
 

 
Abstract—Traffic sign detection plays an essential role in the 

technology of self-driving vehicles. Recently, deep learning 
methods have significantly advanced the field of traffic sign 
recognition. Nevertheless, faced with increasingly complex 
traffic scenarios, practical applications of traffic sign detection 
still encounter challenges, including false detections, missed 
detections, and reduced accuracy. To tackle these challenges, we 
introduce an enhanced algorithm for traffic sign detection built 
on the YOLOv8 model, aimed at improving performance and 
accuracy. Firstly, a Multi-Scale Convolutional Attention 
(MSCA) module is embedded into the backbone architecture to 
improve the model’s feature extraction capabilities at multiple 
scales, enhancing its focus on target areas. Furthermore, a small 
object detection layer is added during the detection phase, 
effectively reducing the false positive and missed detection rates 
for small objects. Finally, we present the Inner-WIoU loss 
function for bounding boxes, which integrates a dynamic 
non-monotonic focusing mechanism with auxiliary boxes. This 
boosts the model’s capability to identify objects and enhances 
overall detection performance. The findings from the 
experiments demonstrate that the enhanced algorithm obtains 
an mAP0.5 value of 83.8% on the TT100K dataset, indicating a 
7.8% increase compared to the baseline YOLOv8 algorithm. 
When compared to existing algorithms, the proposed method 
demonstrates competitive performance. 
 

Index Terms—Traffic Sign Detection, YOLOv8, Multi-Scale 
Attention, Small Object Detection, Bounding Box Loss 
 

I. INTRODUCTION 

ith the ongoing advancements in the automotive 
industry, autonomous driving technology has been 

advancing rapidly. Autonomous driving systems rely on 
sensors to detect the vehicle’s condition and its surrounding 
environment in real time. Then, an intelligent system 
performs planning and decision-making, and finally, the 
control system executes driving operations [1], [2]. The 
technology for detecting traffic signs is crucial to 
autonomous driving. By recognizing and interpreting road 
traffic signs, it delivers key information to aid vehicles in 
precise navigation and decision-making, enhancing both 
driving safety and operational efficiency [3], [4], [5], [6]. 
Consequently, accurately and efficiently detecting traffic 

 
Manuscript received June 28, 2024; revised October 19, 2024. This 

research received funding from the National Natural Science Foundation of 
China (61775169) and the Education Department of Liaoning Province 
(LJKZ0310). 

Shuo Wang is a postgraduate student at the School of Computer Science 
and Software Engineering, University of Science and Technology Liaoning, 
Anshan 114051, China (e-mail: 1243102566@qq.com). 

Yang Xu is a professor in the School of Computer Science and Software 
Engineering at the University of Science and Technology Liaoning, Anshan 
114051, China (corresponding author, phone: 86-13889785726; e-mail: 
705739580@qq.com). 

signs is of considerable research significance and value for 
the progression of autonomous driving technology.  

Early traffic sign recognition methods primarily relied on 
traditional image processing techniques, emphasizing the 
analysis of visual characteristics such as hue and geometric 
form found in traffic signage. However, as the number of 
vehicles increases and road conditions become more complex, 
these methods encounter difficulties in delivering real-time 
and precise detection of traffic signs in intricate scenarios. 
For instance, if traffic signs are partially blocked, damaged, 
or impacted by harsh weather, detection accuracy declines 
significantly. Additionally, these algorithms often need 
considerable computational power, making it challenging to 
fulfill the criteria for instant detection. To resolve these 
challenges, numerous advanced algorithms have been created 
in recent years to enhance the effectiveness and precision of 
traffic sign recognition. 

The rapid growth in deep learning technology has 
significantly accelerated the development of object detection 
algorithms. The detection of traffic signs has seen marked 
improvements in speed, accuracy, and efficiency thanks to 
the integration of deep learning techniques. Some 
well-known algorithms for object detection include R-CNN 
[7] and YOLO [8]. Of these, YOLO (You Only Look Once) 
is notable for achieving an exceptional trade-off between 
speed and precision, enabling it to quickly and reliably 
identify objects in images, thus significantly improving 
detection efficiency without sacrificing recognition accuracy. 

