
 

  

Abstract— In regression modeling, we often encounter data 

with different ranges. Such data usually have outliers. If an 

outlier has a value far from the mean, it can cause an error in 

modeling. For example, data has a quadratic pattern, but 

because there are outliers, it can be indicated that the data is 

linear. This research will prove which non-linearity test is more 

robust if outlier data is shown. To prove this, data is generated, 

and outliers are found in the variable response of the non-

linear model. Using the RESET, the Terasvirta and White tests 

will prove to be more robust. The results show that the 

Terasvirta test is more robust than the RESET and White 

tests. This statement applies to models that are non-linear in 

parameters and variables. Therefore, if we want to test the 

goodness of a non-linear model and outliers are detected from 

our research, we recommend using the Terasvirta test. We 

prove that 53.42% of Terasvirta performs better than the 

RESET and White tests. Because the Terasvirta test is proven 

to be more robust if outliers are found in the non-linear model, 

this is very important to increase knowledge in education, 

especially in computing statistics. 

 
Index Terms— Education, LM Test, Outlier, Ramsey’s 

RESET Test, Terasvirta Test, White Test 

 

I. INTRODUCTION 

HERE is a lot of modeling in statistics. One of them is a 

causal relationship that is modeled through regression 

analysis, and the regression analysis requires response 

variables and predictor variables. In regression analysis, 

there are generally two types, namely linear regression 

models and non-linear regression models. Non-linear 

regression can be divided into three types: non-linear in 

parameters, non-linear in variables, and non-linear in 

parameters and variables [1]. Examples of non-linear 

regression models are quadratic regression models, cubic 

regression models, and others. There are generally two types 

of non-linearity tests: Ramsey's or regression specification 

error (RESET) test and Lagrange Multiplier (LM) test. Both 

of these tests detect equation specification errors. Then, 
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there are several types of LM tests, such as the Terasvirta 

and the White test. 

There are various kinds of errors when doing statistical 

modeling [2], [3], [4]. One of them is mis-specified model. 

Suppose a data follows an exponential pattern, it turns out 

that when linearity is tested, a linear model is found, one of 

the causes is the existence of an outlier. In a regression 

analysis, it is very important to detect an outlier, because it 

can be very sensitive to the results of the regression analysis 

[5] [6].  

Outliers come from various causes. For example, outliers 

from data errors, outliers from intentional or motivated 

misreporting, outliers from sampling error, outliers from 

standardization failure, and others [7]. Osborne's research 

can provide a more detailed explanation of the types of 

outliers [7]. Then, research that provides a methodologist to 

detect the presence of outliers was conducted by Hodge and 

Austin [8], where outliers are considered anomalies. Several 

similar studies have also been carried out on detecting the 

presence of outliers, some of which were carried out by 

Rousseeuw and Hubert [9].  

After discussing linear and non-linear regression and 

types of non-linearity tests, the causes of outliers, and ways 

to detect outliers, the present study contributes to which 

non-linearity tests are more robust to outliers detection in 

non-linear regression analysis. Nonlinear data must be 

modeled appropriately [4]. Similar research has been done, 

but the results given are that there are no tests that dominate 

other tests [10]. As explained earlier, if data contains one or 

two outliers, a weak test can be used to indicate that the data 

has a linear pattern. This situation can make the analysis 

results quite significantly different. It is important to know 

which test is more robust against outliers. Research 

conducted by Li and Hao has examined data containing 

outliers using maximum likelihood estimation (MLE) and 

Bayesian approaches [11]. Furthermore, research conducted 

by Hsiao et al. used classification in the view of outliers 

[12]. 

II. PROPERTIES 

A. Ramsey’s RESET Test 

A simple example will be used to illustrate Ramsey’s 

test or regression specification error (RESET) test. Suppose 

a response variable Y is influenced by a predictor variable 

X . Therefore, it can be written as Equation (1)  

1 2 3i i iY X u = + +  (1) 
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The analysis steps for the RESET test method can be 

followed as follows [13] 

1. Based on the Equation (1), 
iY can be estimated by 

ordinary least square (OLS), so that ˆ
iY is obtained. 

2. Recalculate Equation (1) by calculating ˆ
iY  as an 

additional predictor variable. Suppose the additional 

predictor variables are 2ˆ
iY  and 3ˆ

iY . Therefore it can be 

written as Equation (2) 
2 3

1 2 3 4
ˆ ˆ

i i i i iY X Y Y u   = + + + +  (2) 

3. Calculate 
2R  in Equation (1) as 

2

oldR and in Equation (2) 

as 
2

newR . Then use the F  test in Equation (3) to find out 

if the increase 
2R from using Equation (2) is statistically 

significant. 

( )

( )
( )

2 2

2

NR

1

NObs-NPNM

new old

new

R R

F
R

−

=
−

 (3) 

where NR is the number of new regressors, NObs  is 

the number of observations, and NPNM is the number of 

parameters in the new model. 

4. If the computed F  value is significant, it can be accepted 

that the model in Equation (1) is mis-specified. 

B. Lagrange Multiplier (LM) Test 

To illustrate the LM test, we will continue with the 

preceding illustrative. The LM test proceeds as follows [13] 

1. Do the estimation on the Equation (1), so we get residuals 

ˆ
iu . 

2. If in fact the unrestricted regression on the Equation (4) is 

the true regression, the residuals obtained on the 

Equation (1) should be related to the squared and cubed 

terms, that is 
2

iX  and 
3

iX   

2 3

1 2 3 4i i i i iY X X X u   = + + + +  (4) 

3. Regress the ˆ
iu  obtained in Step 1 on all the predictor 

variables (including those in the restricted regression), so 

that it can be written into Equation (5) 
2 3

1 2 3 4
ˆ

i i i i iu X X X v   = + + + +  (5) 

where v  is an error term with the usual properties. 

