Then,

Aθ = Aθ AU (4)

for some matrix U . On taking secondary conjugate trans-
pose, we get

A =Uθ Aθ A. (5)

As a consequence, AYA = Uθ Aθ A(Aθ A)(1)Aθ A = A, Thus Y
satisfies condition (1) of s-g inverse.
But rank(Y ) ≥ rank(A) and, by the definition of Y ,

rank(Y )≤ rank(Aθ ) = rank(A).

Therefore,

rank(Y ) = rank(A),

and hence Y ∈ A{1,2}. Using equations (4) and (5)

AY = A(Aθ A)(1)Aθ

(AY )θ = (A(Aθ A)(1)Aθ )θ

= (A(Aθ A)(1)Aθ AU)θ

=Uθ Aθ A(Aθ A)(1)Aθ

= A(Aθ A)(1)Aθ

This implies AY = (AY )θ . Thus, the condition (3) of defini-
tion 1 is established.
Similarly, we can have

AZA =Uθ Aθ AAθ (AAθ )(1)Aθ A =Uθ Aθ A = A

Thus Z ∈ A{1}.
However, rank(Z) ≥ rank(A) and by the definition of Z,

rank(Z)≤ rank(Aθ ) = rank(A).

Therefore rank(Z) = rank(A) and hence Z ∈ A{1,2}.
Now, using the equations (4) and (5)

ZA = Aθ (AAθ )(1)A = Aθ AU(AAθ )(1)Uθ Aθ A

(ZA)θ = (Aθ AU(AAθ )(1)Uθ Aθ A)θ

= Aθ AU(AAθ )(1)Uθ Aθ A = ZA

Now consider,
A†θ = ZAY (6)

Let X denotes RHS of (6).
Let X = ZAY . Since Y,Z satisfies condition (1) of s-g inverse,
it can be easily verified that X ∈ A{1,2}. Moreover,(5) gives
AX = AY, XA = ZA.
But by the definition of Y and Z,
ZA = (ZA)θ and AY = (AY )θ .
Thus X satisfies all conditions given in definition 1. Therefore
A†θ = X .

Remark 1. It can be easily verified that whenever
A†θ ∈ Cm×n exists, the secondary generalized inverse is
A†θ = A(1,4θ )AA(1,3θ ).

From Example 3, 4, 5, and 6 it can be verified that

A†θ = A(1,4θ )AA(1,3θ ) =

Engineering Letters

Volume 32, Issue 12, December 2024, Pages 2346-2351

 
______________________________________________________________________________________ 



0 −7/3 17/3
0 2/3 −4/3
0 1/3 −2/3

3 6 13
2 4 9
1 2 3

−39/10 21/5 43/10
0 0 0
1 −1 −1


=

−79/10 41/5 83/10
2 −2 −2
1 −1 −1


Theorem 8. For any finite matrix A, then secondary general-
ized inverse A†θ = AθVAθ where V ∈ (Aθ AAθ )(1), provided
A satisfies θ -cancellation property.

Proof: Now consider,

A†θ = A†θ AA†θ = A†θ AA†θ AA†θ AA†θ

= A†θ (AA†θ )θ A(A†θ A)θ A†θ

= A†θ (A†θ )θ Aθ AAθ (A†θ )θ A†θ

Since (Aθ AAθ )(1) is g-inverse of Aθ AAθ , we have

A†θ = A†θ (A†θ )θ Aθ AAθVAθ AAθ (A†θ )θ A†θ

= A†θ (AA†θ )θ AAθVAθ A(A†θ A)θ A†θ

= A†θ AA†θ AAθVAθ AA†θ AA†θ

= A†θ AAθVAθ AA†θ

= (A†θ A)AθVAθ (AA†θ )

= AθVAθ

IV. Different characterizations of Secondary generalized
inverse

Theorem 9. Consider A ∈ Cm×n. Then, the following state-
ments are equivalent.

1) A†θ exists.
2) rank(Aθ AAθ ) = rank(A)
3) AC (Aθ )⊕N (A) = Cm.

Proof: (1) =⇒ (2) If A†θ exists, then
rank(AAθ ) = rank(Aθ A) = rank(A).
Since C (A)∩N (A) = {0}, we have

rank(Aθ AAθ ) = rank(AAθ )−dim(C (AAθ )∩N (Aθ ))

= rank(A)−dim(C (A)∩N (Aθ )

= rank(A)

(2) =⇒ (3) From the conditions,

rank(A) = rank(Aθ AAθ )

= rank(AAθ )−dim(C (AAθ )∩N (Aθ ))

and rank(A)≥ rank(AAθ )

we get that C (AAθ ) ∩N (Aθ ) = {0} and rank(AAθ ) =
rank(A), which implies that AC (Aθ )⊕N (A) = Cm.
(3) =⇒ (1) From AC (Aθ )⊕N (A) = Cm, it follows that
C (AAθ )∩N (Aθ ) = {0} and rank(AAθ ) = rank(A). Thus
C (A)∩(N)(Aθ )= {0}, ie., rank(Aθ A)= rank(A). Hence A†θ

exists.
We use the following important result from [11] to obtain

the condition for the existence of s-g inverse in terms of the
index of AAθ and Aθ A.