YOLOv8, introduced as an open-source deep learning 
model by Ultralytics on January 10, 2023, was created to 
handle multiple applications in computer vision. Building 
upon YOLOv5, YOLOv8 significantly enhances 
computational speed and detection precision, allowing it to 
perform effectively across various computer vision 
applications, including segmentation, detection, tracking, as 
well as pose estimation. Although YOLOv8 performs well in 
traffic sign detection, it faces practical challenges, including 
difficulties in identifying small targets, false positives, and 
missed detections. To tackle these problems, this study 
introduces an enhanced traffic sign detection method 
(MI-YOLO) derived from YOLOv8, aiming to enhance the 
precision of detection. The key contributions of this research 
include: 

This paper initially integrates a attention mechanism into 
YOLOv8. This mechanism functions as an adaptive selection 
process, guiding neural networks to concentrate on the most 
pertinent areas of the input. Given the highly complex 
environment of traffic sign detection, where numerous 
irrelevant objects can complicate the detection process, the 
focus mechanism equips the model with the ability to 
highlight important areas, thus improving detection accuracy 
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and efficiency. This research introduces an innovative 
Multi-Scale Convolutional Attention (MSCA) module [9], 
which adaptively merges feature maps across multiple scales 
using weighted fusion, enhancing the network's 
representational and generalization capabilities. This method 
enables the model to better combine multi-scale data, 
significantly boosting overall effectiveness. 

Additionally, due to the considerable variation in size 
between traffic signs and surrounding objects in images, 
traffic signs captured by vehicle cameras often cover only a 
small area of the overall image. To tackle the difficulties 
posed by these small objects, this paper introduces a 
dedicated small object detection module within YOLOv8. 
This layer is specifically crafted to improve detection 
accuracy for smaller objects, helping to minimize missed and 
incorrect detections while ensuring accurate recognition and 
classification of small traffic signs. This enhancement greatly 
boosts the model's practical effectiveness and dependability 
in real-world traffic conditions. 

The performance of object detection algorithms is greatly 
affected by how the loss function is structured, especially the 
important contribution of bounding box loss. This research 
proposes a new bounding box loss function called 
Inner-WIoU. Leveraging the dynamic non-monotonic focus 
mechanism of Weighted Intersection over Union (WIoU), 
this method employs the concept of 'outlierness' to evaluate  
anchor boxes instead of relying exclusively on IoU, while 
adopting a innovative gradient allocation approach [10]. 
Additionally, the auxiliary bounding box loss function 
(Inner-IoU) accelerates convergence by adjusting auxiliary 
box sizes through a scale factor ratio [11]. By combining 
WIoU with Inner-IoU to form Inner-WIoU, this method 
mitigates the issues found in traditional IoU-based metrics, 
including intense competition between top-tier anchor boxes 
and adverse gradient impacts from suboptimal samples, and 
boosts localization precision, thus greatly enhancing overall 
detector performance. Experimental findings reveal that this 
enhanced algorithm excels in both accuracy and robustness, 
underscoring its potential benefits for use in autonomous 
driving technologies. 

II. RELATED WORK 

Identifying traffic signs is a key challenge within the 
expansive area of object detection, remaining a prominent 
subject of research. Traffic sign identification can utilize   
traditional image analysis techniques and state-of-the-art 
deep learning architecture. Sugiharto et al. [12] devised a 
detection framework centered on color segmentation 
strategies. They converted RGB images into the HSI color 
space to more effectively identify specific colored traffic 
signs. Morphological operations such as erosion and labeling 
were then applied to refine the search areas. Features from the 
Regions of Interest (ROI) were collected using histogram of 
oriented gradients. Consequently, classification into traffic 
signs or non-traffic signs was conducted using either Support 
Vector Machines (SVM) or clustering methods. Wang et al. 
[13] introduced a detection approach designed to identify 
non-red areas in prohibition and warning signs. They 
developed a new red bitmap extraction method that takes into 
account the color relationships among adjacent pixels to 
enhance accuracy. In the hole filtering phase, multiple weak 

classifiers were used in succession to effectively reduce false 
positives. In the last decision phase, a SVM was used to 
further reduce the false alarm rate. Shape-based methods for 
traffic sign detection generally focus on identifying potential 
regions based on sign shapes. Boujemaa et al. [14] used a 
distance transform matching technique, which creates DT 
images by calculating the proximity of each pixel to its 
closest edge. This pixel-based approach allows for detecting 
objects of any shape, rather than being limited to specific 
shapes. 

The advent of deep learning has facilitated artificial neural 
systems to independently identify and retrieve intricate 
characteristics from extensive datasets, showcasing their 
impressive capacity to fit data accurately. This advancement 
has prompted the development of many high-efficiency 
target recognition systems. Deep learning models for target 
recognition can generally be divided into two categories: 
two-stage and single-stage methods. Methods that operate in 
two stages first create proposed bounding boxes and then 
refine them to produce the final detection outcome. While 
this process increases the complexity and time required, 
resulting in slower detection speeds, it delivers greater 
precision in object localization and identification. 
Representative algorithms in this class are R-CNN [7] and  
Mask R-CNN [15]. On the other hand, single-stage detectors 
perform object identification in a single step, bypassing the 
candidate region generation phase entirely. This method 
minimizes computational load and boosts detection speed, 
making it ideal for real-time uses. Examples of prominent 
one-stage detectors include YOLOv1 [16], YOLOv3 [17], 
YOLOv5, and YOLOv7 [18]. 