4. For large-sample size, Engle has shown that n  (the 

sample size) times the 
2R estimated from the (auxiliary) 

regression on the Equation (5) follows the chi-square 

distribution with degree of freedom (df) equal to the 

number of restrictions imposed by the restricted 

regression [14]. Symbolically, it can be written as 

Equation (6) 
2 2

(number of restrictions)
asy

nR   (6) 

where asy means asymptotically.  

5.  If the chi-square obtained from Equation (6) exceeds the 

critical chi-square value at the chosen level of 

significance, reject the restricted regression. Otherwise, 

do not reject it. 

Two types of LM tests include the White test and Terasvirta 

test, which will be explained in the following sections. 

White Test 

The White test is a non-linearity detection test developed 

from a neural network model [15]. In general, the steps for 

the White test are the same as the LM test, but the 

unrestricted regression model involves interactions between 

predictor variables. To illustrate White test, consider the 

regression model on the Equation (7) 

1 2 2 3 3i i i iY X X u  = + + +  (7) 

The White test proceeds as follows [13] 

1. Estimate regression model on the Equation (7) and 

obtain the residuals, ˆ
iu . 

2. Run the (auxiliary) regression model on the Equation 

(8) 

2 2

1 2 2 3 3 4 2

2

5 3 6 2 3

ˆ
i i i i

i i i i

u X X X

X X X v

   

 

= + + + +

+ +
 (8) 

That is, the squared residuals from the original 

regression are regressed on the original predictor 

variables, their squared values, and the cross product(s) 

of the predictor variables. Obtain 
2R  from this 

(auxiliary) regression model. 

3. Under the null hypothesis that there is no 

heteroscedasticity, it can be shown that the sample size 

( )n  times 
2R  obtained from the auxiliary regression 

asymptotically follows the chi-square distribution with 

the df equal to the number of predictor variables 

(excluding the constant term) in the auxiliary 

regression. That is, 
2 2

df
asy

nR   (9) 

4. If the chi-square value obtained on the Equation (9) 

exceeds the critical chi-square value at the chosen level 

of significance, the conclusion is that there is 

heteroscedasticity. If it is does not exceed the critical 

chi-square value, there is no heteroscedasticity, which 

is to say that in the auxiliary regression model on the 

Equation (8), 2 3 4 5 6 0    = = = = = . 

 

Terasvirta Test 

In using the Terasvirta test, there are two ways of 

making decisions namely the
2  test and the F  test. For 

procedures using the 
2  test, the steps are carried out the 

same as the LM test step. The difference is in Step 2, where 

2X  and 
3X  are the results of the Taylor series expansion 

approach [16]. While the procedure for the F test in the 

Terasvirta test is as follows [16] 

1. Do the estimation on the Equation (1), so we get residuals 

ˆ
iu and compute the sum of the squared residuals 

2

0
ˆ .

n

i

i

SSR u=    

2. Regress ˆ
iu to the predictor variables as in Equation (5) 

where 2X  and 3X  are the results of the Taylor series 

expansion approach. Calculate residuals ˆˆ ˆ ˆ
i i iv u u= −  and 

sum of the squared residuals 2

1
ˆ .

n

i

i

SSR v=   

3.  Compute  
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SSR SSR
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SSR

−

=  (10) 

4. If the computed F  value is significant, it can be accepted 

that the model in Equation (1) is mis-specified. 

C. Type of Regression Models 

To distinguish a linear model or not, it can be divided 

into four types, as in TABLE 1 below [13] 
 

TABLE 1 

LINEAR REGRESSION MODELS 

Model linear in parameters? Model linear in variables? 

 
Yes No 

Yes LRM LRM 

No NLRM NLRM 

 

where LRM is the linear regression model and NLRM is the 

nonlinear regression model. Based on TABLE 1, four 

different models will be given. To make it easier to choose a 

model, the model provided by the Minitab software can be 

adopted. Therefore, four different models are obtained in 

TABLE 2. And, we multiply each model twice with 

different coefficients. So, the total number of models is 

eight. 
TABLE 2 

FOUR TYPES OF LINEAR REGRESSION MODELS ADOPTED FROM 

MINITAB SOFTWARE 

Model linear in 

parameters? 
Model linear in variables? 

 
Yes No 

Yes 

Linear: 

1 1 22Y X X= +  

2 1 22 7Y X X= +  

Power (Convex): 
2 4

3 1 23Y X X= +  

3 2

4 1 22Y X X= +  

No 

Exponential: 

1 22 4

5 3
X X

Y e e= +  

1 24 6

6 2
X X

Y e e= +  

2-Parameter Sigmoid 1: 

( ) ( )
2 4

1 23

7 1 1
X X

Y e e
− −

= − + −

 

( ) ( )
3 2

1 22 2

8 1 1
X X

Y e e
− −

= − + −
 

III. APPLICATIONS 

In this study, eight types of models are given which are 

described in TABLE 2. These models are Linear, Power 

(Convex), Exponential, and 2-parameter Sigmoid 1. For 

each of these models, we provide 2 formulas with different 

coefficients for each model. So, the total model is 8. 

Therefore, to analyze the robustness of the non-linearity test 

will be used simulation data. The variable consisted of one 

response variable and two continuous predictor variables. 