Theorem 10. [11] Let A ∈ Cm×n
r , and let two subspaces

T ⊆Cn and S ∈Cm be such that dim(T )≤ r and dim(S )=
m− dim(T ). Suppose H ∈ Cn×m such that C (H) = T and
N (H) = S . If A(2)

T ,S exists, then Ind(AH) = 1. Further, we

have A(2)
T ,S = (HA)♯H = H(AH)♯.

Theorem 11. Consider an m×n matrix A. Then the follow-
ing conditions are equivalent:

1) A†θ exists
2) Ind(Aθ A) = 1 and N (Aθ A)⊆N (A)
3) Ind(AAθ ) = 1 and C (A)⊆C (AAθ )

Proof: (1) ⇐⇒ (2) The only if part is obvious by
Theorem 10 and Lemma 1. Conversely, since rank(A) =
rank(Aθ A), fromN (Aθ A)⊆N (A) and Ind(Aθ A)= 1, it fol-
lows that C (Aθ )∩N (A)=C (Aθ A)∩N (Aθ A)= {0}, which
implies rank(Aθ A) = rank(A). Hence A†θ exists directly by
Lemma 1.
The proof of (1) ⇐⇒ (3) is similar to (1) ⇐⇒ (2).

Theorem 12. Consider an m×n matrix with rank(Aθ AAθ )=
rank(A) and let G∈Cn×m. Then, the following statements are
equivalent:

1) G = A†θ

2) There exist P ∈ Cm×m and Q ∈ Cn×n such that AGA =
A,G = Aθ P,G = QAθ

Moreover,

P = (Aθ )(1)A†θ +(Im − (Aθ )(1)Aθ )B,

Q = A†θ (Aθ )(1)+C(In −Aθ (Aθ )(1))

where B ∈ Cm×m and C ∈ Cn×n are arbitrary and
(Aθ )(1) ∈ (Aθ ){1}.

Corollary 1. Let A ∈ Cn×n with rank(Aθ AAθ ) = rank(A),
and let G ∈Cn×m. Then, the following statements are equiv-
alent:

1) G = A†θ ;
2) There exists X ∈ Cm×n such that AGA = A,G = Aθ XAθ

In this case,

X =(Aθ )(1)A†θ (Aθ )(1)+(Im−(Aθ )(1)(Aθ ))P+Q(In−(Aθ )(Aθ )(1))

where P,Q ∈ Cm×n are arbitrary and (Aθ )(1) ∈ (Aθ ){1}

Theorem 13. Consider a matrix A ∈ Cm×n. Then, the fol-
lowing statements are equivalent:

1) A†θ exists;
2) There exists P ∈ Cm×m such that A = PAAθ A;
3) There exists Q ∈ Cn×n such that A = AAθ AQ

In this case, A†θ = (PA)θ = (AQ)θ .

Proof: There exists a P ∈Cm×m such that A = PAAθ A is
equivalent toN (AAθ A)⊆N (A). This assertion is equivalent
to rank(A) = rank(AAθ A). Now, the equivalence of (1) and
(2) is obvious by the item (2) in Theorem 9. The proof of
the equivalence of (1) and (3) can be obtained in a similar
way.
Moreover, if A†θ exists, we first claim that (PA)θ ∈
A{1,3θ ,4θ}. In fact, using A = PAAθ A, we infer that

(A(PA)θ )θ = PAAθ = PA(PAAθ A)θ

= PAAθ AAθ Pθ = A(PA)θ
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A(PA)θ A = (A(PA)θ )θ A = PAAθ A = A((PA)θ A)θ = (Aθ Pθ A)θ

= ((PAAθ A)θ Pθ A)θ = (Aθ AAθ (Pθ )2A)θ

= (Aθ PAAθ A)Aθ (Pθ )2A)θ

= (Aθ PPAAθ AAθ AAθ (Pθ )2A)θ (Aθ (P)2(AAθ )3(Pθ )2A)θ

= Aθ (P)2(AAθ )3(Pθ )2A = (PA)θ A

which implies (PA)θ ∈ A{1,3θ ,4θ}.
Finally, according to Remark 1, we obtain

A†θ = (PA)θ A(PA)θ

= ((PA)θ A)θ (PA)θ = Aθ PAAθ Pθ

= (A(PA)θ A)θ Pθ = (PA)θ

To prove (AY )θ ∈ A{1,3θ ,4θ} and A†θ = (AQ)θ the same
method given above can be used.