Improvements in technology for deep learning-based 
object recognition have resulted in significant advancements 
in the study of recognizing traffic signs. Numerous scholars 
are concentrating on investigating methods for detecting 
traffic signs using deep learning. Liu et al. [19] presented a 
neural network architecture known as MR-CNN, capable of 
fusing features from various scales, which boosts recall rates 
and improves detection precision by upsampling deep 
convolutional features and merging them with shallow 
features to create combined feature maps. This approach 
employs multi-scale contextual areas to enhance feature 
representation, thus boosting detection efficacy for minor 
traffic signs. Saxena et al. [20] developed an innovative 
method for detecting and recognizing traffic signs through 
the YOLOv4. They enhanced detection accuracy by 
optimizing the Path Aggregation Network (PAN) for better 
feature propagation. Furthermore, they utilized grouped 
convolutional layers to decrease the model's parameter count, 
which in turn boosts its efficiency. 

In order to tackle the diverse obstacles in detecting traffic 
signs, this study employs the YOLOv8 algorithm as the main 
methodology. Within the YOLO family, YOLOv5 is 
extensively utilized, while YOLOv8 stands as the latest and 
most effective version introduced by Ultralytics after 
YOLOv5. The structure of YOLOv8 is consists of  backbone, 
neck, and detection head, similar to YOLOv5's. 

The backbone of this network incorporates the split idea 
derived from the Cross Stage Partial Network (CSPNet) and 
employs a version of CSPDarknet53 as its foundational 
structure. Nevertheless, in contrast to YOLOv5, YOLOv8 
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presents the Cross Stage Partial Fusion (C2f) module, which 
substitutes the Cross Stage Partial3 (C3) module utilized in 
YOLOv5. This enhancement enables the YOLOv8 backbone 
to stay lightweight while acquiring more comprehensive 
gradient information. Furthermore, YOLOv8 retains the 
Spatial Pyramid Pooling-Fast (SPPF) module. 

Within the neck network, in contrast to YOLOv5, 
YOLOv8 removes the convolutional structure during the 
upsampling phase of the Path Aggregation Network for 
Feature Pyramid Networks (PAN-FPN) and substitutes the 
C2f module for the C3 module. These modifications are 
intended to improve network performance while decreasing 
model complexity. YOLOv8 has introduced notable 
enhancements in the detection head by utilizing the current 
decoupled head architecture, which distinguishes between 
the classification head and the detection head. 

Concerning anchor strategies, while anchor-based 
techniques excel in certain data scenarios, they often face 
challenges like imbalance, manual configuration complexity, 
and prolonged time consumption. Thus, YOLOv8 adopts an 

anchor-free approach. In the training phase, the model learns 
different bounding box shapes directly, and during inference, 
it predicts object dimensions by utilizing learned bounding 
box distances and key point locations. Some adjustments 
have been made to the structure of the loss function in 
YOLOv8. The classification loss uses the Variational Focal 
Loss (VFL), while the regression loss combines the 
Distribution Focal Loss (DFL) and Complete Intersection 
over Union Loss (CIOU). 

III. IMPROVED METHODS 

YOLOv8 includes multiple variants with sizes such as n, s, 
m, l, and x. Considering the strict real-time requirements for 
detecting traffic signs, the YOLOv8n model, which achieves 
high detection accuracy and is remarkably lightweight, is 
better suited for this application. Nonetheless, applying 
YOLOv8n for detecting traffic signs encounters issues 
concerning low accuracy, false positives, and missed 

 

 
Fig. 1. MI-YOLO structural diagram 
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detections. To resolve these challenges, this study presents 
three significant improvements to the YOLOv8n algorithm. 
First, we incorporate a MSCA (Multi-Scale Convolutional 
Attention) module following the SPPF layer within the 
backbone architecture. This module conducts a weighted 
combination of feature maps from multiple scales, thus 
improving the backbone architecture’s ability to generalize 
over various scales. Moreover, the MSCA module is 
lightweight, allowing for improved model performance 
without significantly increasing computational costs. Second, 
we introduce a detection component for identifying small 
objects. This component significantly reduces false positives 
and missed detections for minor objects, thereby improving 
the model’s accuracy in recognizing small traffic signs. 
Finally, we replace the original regression loss function, 
transitioning from DFL Loss and CIOU Loss to DFL Loss 
and Inner-WIoU Loss. Inner-WIoU employs a dynamic, 
non-monotonic approach combined with auxiliary bounding 
boxes to accelerate convergence, improving the algorithm’s 
precision in identifying targets. The enhanced model 
(MI-YOLO) is depicted in Figure 1. 