Predictor variables 1X  and 2X  are data generated following 

the Normal distribution with mean 0 and variance 1, can be 

written mathematically ( )1 0,1X N  and ( )2 0,1X N . 

The response variable Y  is a function of 1X  and 2X . In 

general, the non-linearity test hypothesis can be written 

0 : model=LRM

: model=NLRMA

H

H
 

 A simulation study was conducted in this study using R 

software. The steps are as follows 

1. Determine the functions that will later be used as a 

regression model, which has been explained in TABLE 

2. 

2. For Linear models, generate data for two continuous 

predictor variables, both of which are normally 

distributed with a mean of 0 and a variance of 1. Data 

will be raised 4 times, namely for 
1 30n = , 

2 100n = ,  

3 1,000n = , and 
4 10,000n = . 

3. For the first-generation data, i.e. 
1 30n = give outliers 

with 
1 0o =  (no outliers), 

2 1o = , 
3 3o =  and 

4 5o = . For 

the second-generation data, namely 
2 100n = , give 

outliers with 
1 0o =  (no outliers), 

2 1o = , 
3 3o =  and 

4 5.o = For the third-generation data, namely 
3 1,000n = , 

give outliers with the number 
1 0o =  (no outliers), 

2 10o = , 
3 30o =  and 

4 50o = . For the fourth-generation 

data, namely 
4 10,000n = , give outliers with the number 

1 0o =  (no outliers), 
2 10o = , 

3 30o =  and 
4 50o = . 

Each generated data was replicated 1,000 times. Outlier 

data is given for the Y value that has been formed by the 

model. 

4. Based on Step 3, there are sixteen data to be tested per 

model. The test used is 

• RESET test with nine types:  

o “regressor” with “power=3” 

o “regressor” 

o “fitted” with “power=2” 

o “fitted” with “power=3” 

o “fitted” 

o “princomp” with “power=2” 

o “princomp” with “power=3” 

o “princomp” 

• Terasvirta test with the F test, and 

• White test with the F test. 

In the RESET test, type “regressor” or “fitted” or 

“princomp” is a string indicating whether powers of the 

fitted response, the regressor variables (factors are left 

out), or the first principal component of the regressor 

matrix should be included in the extended model. 

5. For sixteen data to be tested, the largest power will be 

determined. If the power is greatest, then the data is truly 

non-linear. Then it will be seen that the largest power is 

the power of which test. Power is the probability of 

making a correct decision (to reject the null hypothesis, 

0H ) when the null hypothesis is false. 

6. The most robust test is a test with a power that is always 

large for each data generated. 

7. Repeat Step 2 through Step 6 for the Power (Convex) 

model, Exponential, and 2-parameter Sigmoid 1 model. 

So, the total number of scenarios tested was 128. Based 

on the steps previously described, the results obtained in 

TABLE 3 and TABLE 4 for the Linear model, TABLE 5and 

TABLE 6 for the Power (Convex) model, TABLE 7 and 

TABLE 8 for the Exponential model, and TABLE 9 and 

TABLE 10 for the 2-Parameter Sigmoid 1 model.  A total of 

128 scenarios in TABLE 3 to TABLE 10 are given 

information, namely in 1 scenario the largest power value is 

sought and marked in bold. If in 1 scenario there are equally 

large power values, then the scenario fails to show the 

performance of each test, and a gray block is given.
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TABLE 3 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR LINEAR MODEL 
1 1 22Y X X= +  

   power 

Kind of Test Type Power 
n=30; with outlier n=100; with outlier 

0 1 3 5 0 1 3 5 

RESET regressor 2 0.059 0.100 0.063 0.049 0.044 0.078 0.081 0.077 

RESET regressor 3 0.064 0.072 0.087 0.070 0.054 0.050 0.087 0.089 

RESET regressor  0.057 0.123 0.105 0.060 0.045 0.079 0.109 0.120 

RESET fitted 2 0.056 0.170 0.087 0.048 0.042 0.170 0.105 0.101 

RESET fitted 3 0.063 0.113 0.102 0.063 0.056 0.103 0.105 0.092 

RESET fitted  0.063 0.178 0.128 0.060 0.048 0.157 0.132 0.115 

RESET princomp 2 0.049 0.073 0.056 0.040 0.049 0.067 0.066 0.052 

RESET princomp 3 0.055 0.049 0.068 0.058 0.045 0.031 0.061 0.065 

RESET princomp  0.056 0.074 0.094 0.053 0.044 0.061 0.082 0.075 

Terasvirta regressor  0.067 0.199 0.130 0.078 0.052 0.125 0.150 0.143 

White princomp  0.070 0.077 0.080 0.051 0.052 0.062 0.062 0.053 

the highest power 0.070 0.199 0.130 0.078 0.056 0.170 0.150 0.143 

 

TABLE 3 (CONTINUED) 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR LINEAR MODEL 1 1 22Y X X= +  

   power 

Kind of Test Type Power 
n=1,000; with outlier n=10,000; with outlier 

0 10 30 50 0 10 30 50 

RESET regressor 2 0.039 0.052 0.047 0.037 0.063 0.050 0.049 0.048 

RESET regressor 3 0.056 0.073 0.056 0.073 0.053 0.072 0.079 0.079 

RESET regressor  0.046 0.079 0.065 0.064 0.054 0.079 0.080 0.070 

RESET fitted 2 0.048 0.071 0.050 0.038 0.058 0.034 0.040 0.044 

RESET fitted 3 0.039 0.063 0.046 0.062 0.046 0.038 0.057 0.057 

RESET fitted  0.041 0.087 0.06 0.061 0.043 0.046 0.053 0.063 

RESET princomp 2 0.037 0.035 0.043 0.045 0.048 0.051 0.047 0.053 

RESET princomp 3 0.048 0.045 0.045 0.050 0.050 0.050 0.063 0.054 

RESET princomp  0.041 0.063 0.049 0.044 0.052 0.065 0.052 0.066 

Terasvirta regressor  0.043 0.113 0.081 0.070 0.047 0.096 0.088 0.094 

White princomp  0.046 0.050 0.053 0.046 0.050 0.047 0.056 0.057 

the highest power 0.056 0.113 0.081 0.073 0.063 0.096 0.088 0.094 

 
TABLE 4 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR LINEAR MODEL 2 1 22 7Y X X= +  