The result given in the following lemma helps to prove
theorem 14.

Lemma 4. Let A ∈ Cm×n and B ∈ Cn×m. Then, Im −AB is
nonsingular if and only if In −BA is non singular, and in
which case, (Im −AB)−1 = Im +A(In −BA)−1B

Theorem 14. Let A ∈ Cm×n and A(1) is an arbitrary gen-
eralized inverse of A. Then, the following statements are
equivalent:

1) A†θ exists:
2) Aθ A+ In −A(1)A is nonsingular.
3) AAθ + Im −AA(1) is nonsingular.

In this case,

A†θ = (A(Aθ A+ In −A(1)A)−1)θ

= ((AAθ + Im −AA(1))(−1)A)θ

Proof: Denote
B = Aθ A+ In −A(1)A and C = AAθ + Im −AA(1).
(1) =⇒ (2). If A†θ exists, using items (1) and (2) in Theorem
13 , we have A= PAAθ A for some G∈Cm×m.It can be easily
verified that

(A(1)PA+ In −A(1)A)(A(1)AAθ A)+ In −A(1)A) = In

which shows the non singularity of D = A(1)AAθ A + In −
A(1)A and D can be rewritten as D = In −A(1)A(In −Aθ A).
Thus by lemma 4, B is non singular.
(2) =⇒ (1). Since B is nonsingular, from AB = AAθ A, we
have A = AAθ AB−1. Therefore, A†θ exists by items (1) and
(3) of theorem 13.
(3) ⇐⇒ (2). Since B and C can be rewritten as B = In −
(A(1)−Aθ )A and C = Im −A(A(1)−Aθ ), from Lemma 4, we
have the equivalence of (3) and (2) immediately.
In this case, from items (1) and (2), we infer that

Bθ A†θ = (Aθ A+ In −A(1)A)θ Aθ

Aθ AA†θ +A†θ −Aθ (Aθ )(1)A†θ = Aθ

which, together with the item (2) gives A†θ −(AB−1)θ . Anal-
ogously, we can derive that A†θ − (C−1A)θ . This completes
the proof.

Theorem 15. Let A ∈ Cm×n. Then, the following statements
are equivalent:

1) A†θ exists;

2) rank(AAθ ) = rank(Aθ ) and there exists X ∈ Cm×m and
a projector Y ∈ Cm×m such that

XAAθ −Y X = Im,

AAθ X = XAAθ and AAθY = 0. In this case, A†θ = Aθ X.

Proof: If A†θ exists, then rank(AAθ ) = rank(A)
by lemma 1. Let Q = AAθ + Im − AA†θ . Therefore,
Q((Aθ )†θ A†θ + Im − AA†θ ) = Im, which implies Q is non-
singular. Also, AA†θ Q = QAA†θ = AAθ .
Denote Y = Im−AA†θ . Clearly Y 2 =Y and AAθY =YAAθ =
0. Let X = AA†θ Q−1 −Y . Hence

XAAθ = (AA†θ Q−1 −Y )AA†θ Q = AA†θ Q−1QAA†θ = AA†θ ,

−Y X =−Y (AA†θ Q−1 −Y ) =−YAA†θ Q−1 +Y = Y

Evidently, XAAθ = AAθ X and XAAθ −Y X = Im.
(2) =⇒ (1). Premultiplying XAAθ −Y X = Im, by AAθ , we
have that

AAθ XAAθ −AAθY X = AAθ (7)

Equation (7) together with AAθ X = XAAθ and AAθY = 0,
gives AAθ AAθ X = AAθ if and only if C (AAθ X − Im) ⊆
N (AAθ ). Since N (AAθ ) = N (Aθ ), from rank(AAθ ) =
rank(Aθ ), we get Aθ = Aθ AAθ X , i.e.,

A = Xθ AAθ A.

Consequently, A†θ exists according to items (1) and (2) in
Theorem 13. Finally, applying Theorem 13, we get A†θ =
Aθ X directly.

Remark 2. Let A ∈ Cm×n and there exists X ∈ Cn×n and
a projector Y ∈ Cn×n such that XAAθ −Y X = In, Aθ AX =
XAAθ and Aθ AY = 0. Then, A†θ = (AX)θ .

V. Conclusion

In this article, we have presented different characteriza-
tions of secondary generalized inverse and the necessary
conditions for its existence.
Further, possible areas of research in this field include
1) Obtaining iterative methods for representing the secondary
generalized inverse.
2) Extending the existence of secondary generalized inverse
to commutative ring, Hilbert space etc.
These explorations will open newer frontiers of secondary
generalized inverse.
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