A. Multi-Scale Convolutional Attention 

To effectively leverage features and allow the model to 
concentrate on the most prominent characteristics of targets, 
attention mechanisms have been extensively employed in 
numerous fields. In this research, we integrate a Multi-Scale 
Convolution Attention (MSCA) within the backbone 
network to enhance the model's ability to capture 
representations across multiple scales, thus effectively 
retrieving contextual information. The configuration of 
MSCA is depicted in Figure 2. The MSCA module comprises 
three elements: a depthwise convolution for initial feature 
extraction, multiple depthwise separable convolutions for 
capturing features at different scales, and a 1×1 convolution 
for weighting the input. 

 
3

1 1
0

( ( ( )))i
i

Att Conv Scale DW Conv F


   (1) 

 Out Att F   (2) 
In Formula (1), Att represents the output attention feature 

map, The input feature is denoted as F , DW Conv  stands 
for depthwise convolution. iScale , {0,1,2,3}i  represents 

the feature branch corresponding to the i-th position after 
applying depthwise convolution in Figure 2. 0Scale  denotes 

the skip connection, which element-wise adds the input 
feature with the features processed by the other three 
branches. In the other three branches, each branch employs 
two depthwise stripe convolutions to simulate a conventional 
depth convolution with larger kernel sizes of 7, 11, and 21, 
respectively. Implementing depthwise stripe convolutions in 
this context diminishes computational demands when 
compared to a conventional 2D convolution utilizing a 7×7 
kernel size, by utilizing a combination of 7×1 and 1×7 
convolutions, which are lighter in terms of resource usage. 
Furthermore, depthwise stripe convolutions improve lattice 
convolutions, facilitating the extraction of features 
resembling stripes. 

In Formula (2) the features processed by the multi-branch 
depthwise stripe convolutions undergo an additional 1×1 
convolution, which is used to compute the attention weights. 

Research has shown that MSCA efficiently combines 
features across different scales, allowing the model to 
dynamically modify its attention towards targets of various 
scales, thereby significantly improving model performance. 

 

 
Fig. 2. MSCA structural diagram  

 

B. Small object detection layer 

In YOLOv8, the model automatically adjusts the input 
image size to fit the computational process, with a default 
size of 640×640 pixels. After traversing the backbone and 
neck networks, feature maps measuring 80×80, 40×40, and 
20×20 are generated, enabling detection at these three scales. 
Although this architecture supports object detection across 
various scales, continuous downsampling significantly 
reduces the size of feature maps. This may result in a loss of 
features related to small objects, impairing the model's 
capability to understand their attributes, which can cause 
misdetections or failures to detect small objects. Furthermore, 
in real-world traffic sign detection situations, traffic signs 
appear comparatively small in relation to the entire image 
size, necessitating careful consideration of the requirements 
for detecting small objects in such tasks.  

Consequently, this paper presents an additional layer 
specifically for detecting small objects in YOLOv8, as 
illustrated in Figure 1. This detection layer retrieves 
additional details regarding small objects from shallow 
features, thus minimizing the loss of feature information for 
those objects. The specific procedures are outlined as follows: 
initially, the 80×80 feature map generated by the second C2f 
block within the neck architecture is upsampled to a size of 
160×160, related to the first C2f block's output within the 
backbone architecture, thus retaining detailed information 
about small targets. Subsequently, the 160×160 feature map 
obtained from the first C2f block within the backbone 
architecture is combined with the upsampled deep feature 
map, strengthening the integrated feature layer at the 
160×160 scale to better capture semantic features and 
positional details of small targets. Following that, the 
combined feature map is input into the C2f block to merge 
features across different branches in the channel dimension. 
Ultimately, this feature representation is directed into the 
small object localization module and the subsequent Pyramid 
Attention Network (PAN). 