   power 

Kind of Test Type Power 
n=30; with outlier n=100; with outlier 

0 1 3 5 0 1 3 5 

RESET regressor 2 0.059 0.100 0.063 0.049 0.044 0.078 0.081 0.077 

RESET regressor 3 0.064 0.072 0.087 0.070 0.054 0.050 0.087 0.089 

RESET regressor  0.057 0.123 0.105 0.060 0.045 0.079 0.109 0.120 

RESET fitted 2 0.054 0.078 0.081 0.052 0.042 0.155 0.098 0.094 

RESET fitted 3 0.064 0.046 0.088 0.054 0.052 0.094 0.098 0.090 

RESET fitted  0.064 0.084 0.115 0.055 0.048 0.145 0.119 0.116 

RESET princomp 2 0.049 0.073 0.056 0.040 0.049 0.067 0.066 0.052 

RESET princomp 3 0.055 0.049 0.068 0.058 0.045 0.031 0.061 0.065 

RESET princomp  0.056 0.074 0.094 0.053 0.044 0.061 0.082 0.075 

Terasvirta regressor  0.067 0.199 0.130 0.078 0.052 0.125 0.150 0.143 

White princomp   0.060 0.074 0.065 0.047 0.031 0.078 0.059 0.053 

the highest power 0.067 0.199 0.130 0.078 0.054 0.155 0.150 0.143 

 
TABLE 4 (CONTINUED) 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR LINEAR MODEL 2 1 22 7Y X X= +  

   power 

Kind of Test Type Power 
n=1.000; with outlier n=10.000; with outlier 

0 10 30 50 0 10 30 50 

RESET regressor 2 0.039 0.052 0.047 0.037 0.063 0.050 0.049 0.048 

RESET regressor 3 0.056 0.073 0.056 0.073 0.053 0.072 0.079 0.079 

RESET regressor  0.046 0.079 0.065 0.064 0.054 0.079 0.080 0.070 

RESET fitted 2 0.051 0.047 0.059 0.035 0.049 0.033 0.040 0.050 

RESET fitted 3 0.048 0.055 0.051 0.055 0.041 0.047 0.060 0.062 

RESET fitted  0.048 0.070 0.061 0.057 0.043 0.051 0.056 0.057 

RESET princomp 2 0.037 0.035 0.043 0.045 0.048 0.051 0.047 0.053 

RESET princomp 3 0.048 0.045 0.045 0.050 0.050 0.050 0.063 0.054 

RESET princomp  0.041 0.063 0.049 0.044 0.052 0.065 0.052 0.066 

Terasvirta regressor  0.043 0.113 0.081 0.070 0.047 0.096 0.088 0.094 

White princomp   0.040 0.058 0.044 0.044 0.062 0.051 0.059 0.062 

the highest power 0.056 0.113 0.081 0.073 0.063 0.096 0.088 0.094 
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TABLE 5 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR POWER (CONVEX) MODEL 2 4

3 1 23Y X X= +  

   power 

Kind of Test Type Power 
n=30; with outlier n=100; with outlier 

0 1 3 5 0 1 3 5 

RESET regressor 2 1 0.774 0.583 0.467 1 0.400 0.212 0.180 

RESET regressor 3 0.714 0.471 0.372 0.305 0.747 0.171 0.121 0.128 

RESET regressor  1 0.709 0.541 0.411 1 0.316 0.190 0.191 

RESET fitted 2 0.895 0.641 0.500 0.388 0.921 0.394 0.210 0.185 

RESET fitted 3 0.700 0.410 0.334 0.255 0.722 0.174 0.133 0.116 

RESET fitted  0.891 0.611 0.456 0.366 0.914 0.333 0.194 0.173 

RESET princomp 2 0.679 0.505 0.433 0.337 0.798 0.287 0.164 0.129 

RESET princomp 3 0.411 0.305 0.270 0.232 0.507 0.114 0.086 0.085 

RESET princomp  0.645 0.494 0.419 0.324 0.779 0.236 0.150 0.135 

Terasvirta regressor  1 0.633 0.496 0.384 1 0.268 0.206 0.202 

White princomp   0.868 0.522 0.384 0.283 0.969 0.222 0.123 0.100 

the highest power 1 0.774 0.583 0.467 1 0.400 0.212 0.202 

 
TABLE 5 (CONTINUED) 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR POWER (CONVEX) MODEL 2 4

3 1 23Y X X= +  

   power 

Kind of Test Type Power 
n=1.000; with outlier n=10.000; with outlier 

0 10 30 50 0 10 30 50 

RESET regressor 2 1 1 0.984 0.870 1 1 1 1 

RESET regressor 3 0.804 0.432 0.233 0.200 0.835 0.767 0.649 0.620 

RESET regressor  1 1 0.955 0.789 1 1 1 1 

RESET fitted 2 0.978 0.802 0.615 0.504 1 0.998 0.987 0.970 

RESET fitted 3 0.778 0.308 0.152 0.141 0.813 0.696 0.566 0.488 

RESET fitted  0.974 0.777 0.572 0.463 1 0.995 0.977 0.961 

RESET princomp 2 0.939 0.696 0.572 0.480 1 0.997 0.970 0.951 

RESET princomp 3 0.544 0.253 0.118 0.114 0.602 0.526 0.434 0.366 

RESET princomp  0.925 0.677 0.519 0.434 1 0.994 0.960 0.928 

Terasvirta regressor  1 1 0.902 0.686 1 1 1 1 

White princomp   0.998 0.878 0.598 0.402 1 0.999 1 0.999 

the highest power 1 1 0.984 0.870 1 1 1 1 

 
TABLE 6 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR POWER (CONVEX) MODEL 3 2

4 1 22Y X X= +  

   power 

Kind of Test Type Power 
n=30; with outlier n=100; with outlier 

0 1 3 5 0 1 3 5 

RESET regressor 2 0.989 0.130 0.098 0.064 1 0.092 0.082 0.082 

RESET regressor 3 0.886 0.077 0.101 0.079 0.997 0.050 0.089 0.091 

RESET regressor  1 0.138 0.138 0.084 1 0.085 0.115 0.129 

RESET fitted 2 0.464 0.179 0.125 0.069 0.504 0.180 0.109 0.101 

RESET fitted 3 0.658 0.114 0.113 0.075 0.956 0.104 0.098 0.096 

RESET fitted  0.707 0.182 0.157 0.074 0.978 0.160 0.129 0.120 

RESET princomp 2 0.704 0.101 0.088 0.065 0.813 0.078 0.070 0.058 

RESET princomp 3 0.632 0.065 0.071 0.075 0.743 0.031 0.060 0.067 

RESET princomp  0.860 0.090 0.123 0.079 0.990 0.066 0.084 0.080 

Terasvirta regressor  1 0.205 0.155 0.103 1 0.131 0.153 0.147 

White princomp   0.805 0.109 0.088 0.066 0.932 0.077 0.062 0.057 

the highest power 1 0.205 0.157 0.103 1 0.180 0.153 0.147 

 
TABLE 6 (CONTINUED) 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR POWER (CONVEX) MODEL 3 2

4 1 22Y X X= +  

   power 

Kind of Test Type Power 
n=1.000; with outlier n=10.000; with outlier 

0 10 30 50 0 10 30 50 

RESET regressor 2 1 0.057 0.071 0.060 1 0.109 1 0.963 

RESET regressor 3 1 0.073 0.070 0.091 1 0.089 0.972 0.893 

RESET regressor  1 0.078 0.084 0.089 1 0.128 1 0.998 

RESET fitted 2 0.536 0.078 0.066 0.061 0.603 0.109 0.068 0.070 

RESET fitted 3 1 0.068 0.065 0.067 1 0.087 0.972 0.885 

RESET fitted  1 0.088 0.093 0.080 1 0.121 0.970 0.825 

RESET princomp 2 0.898 0.041 0.050 0.050 0.938 0.094 0.607 0.526 

RESET princomp 3 0.853 0.046 0.051 0.054 0.905 0.067 0.463 0.389 

RESET princomp  1 0.065 0.061 0.061 1 0.095 0.921 0.758 

Terasvirta regressor  1 0.114 0.102 0.085 1 0.136 1 0.992 

White princomp   0.992 0.050 0.062 0.056 1 0.081 0.801 0.662 

the highest power 1 0.114 0.102 0.091 1 0.136 1 0.998 
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TABLE 7 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR EXPONENTIAL MODEL 1 22 4

5 3
X X

Y e e= +  

   power 

Kind of Test Type Power 
n=30; with outlier n=100; with outlier 

0 1 3 5 0 1 3 5 

RESET regressor 2 1 0.998 0.998 0.994 1 1 1 0.999 

RESET regressor 3 0.626 0.594 0.601 0.580 0.876 0.887 0.874 0.866 

RESET regressor  1 0.999 0.998 0.999 1 1 1 0.999 

RESET fitted 2 0.998 0.996 0.994 0.989 1 1 1 1 

RESET fitted 3 0.728 0.719 0.724 0.716 0.942 0.948 0.942 0.931 

RESET fitted  0.998 0.995 0.994 0.992 1 1 1 1 

RESET princomp 2 0.554 0.553 0.599 0.572 0.639 0.613 0.629 0.617 

RESET princomp 3 0.337 0.314 0.361 0.341 0.467 0.460 0.465 0.464 

RESET princomp  0.534 0.538 0.591 0.552 0.624 0.599 0.617 0.596 

Terasvirta regressor  1 0.998 0.998 0.999 1 1 1 0.999 

White princomp   0.718 0.686 0.680 0.696 0.873 0.850 0.862 0.835 

the highest power 1 0.999 0.998 0.999 1 1 1 1 

 
TABLE 7 (CONTINUED) 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR EXPONENTIAL MODEL 1 22 4

5 3
X X

Y e e= +  

   power 

Kind of Test Type Power 
n=1.000; with outlier n=10.000; with outlier 

0 10 30 50 0 10 30 50 

RESET regressor 2 1 1 1 1 1 1 1 1 

RESET regressor 3 1 1 1 1 1 1 1 1 

RESET regressor  1 1 1 1 1 1 1 1 

RESET fitted 2 1 1 1 1 1 1 1 1 

RESET fitted 3 1 1 1 1 1 1 1 1 

RESET fitted  1 1 1 1 1 1 1 1 

RESET princomp 2 0.749 0.719 0.702 0.728 0.812 0.817 0.797 0.790 

RESET princomp 3 0.641 0.618 0.614 0.618 0.727 0.744 0.741 0.729 

RESET princomp  0.727 0.704 0.682 0.711 0.796 0.799 0.795 0.779 

Terasvirta regressor  1 1 1 1 1 1 1 1 

White princomp   0.961 0.975 0.975 0.975 0.996 0.996 0.991 0.989 

the highest power 1 1 1 1 1 1 1 1 

 
TABLE 8 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR EXPONENTIAL MODEL 1 24 6