C. Optimization of Loss Function 

The object detection task encompasses determining the 
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precise location and dimensions of objects and categorizing 
them into defined classes. YOLOv8 employs binary 
cross-entropy (BCE) loss for categorization objectives, 
which is particularly effective for binary classification 
scenarios where the output indicates probabilities for only 
two classes. In YOLOv8, BCE Loss generates confidence 
scores for each category, selecting the highest score as the 
certainty value of the present anchor. The formula for BCE 
Loss can be expressed as: 
 [ log (1 ) log(1 )]BCE n n n n nL w y x y x        (3) 

Within this formula, n  represents a specific class to be 
identified, nw  is the weight for each class. nx  denotes the 

probability output of the model for that class, and ny  

represents the true value of the class. The rectangular 
regression loss incorporates DFL Loss along with CIoU. The 
main goal of DFL Loss is to rectify inaccuracies related to 
predicting object boundaries. Optimizing this loss function 
can significantly improve object detection accuracy, 
particularly in images that are blurry or poorly focused. 
During training, a reduced DFL Loss indicates enhanced 
model performance in bounding box predictions. The 
formula for calculating DFL Loss is presented below: 
 1 1 1( , ) (( ) log( ) ( ) log( ))n n n n n nDFL F F b b F b b F        (4) 
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The CIoU represents a more comprehensive metric than 
DIoU, effectively balancing the critical aspects of distance, 
overlap, and aspect ratio.  This multifaceted approach results 
in enhanced performance in object detection tasks, as it not 
only improves the accuracy of bounding box predictions but 
also stabilizes the regression process. The equation for 
determining CIoU is presented below: 
 2 21 ( , ) ( , )CIOU ctr ctrL IOU A B A B c      (6) 
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In formula (6), A  represents the target bounding box 
detected by the algorithm or model, while B  refers to the 
target bounding box that is real and physically present, ctrA  

and ctrB  indicate the centers of A  and B  respectively, 
2 2( , )ctr ctrA B c  defines the normalized distance separating 

the centers of the two boxes, ensuring   consistency in 
aspect ratios, and the paramete   is a positive weight. 

CIoU serves as an effective method for calculating IoU; 
however, it presents several limitations, including a 
significant computational load and reduced sensitivity to 
small objects. Consequently, using WIoU to replace CIoU 
can improve the model's effectiveness and computational 
efficiency. WIoU employs a dynamic non-monotonic 
adjustment method for anchor box quality assessment and 
focusing that utilizes "outlierness" rather than conventional 
IoU for evaluating anchor box quality. This method not only 
diminishes the emphasis on top anchor boxes but also 
mitigates the negative impact of lower-quality samples on 
gradient allocation. As a result, WIoU can focus more on the 
majority of anchor boxes that better align with the data 
distribution, thereby improving overall detection 
performance. The formula for calculating WIoU is presented 

below: 

 ,WIOU WIoU IoUL R L  
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In formula (8), WIoUR  substantially improves the loss IoUL  

for anchor boxes of moderate quality, whereas IoUL  reduces 

the influence of high-quality anchor boxes upon WIoUR . This 

mechanism lessens the emphasis on the center-point distance 
in cases where anchor boxes align properly with the target 
boxes. In formula (9),   serves to quantify "outlierness," 

representing the quality of anchor boxes. High-quality anchor 
boxes have lower "outlier" values, resulting in reduced 
gradient gain during gradient allocation for these boxes, 
allowing intermediate-quality anchor boxes to receive more 
attention. For anchor boxes exhibiting larger "outlierness" 
values, diminished gradient gains are likewise allocated to 
mitigate the effects of harmful gradients generated by 
lower-quality samples. 

This paper introduces a new bounding box calculation 
method called Inner-IoU, based on WIoU. During the 
bounding box regression phase, various regression samples 
are distinguished, and losses are calculated with the help of 
auxiliary boxes of varying dimensions. The size of the 
auxiliary box can be adjusted according to the size of the 
detected target. Larger auxiliary boxes help the model 
capture hard-to-recognize objects, while smaller auxiliary 
boxes can accelerate the convergence of the bounding box 
loss. The diagrammatic representation of Inner-IoU is shown 
in Figure 3. 

In Figure 3, the locations of the center gtq  for both the 

ground truth and the internal auxiliary boxes are denoted as 

 
Fig. 3. Inner-IoU diagram 

 
( , )gt gt

c cx y , while for the anchor and auxiliary boxes, the 

center point coordinates are marked as ( , )c cx y . The 

dimensions of the ground truth bounding box are labeled as 

gtw and gth , while the dimensions of the detected bounding 

box are labeled as w  and  h . This scaling factor k, used as a 
variable, generally falls within a specific range. The 
Inner-IoU formula is computed as follows: 
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 inn inn
IoU

union
  (16) 

The scaling factor in Inner-IoU is the key difference from 
other IoU loss functions. By controlling the size of this 
scaling factor, the size of the auxiliary bounding boxes can be 
adjusted. The inclusion of auxiliary bounding boxes allows 
the model to focus on intermediate detection boxes, helping it 
learn the general features of the detected objects. Below is the 
definition of Inner-WIoU:  
 inn