6 2
X X

Y e e= +  

   power 

Kind of Test Type Power 
n=30; with outlier n=100; with outlier 

0 1 3 5 0 1 3 5 

RESET regressor 2 1 0.998 0.997 0.997 1 1 1 1 

RESET regressor 3 0.688 0.654 0.658 0.657 0.907 0.911 0.906 0.900 

RESET regressor  1 1 1 1 1 1 1 1 

RESET fitted 2 0.974 0.987 0.986 0.985 0.999 0.998 0.999 0.998 

RESET fitted 3 0.730 0.743 0.753 0.752 0.944 0.952 0.946 0.938 

RESET fitted  0.973 0.979 0.984 0.982 0.999 0.997 0.996 0.998 

RESET princomp 2 0.615 0.605 0.648 0.604 0.652 0.624 0.638 0.643 

RESET princomp 3 0.396 0.372 0.420 0.391 0.497 0.485 0.490 0.487 

RESET princomp  0.602 0.594 0.630 0.594 0.641 0.608 0.629 0.625 

Terasvirta regressor  1 1 1 1 1 1 1 1 

White princomp   0.680 0.673 0.658 0.634 0.814 0.839 0.822 0.825 

the highest power 1 1 1 1 1 1 1 1 

 
TABLE 8 (CONTINUED) 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR EXPONENTIAL MODEL 1 24 6

6 2
X X

Y e e= +  

   power 

Kind of Test Type Power 
n=1.000; with outlier n=10.000; with outlier 

0 10 30 50 0 10 30 50 

RESET regressor 2 1 1 1 1 1 1 1 1 

RESET regressor 3 1 1 1 1 1 1 1 1 

RESET regressor  1 1 1 1 1 1 1 1 

RESET fitted 2 1 1 1 1 1 1 1 1 

RESET fitted 3 1 1 1 1 1 1 1 1 

RESET fitted  1 1 1 1 1 1 1 1 

RESET princomp 2 0.716 0.700 0.669 0.693 0.764 0.777 0.767 0.756 

RESET princomp 3 0.616 0.606 0.587 0.611 0.689 0.714 0.722 0.690 

RESET princomp  0.698 0.684 0.652 0.672 0.750 0.760 0.758 0.744 

Terasvirta regressor  1 1 1 1 1 1 1 1 

White princomp   0.947 0.960 0.965 0.961 0.983 0.987 0.988 0.987 

the highest power 1 1 1 1 1 1 1 1 
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TABLE 9 
COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR 2-PARAMETER SIGMOID 1 MODEL 

( ) ( )
2 4

1 23

7 1 1
X X

Y e e
− −

= − + −  

   power 

Kind of Test Type Power 
n=30; with outlier n=100; with outlier 

0 1 3 5 0 1 3 5 

RESET regressor 2 0.389 0.106 0.069 0.051 0.930 0.078 0.082 0.078 

RESET regressor 3 0.052 0.071 0.087 0.071 0.059 0.050 0.088 0.089 

RESET regressor  0.336 0.128 0.110 0.060 0.894 0.079 0.110 0.122 

RESET fitted 2 0.267 0.210 0.101 0.046 0.730 0.176 0.107 0.102 

RESET fitted 3 0.072 0.129 0.103 0.056 0.075 0.101 0.097 0.094 

RESET fitted  0.205 0.206 0.128 0.055 0.636 0.159 0.128 0.120 

RESET princomp 2 0.309 0.081 0.058 0.045 0.764 0.070 0.067 0.053 

RESET princomp 3 0.069 0.050 0.069 0.059 0.058 0.031 0.061 0.065 

RESET princomp  0.258 0.075 0.100 0.054 0.693 0.061 0.086 0.076 

Terasvirta regressor  0.287 0.200 0.134 0.086 0.822 0.126 0.150 0.143 

White princomp   0.348 0.082 0.074 0.053 0.882 0.063 0.068 0.042 

the highest power 0.389 0.210 0.134 0.086 0.930 0.176 0.150 0.143 

 
TABLE 9 (CONTINUED) 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR 2-PARAMETER SIGMOID 1 MODEL 

( ) ( )
2 4

1 23

7 1 1
X X

Y e e
− −

= − + −  

   power 

Kind of Test Type Power 
n=1.000; with outlier n=10.000; with outlier 

0 10 30 50 0 10 30 50 

RESET regressor 2 1 0.060 0.048 0.039 1 0.188 0.100 0.090 

RESET regressor 3 0.057 0.073 0.056 0.072 0.058 0.072 0.079 0.079 

RESET regressor  1 0.082 0.066 0.067 1 0.145 0.123 0.096 

RESET fitted 2 1 0.083 0.050 0.051 1 0.200 0.109 0.081 

RESET fitted 3 0.079 0.069 0.055 0.062 0.078 0.064 0.058 0.066 

RESET fitted  1 0.092 0.065 0.068 1 0.165 0.102 0.097 

RESET princomp 2 1 0.043 0.042 0.044 1 0.147 0.077 0.083 

RESET princomp 3 0.064 0.046 0.044 0.051 0.078 0.050 0.065 0.055 

RESET princomp  1 0.065 0.050 0.044 1 0.116 0.088 0.083 

Terasvirta regressor  1 0.115 0.084 0.071 1 0.156 0.122 0.111 

White princomp   1 0.056 0.050 0.041 1 0.165 0.089 0.087 

the highest power 1 0.115 0.084 0.072 1 0.200 0.123 0.111 

 
TABLE 10 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR 2-PARAMETER SIGMOID 1 MODEL 