Inner WIoU WIoUL L IoU IoU     (17) 

IV. EXPERIMENTAL EVALUATION 

A. Dataset 

This study utilizes TT100K as the dataset [21] for traffic 
sign detection experiments. TT100K, developed by Tsinghua 
University in collaboration with Tencent Joint Laboratory, is 
an extensive collection created specifically to handle traffic 
sign detection and classification tasks. It contains 100,000 
images. The images, taken in various Chinese cities, were 
captured with six high-resolution, wide-angle DSLR cameras 
for Tencent Street View panoramas, under varying lighting 
and weather conditions. The original panoramas, with an 
8192×2048 resolution, were cropped into smaller images of 
2048×2048 pixels. Covering 221 unique traffic sign 
categories, the dataset has a notable class imbalance, as 
category frequencies vary significantly. To address this, we 
preprocessed the dataset by selecting categories with enough 
instances, resulting in 9738 images for training and testing, 
focusing on 45 categories with over 100 instances each. The 
final split resulted in 7789 images for training and 1949 for 
testing. 

B. Experimental environment 

The hardware platform for the experiments is built on an 
Intel Xeon Platinum 8255C processor alongside an RTX 
3080 graphics card (10GB). The software environment 
consists of Ubuntu 18.04, Pytorch 2.0.0-gpu, and Jupyter 
Notebook. In the experiments, some adjustable parameters 
include a learning rate starting from 0.001, a batch size of 16, 
and an input image size of 640×640. 

C. Evaluation Metrics 

This paper selects precision and recall as key metrics.  
When evaluating model performance, we aim for a strong 
balance between precision and recall, so the mAP metric is 
also chosen to account for both factors comprehensively.  
Additionally, the number of model parameters and 
computational complexity (FLOPs) are selected as indicators 
to measure the model's complexity. These metrics are 
employed to thoroughly assess the performance of the 
enhanced algorithm. The equations used for calculations are 

presented below: 

 
TP

Precision
TP FP




 (18) 

In formula (18), TP  indicates the number of accurately 
identified positive bounding boxes, while FP  stands for 
those negative boxes misclassified as positive. The sum of TP 
and FP results in the overall number of positively predicted 
instances. 

The recall measures the percentage of accurately predicted 
targets among all actual targets. The formula for this 
calculation is presented below: 

 
TP

Recall
TP FN




 (19) 

In formula (19), FN  refers to the count of real targets that 
the model failed to detect. 

Average Precision (AP) can be understood as the area under 
the precision-recall curve. For Mean Average Precision 
(mAP), it is calculated by averaging the AP values across all 
detected object classes. The formula used to calculate mAP is 
presented below: 

 
1

1
( )

n

i

mAP AP i
n 

   (20) 

 
1

0

( )AP P R dR   (21) 

With the IoU set to 0.5, mAP0.5 first calculates the Average 
Precision (AP) for each category across all images, and then 
computes the average of these values for all categories. In 
contrast, mAP0.5:0.95 is a more stringent criterion, measuring 
the mAP value with IoU thresholds that incrementally rise 
from 0.5 to 0.95. In the well-known object detection dataset 
MS COCO, the mAP evaluation metric is further categorized 
by object size into APsmall, APmedium, and APlarge, which 
correspond to objects with areas below 1024 pixels, between 
1024 and 9216 pixels, and above 9216 pixels, respectively. 
This differentiation by object size aids in evaluating the 
model's effectiveness in identifying objects of different sizes. 

The total count of parameters in a model indicates the sum 
of all its learnable weights and biases, with a larger count 
reflecting increased complexity. FLOPs measure the total 
count of floating-point computations executed throughout 
training or inference, providing a useful metric for assessing 
a model's computational complexity and efficiency. 

D. experimental analysis 

The P-R curve combines recall and precision metrics, 
providing a comprehensive performance evaluation of a 
classification model. Particularly valuable in handling 
imbalanced datasets and positive class classification 
problems, the P-R curve more accurately reflects the model's 
true performance. 

Figure 4 presents the P-R curves for YOLOv8 and its 
enhanced version, MI-YOLO, on the TT100K dataset. Two 
perpendicular coordinate axes represent precision and recall, 
respectively. From the graph, it is clear that MI-YOLO's P-R 
curve consistently exceeds that of YOLOv8. MI-YOLO 
shows marked performance improvements in the mid-to-high 
recall range (0.2 to 0.9), indicating its capability to maintain 
greater accuracy at higher recall levels for most targets. This 
highlights the success of the enhancements made to the 
YOLOv8 algorithm in this research. 
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Fig. 4. P-R curve graphs of the original YOLOv8 and MI-YOLO  

 
The MI-YOLO model demonstrates superior performance 

in managing complex scenes or multi-target detection tasks, 
achieving high detection coverage while ensuring greater 
detection accuracy. This capability is especially crucial for 
applications that require high target detection coverage rates, 
such as traffic sign identification. 