( ) ( )
3 2

1 22 2

8 1 1
X X

Y e e
− −

= − + −  

   power 

Kind of Test Type Power 
n=30; with outlier n=100; with outlier 

0 1 3 5 0 1 3 5 

RESET regressor 2 0.905 0.888 0.859 0.876 1 1 0.998 0.997 

RESET regressor 3 0.575 0.607 0.573 0.592 0.810 0.826 0.853 0.852 

RESET regressor  0.990 0.954 0.940 0.952 1 1 1 0.998 

RESET fitted 2 0.987 0.956 0.935 0.937 1 1 0.999 0.998 

RESET fitted 3 0.737 0.757 0.725 0.740 0.939 0.942 0.959 0.943 

RESET fitted  0.985 0.952 0.940 0.942 1 1 0.999 0.998 

RESET princomp 2 0.475 0.489 0.470 0.477 0.513 0.545 0.545 0.556 

RESET princomp 3 0.310 0.345 0.294 0.327 0.378 0.426 0.428 0.415 

RESET princomp  0.483 0.497 0.481 0.482 0.501 0.540 0.532 0.539 

Terasvirta regressor  0.979 0.948 0.933 0.941 1 1 1 0.998 

White princomp   0.541 0.505 0.482 0.507 0.663 0.714 0.679 0.690 

the highest power 0.990 0.956 0.940 0.952 1 1 1 0.998 

 
TABLE 10 (CONTINUED) 

COMPARISON OF POWERS FOR SIXTEEN DATA GENERATION WITH OUTLIERS FOR 2-PARAMETER SIGMOID 1 MODEL 

( ) ( )
3 2

1 22 2

8 1 1
X X

Y e e
− −

= − + −  

   power 

Kind of Test Type Power 
n=1.000; with outlier n=10.000; with outlier 

0 10 30 50 0 10 30 50 

RESET regressor 2 1 1 1 1 1 1 1 1 

RESET regressor 3 1 1 1 1 1 1 1 1 

RESET regressor  1 1 1 1 1 1 1 1 

RESET fitted 2 1 1 1 1 1 1 1 1 

RESET fitted 3 1 1 1 1 1 1 1 1 

RESET fitted  1 1 1 1 1 1 1 1 

RESET princomp 2 0.647 0.647 0.634 0.637 0.711 0.652 0.683 0.675 

RESET princomp 3 0.567 0.572 0.558 0.561 0.640 0.586 0.615 0.621 

RESET princomp  0.625 0.629 0.613 0.617 0.688 0.633 0.667 0.659 

Terasvirta regressor  1 1 1 1 1 1 1 1 

White princomp   0.904 0.896 0.887 0.896 0.931 0.950 0.956 0.947 

the highest power 1 1 1 1 1 1 1 1 
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(a) 

(b) 

Fig. 1.  Power comparison graph for (a) 30 random data sets and (b) 100 random data sets for the linear model 1 1 22Y X X= +  
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(c) 

(d) 

Fig. 1 (continued).  Power comparison graph for (c) 1,000 random data sets and (d) 10,000 random data sets for the linear model 1 1 22Y X X= +  
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(a) 

(b) 

Fig. 2.  Power comparison graph for (a) 30 random data sets and (b) 100 random data sets for the linear model 2 1 22 7Y X X= +  
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(c) 

(d) 

Fig. 2 (continued). Power comparison graph for (c) 1,000 random data sets and (d) 10,000 random data sets for the linear model 2 1 22 7Y X X= +  
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(a) 

(b) 

Fig. 3.  Power comparison graph for (a) 30 random data sets and (b) 100 random data sets for the linear model 
2 4

3 1 23Y X X= +  

Engineering Letters

Volume 32, Issue 12, December 2024, Pages 2299-2323

 
______________________________________________________________________________________ 



 

 
 

 

 

 
 

 

 

 

 

 

 

(c) 

(d) 

Fig.3 (continued).  Power comparison graph for (c) 1,000 random data sets and (d) 10,000 random data sets for the linear model 
2 4

3 1 23Y X X= +  
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(a) 

(b) 

Fig. 4.  Power comparison graph for (a) 30 random data sets and (b) 100 random data sets for the linear model 
3 2

4 1 22Y X X= +  
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(c) 

(d) 

Fig.4 (continued).  Power comparison graph for (c) 1,000 random data sets and (d) 10,000 random data sets for the linear model 
3 2

4 1 22Y X X= +  
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(a) 

(b) 

Fig. 5.  Power comparison graph for (a) 30 random data sets and (b) 100 random data sets for the linear model 1 22 4

5 3
X X

Y e e= +  
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(c) 

(d) 

Fig. 5 (continued). Power comparison graph for (c) 1,000 random data sets and (d) 10,000 random data sets for the linear model 1 22 4

5 3
X X

Y e e= +  
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(a) 

(b) 

Fig. 6.  Power comparison graph for (a) 30 random data sets and (b) 100 random data sets for the linear model 1 24 6

6 2
X X

Y e e= +  
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(c) 

(d) 