 
TABLE I 

COMPARISON OF SMALL OBJECT DETECTION RESULTS 

Model APsmall(%) APmedium(%) APlarge(%) 

YOLOv8n 38.4 67.5 77.0 

MI-YOLO(Ours) 49.2 71.9 77.7 

 
The scenario of detecting traffic signs is intricate because of 

the numerous unrelated objects present in the images.  
Moreover, there are issues such as unclear targets and small 
target sizes in both practical applications and datasets, 
creating challenges for detecting small objects. Figure 5 
shows the distribution of traffic sign dimensions in the 
TT100K dataset studied here. Most traffic signs fall within 
the range of 0 to 96×96 pixels, whereas the total image size is 
2048×2048 pixels. Consequently, most targets occupy a 
minor portion of the image, highlighting the necessity of 
recognizing small objects for the model. Thus, we conducted 
experiments on the detection performance of the original 
YOLOv8 and MI-YOLO on targets of different sizes in the 
TT100K dataset, as detailed in Table 1. 

From Table 1, it is evident that the enhanced YOLOv8 
algorithm (MI-YOLO) demonstrates significant 
improvements in small object detection, showing a 10.8% 

boost in APsmall, a 4.4% rise in APmedium, and a 0.7% 
enhancement in APlarge. These results indicate that the 
MI-YOLO model has a greater advantage in detecting small 
traffic signs and demonstrates better generalization. 
 

Fig. 5. Distribution of sizes for traffic signs in the TT100K dataset  
 

E. Ablation Study 

We conducted multiple ablation experiments on the 
TT100K dataset to verify the effectiveness of our various 
improvements to YOLOv8 for traffic sign detection. The 
experiments consisted of the following configurations: (1) 
the original YOLOv8n algorithm, (2) Only the MSCA 
module was added to the feature extraction network of the 
original algorithm, (3) Only change the IoU loss used in the 
original algorithm to Inner-WIoU loss, (4) the independent 
addition of the Small Object Detection Layer (SODL), (5) 
simultaneous incorporation of MSCA, SODL, alongside 
Inner-WIoU into YOLOv8n's framework. All experiments 
were conducted under uniform conditions using the TT100K 
dataset, and the comprehensive findings are presented in 
Table 2. 

Drawing from the experimental findings shown in Table 2, 
the integration of the MSCA component into the backbone 
network resulted in a 1.8% increase in mAP0.5, with an 
additional 0.1 million parameters and a 0.1 GFLOPs increase 
in computational complexity. Incorporating SODL resulted 
in a 6.3% enhancement in mAP0.5, raising the parameter 
count by 0.1 million and adding 5.6 GFLOPs to the 
computational load. Although SODL increases 
computational cost, the 6.3% enhancement in mAP0.5 
justifies its inclusion. 

 
TABLE Ⅱ 

COMPARISON OF ABLATION EXPERIMENTAL DATA 

MSCA Inner-WIoU SODL P(%) R(%) mAP0.5(%) mAP0.5:0.95(%) #Params(M) FLOPs(G)

× × × 77.0 68.4 76.0 57.7 3.0 8.2 

√ × × 81.3 67.4 77.8 59.4 3.1 8.3 

× × √ 81.1 74.4 82.3 62.8 3.1 13.8 

× √ × 79.3 68.8 77.3 58.7 3.0 8.2 

√ √ √ 83.6 73.7 83.8 63.7 3.2 13.8 
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Fig. 6. Comparison of heatmaps for various improved modules 

 
The application of Inner-WIoU to YOLOv8 yielded a 1.3% 

increase in mAP0.5 without altering the parameter count or 
computational load. Simultaneous integration of MSCA, 
SODL, and Inner-WIoU into the YOLOv8 algorithm resulted 
in the model reaching optimal performance, improving 
mAP0.5 by 7.8% compared to the original YOLOv8, with an 
increase of 0.1 million parameters and 5.6 GFLOPs in 
computational complexity. These ablation study results 
validate the efficacy of the enhancements made to YOLOv8 
as presented in this research. 