Fig. 6 (continued).  Power comparison graph for (c) 1,000 random data sets and (d) 10,000 random data sets for the linear model 1 24 6

6 2
X X

Y e e= +  
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(a) 

(b) 

Fig. 7. Power comparison graph for (a) 30 random data sets and (b) 100 random data sets for the linear model ( ) ( )
2 4

1 23

7 1 1
X X

Y e e
− −

= − + −  
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(c) 

(d) 

Fig. 7 (continued).  Power comparison graph for (c) 1,000 random data sets and (d) 10,000 random data sets for the linear model 

( ) ( )
2 4

1 23

7 1 1
X X

Y e e
− −

= − + −  
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(a) 

(b) 

Fig. 8.  Power comparison graph for (a) 30 random data sets and (b) 100 random data sets for the linear model ( ) ( )
3 2

1 22 2

8 1 1
X X

Y e e
− −

= − + −   
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(c) 

(d) 

Fig. 8 (continued).  Power comparison graph for (c) 1,000 random data sets and (d) 10,000 random data sets for the linear model 

( ) ( )
3 2

1 22 2

8 1 1
X X

Y e e
− −

= − + −  
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TABLE 11 

COMPARISON OF TESTS BASED ON POWER VALUE WINS ON 

EACH SCENARIO 

Kind of Test Type Power 

The Number 

Has the Biggest 

Power Value 

Percentage 

RESET regressor 2 11 15.07 

RESET regressor 3 7 9.59 

RESET regressor   6 8.22 

RESET fitted 2 7 9.59 

RESET fitted 3 1 1.37 

RESET fitted   1 1.37 

RESET princomp 2 0 0.00 

RESET princomp 3 0 0.00 

RESET princomp   0 0.00 

Terasvirta regressor   39 53.42 

White princomp   1 1.37 

TOTAL 73 100 

 

IV. CONCLUSIONS AND DISCUSSION 

Based on Fig. 1 (a), (c), and (d) show that the largest 

power value is the non-linearity test when using Terasvirta. 

These results indicate that Terasvirta performs best among 

other tests in detecting outliers in linear models. This 

performance is tested in scenarios with small and large 

sample sizes. In addition to being tested on the number of 

samples, Terasvirta is also tested on the number of outliers. 

With outliers of 0, 1, 3, and 5 on the sample sizes of 30 and 

100, Terasvirta dominates the results of the simulation. 

Likewise with the number of outliers of 0, 10, 30, and 50 on 

the sample sizes of 1,000 and 10,000.  

Similar to Fig. 1, Fig. 2 also shows that (a), (c), and (d) 

are still dominated by the Terasvirta test. These results 

support the previous statement that Terasvirta has the best 

performance for linear models compared to other non-

linearity tests. 

In Fig. 3, some scenarios cannot be compared. These 

results are marked with gray columns in the TABLE 5. The 

power in these scenarios cannot be compared because the 

highest power is owned by more than 1 test. An example of 

this case is a scenario with n=30 and outliers=0. The highest 

power is 1, owned by RESET and Terasvirta test. Based on 

TABLE 5 and Fig. 3 obtained in the simulation of the power 

(convex) model, the best performance for non-linearity is 

the RESET test. However, Terasvirta has the highest power 

in scenario n = 100 and outlier = 5. 

As explained previously, there are several scenarios that 

cannot be compared if the highest power value is obtained 

from several tests. Based on TABLE 6 , the scenarios that 

cannot be compared are n = 30 with outlier = 0, n = 100 

with outlier = 0, n = 1,000 with outlier = 0, n = 10,000 with 

outlier = 0 and outlier = 30. In addition to these scenarios, 

other scenarios have results that Terasvirta has the highest 

power compared to other tests. Thus, to test non-linearity in 

the power (convex) model, Terasvirta is the best. 

In the exponential model, there are more scenarios that 

cannot be compared than those that can be compared. Based 

on TABLE 7, the number of scenarios that can be compared 

is three. Of the three scenarios, two of them Terasvirta has 

the highest power value. Thus, Terasvirta has the best 

performance in detecting non-linearity in the exponential 

model. 

In the second exponential model, all scenarios cannot be 

compared. This result can be seen in TABLE 8, it can be 

seen that all columns are gray. However, the fact that we can 

observe is that for each scenario, Terasvirta always has a 

power value of 1. This means that for all scenarios in the 

second exponential model, Terasvirta can always be relied 

on to detect non-linearity. 

In the 2-parameter sigmoid 1 model, two scenarios cannot 

be compared, as can be seen in TABLE 9. Thus, fourteen 

scenarios can be compared. Of the fourteen scenarios, seven 

of them have the highest power value, and the other seven 

are spread across other non-linearity tests. This shows that 

Terasvirta also has the best performance for testing non-

linearity for the 2-parameter sigmoid 1 model. Based on 

TABLE 10, only five scenarios can be compared. Of the 

five scenarios, four of them have the highest power values in 

the RESET test and one scenario in Terasvirta. 

Based on TABLE 3 to TABLE 10, there are 55 failed 

scenarios. Thus, there are 73 scenarios left that can be used 

to compare the performance of the tests. The summary 

results are given in TABLE 11. Based on the research 

objectives to see which tests are more robust, the conclusion 

can be drawn is the Terasvirta test. From a total of 73 

scenarios created, the Terasvirta test has a goodness of 

53.42% compared to the RESET and White tests. This is 

done by sharing the number of simulation data. starting from 

30; 100; 1,000; and 10,000. This scenario has also been 

applied to non-linear models, either non-linear in 

parameters, variables, or both. 
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