Heatmaps are commonly used to visually represent feature 
maps of convolutional neural networks, highlighting where 
the model focuses on input images. This helps clarify the 
model’s decision-making process and enhances its 
interpretability. This paper uses heatmaps to display various 
enhancement components, selecting three random images 
from the dataset for visualization. From these figures, it 
becomes clear that the original YOLOv8 algorithm 
distributes its focus widely across the image, paying 
insufficient attention to traffic signs. Incorporating the 
MSCA module increases the model's attention toward traffic 
signs. Additionally, the integration of Inner-WIoU and the  
SODL further refines the model's focus on traffic signs. 
These findings indicate that the enhancements introduced in 
this research result in a significant boost for the detection 
capability of the model. 

F. Comparison with Existing Methods 

This study compares the enhanced YOLOv8 algorithm 
(MI-YOLO) with the original YOLOv8 and other leading 
detection approaches aimed at identifying traffic signs. In 
order to highlight the advantages of MI-YOLO, comparative 
experiments were performed using the TT100K dataset. The 
other competing advanced algorithms include YOLOv3-tiny 

[17], YOLOv5n, YOLOv6n [22], TOOD [23], Mask R-CNN 
[15], DDQ[24] and YOLOv9[25]. Multiple metrics are used 
to compare the performance of different detection 
algorithms. 

As shown in Table 3, YOLOv5n and YOLOv6n have lower 
computational complexity compared to the enhanced 
algorithms; however, they are significantly lower than 
MI-YOLO in terms of precision and recall. Additionally, 
compared to YOLOv5n and YOLOv6n, MI-YOLO achieves 
better values for both mAP0.5 and mAP0.5:0.95. Overall, 
considering all metrics, MI-YOLO outperforms the existing 
algorithms and delivers the best performance. Although the 
improved algorithm increases parameter count by 0.1M and 
computational complexity by 5.6 GFLOPs compared to the 
original YOLOv8, the slight increase in these metrics leads to 
a 7.8% improvement in mAP0.5, which is deemed acceptable 
given the substantial performance gains. 

The comparative experiments clearly demonstrate that 
MI-YOLO outperforms existing detection methods for 
identifying traffic signs, establishing its superiority in 
performance. 

G. Traffic Sign Detection Results 

To visually demonstrate the detection outcomes of the 
original YOLOv8 model and the enhanced MI-YOLO 
version concerning traffic sign detection, this paper randomly 
selected two sample images from the TT100K dataset for 
evaluation.  

Figure 7 shows the detection results, with the top two 
images displaying the performance of YOLOv8 and the 
bottom two images illustrating the performance of 
MI-YOLO. 

The detection results presented in the images clearly 
indicate that MI-YOLO has a significant edge in identifying
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TABLE Ⅲ 
COMPARATIVE EXPERIMENTAL DATA 

Model P(%) R(%) mAP0.5(%) mAP0.5:0.95(%) #Params(M) FLOPs(G) 

YOLOv3-tiny 74.8 51.4 59.6 46.2 12.2 19.1 

YOLOv5n 74.8 66.5 74.0 56.8 2.5 7.2 

YOLOv6n 65.7 57.8 64.0 49.1 4.3 12.1 

TOOD 54.9 0.49 68.4 51.7 32.1 125 

Mask R-CNN 68.0 50.0 60.3 47.4 44.2 187 

DDQ 70.5 63.3 79.1 57.6 48.2 356.6 

YOLOv9-t 73.6 63.7 72.1 54.4 3.2 14.0 

YOLOv8n 77.0 68.4 76.0 57.7 3.0 8.2 

MI-YOLO（ours） 83.6 73.7 83.8 63.7 3.2 13.8 

 
 

YOLOv8

MI-YOLO

 
Fig. 7. Comparison of YOLOv8's detection outcomes with those of the MI-YOLO 

 
small objects, minimizing false positives and avoiding 
missed detections of small traffic signs, and providing more 
accurate detection outcomes. In comparison to the original 
YOLOv8 algorithm, the proposed approach demonstrates 
enhanced effectiveness in detecting traffic signs. 

V. CONCLUSION 

This study introduces several improvements to YOLOv8 to 
enhance its performance in traffic sign detection. The 
improved algorithm, MI-YOLO, demonstrates outstanding 
performance. A Multi-Scale Convolution Attention (MSCA) 
module is integrated into the feature extraction network to 
capture target features across various scales and enhance its 
focus on relevant targets. The implementation of a Small 
Object Detection Layer aimed at accurately identifying small 
targets significantly reduces false alarms and lowers the 
chances of missing small targets. Lastly, Use Inner-WIoU 

with a new gradient allocation method and auxiliary boxes, 
the model achieves more accurate target localization, thereby 
improving overall performance. Future studies will focus on 
optimizing model lightweighting and improving traffic sign 
detection in various weather conditions. 
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