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Abstract—This paper introduces a novel approach for linear
quadratic optimal control design for a nonlinear control
structure based on a feedback linearization method and applied
over permanent magnet synchronous motor (PMSM). The
design of the proposed approach is developed by considering
rotational speed, direct and quadrature currents as state
variables. To achieve accurate tracking of the desired rotational
speed, an additional nonlinear controller with integral action is
implemented, also employing the exact feedback linearization
method, and since the reference for the quadrature current
is selected as zero only regulation is required. Consequently,
a multivariable nonlinear controller is achieved using exact
feedback linearization, offering robustness against external
disturbances like torque load. The proposed method is
assessed through simulations on a PMSM motor, and the
speed reference tracking performance is analyzed with and
without integral action. An additional comparison is carried
out by incorporating a pole placement technique into the
controller design. The proposed exact feedback linearization
approach with integral action and linear quadratic control,
demonstrates superior performance over other methods in
terms of disturbance rejection, control effort and speed
tracking.

Index Terms—Nonlinear control, state space, exact feedback
linearization, PMSM.

I. INTRODUCTION

PErmanent magnet synchronous motors (PMSMs) are

favored over other motor types because of their high

efficiency and power density [1] and simplified design [2],

[3]. PMSMs can be classified between interior PMSM

(I-PMSM) and surface-mounted PMSM (SM-PMSM) [4].

In [5] is shown that the SM-PMSM is commonly used for

electric vehicle applications. The principal disadvantages of

the PMSM are the demagnetization (exhibited in permanent

magnets when faced with high temperature, [6]) and

vibration environments, on top of its high cost [7]. Brushless

DC motors based on permanent magnets (PM-BLDC)

are known for their high efficiency, high power density,

low electromagnetic interference, and reduced maintenance

requirements. This motor is utilized in aerospace, servo

applications, medical devices, robotics, and particularly in

electric vehicles due to its excellent driving performance

[8], [9], [10]. PMBLDC motors require electronic drivers

because of their high torque and speed, and since they do

not require brushes, a reduction in the copper and eddy
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current losses is obtained. In general, the use of permanent

magnets eliminates excitation losses, thus increasing the

motor’s efficiency [10].

In [11] is presented a PMSM prototype constructed

using additive manufacturing techniques, where several

materials are considered. These PMSMs require a specifically

designed structure for the magnets like the Halbach array.

In [11] is also proposed an adaptive speed control of a

3D-printed permanent magnet synchronous motor (PMSM),

which is designed and printed in PETG using a nine-pair

pole structure with a Halbach array. The controller design

validates the PMSM’s performance even when constructed

with non-ferromagnetic materials. In [12], an additional

robust control design is performed for the PMSM described

in [11], where the speed reference tracking is evaluated under

noise conditions.

Several methods can be used for the control of

nonlinear multivariable systems [13], such as state feedback

linearization [14], gain scheduling, and sliding modes

control [15]. For example, in [16] is proposed a buck

converter control with integral action which is robust to

disturbances but requires detailed knowledge of the system.

In [17] is presented a multivariable sliding mode control of

coupled tanks that show robustness to disturbances without

a requirement of a detailed model of the system.

This study proposes an optimal linear quadratic design for

a nonlinear controller based on the feedback linearization

method in continuous time. The proposed approach is applied

over a PMSM and evaluated for reference tracking. The zero

steady state error is achieved by using integral action in the

controller for non-zero references. A comparison analysis

is performed by considering a pole placement technique,

with and without integral action. The proposed approach is

evaluated under external disturbances for rotational speed

tracking and steady state error. This paper is organized

as follows: in section II is presented the PMSM model

in continuous time and the mathematical formulation of

the integral multivariable nonlinear controller based on the

exact feedback linearization approach. In section III are

presented the results of the PMSM simulation and the

reference tracking comparison under torque load disturbance,

and finally, in section IV are presented the conclusions and

future works.

II. THEORETICAL FRAMEWORK

A. Continuous time Exact Feedback Linearization

The PMSM direct-quadrature framework model in

continuous time can be described by the following
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equations [18]:

ẋ1 = c1x1 + c2x2x3 + c3ud

ẋ2 = c4x2 + c5x1x3 + c6x3 + c7uq

ẋ3 = c8x2 + c9x1x2 + c10x3 + c11τL

(1)

where the state variables x1(t) = id(t), x2(t) = iq(t) and

x3(t) = ω(t), and where the PMSM outputs are defined by

y1 = h1(x) = x1

y2 = h2(x) = x3

(2)

The exact feedback linearization approach requires the

apllication of successive derivatives of the outputs until an

input appears [13]. Assuming the model (1) with TL(t) = 0,

for the first output, it follows:

ẏ1 =
dh1

dt
(3)

ẏ1 = ẋ1 = c1x1 + c2x2x3 + c3ud (4)

ẏ1 = Lfh1(x) + Lgdh1(x)ud (5)

being

Lfh1(x) = c1x1 + c2x2x3 (6)

Lgdh1(x) = c3 (7)

since the input ud(t) appears, the derivatives of this input

are stopped, and the control signal v1(t) is computed as:

ẏ1 = v1 (8)

For the second output, it follows:

ẏ2 =
dh2

dt
(9)

ẏ2 = ẋ3 = c8x2 + c9x1x2 + c10x3 (10)

ẏ2 = Lfh2(x) + Lgdh2(x)ud + Lgqh2(x)uq (11)

being

Lfh2(x) = c8x2 + c9x1x2 + c10x3 (12)

Lgdh2(x) = 0 (13)

Lgqh2(x) = 0 (14)

Then, the successive derivative is obtained as

ÿ2 =
d2h2

dt2
(15)

ÿ2 = c9x2ẋ1 + (c8 + c9x1)ẋ2 + c10ẋ3 (16)

ÿ2 = c9x2(c1x1 + c2x2x3 + c3ud)

+ (c8 + c9x1)(c4x2 + c5x1x3 + c6x3 + c7uq)

+ c10(c8x2 + c9x1x2 + c10x3)

(17)

It follows that

ÿ2 = c1c9x1x2 + c2c9x
2

2
x3 + c3c9x2ud + c4c8x2

+ c5c8x1x3 + c6c8x3 + c7c8uq

+ c4c9x1x2 + c5c9x
2

1
x3 + c6c9x3 + c7c9x1uq

+ c8c10x2 + c9c10x1x2 + c2
10
x3

(18)

ÿ2 = L2

fh2(x) + LgdLfh2(x)ud + LgqLfh2(x)uq (19)

being

L2

fh2(x) = c1c9x1x2 + c2c9x
2

2
x3 + c4c8x2

+ c5c8x1x3 + c6c8x3 + c4c9x1x2

+ c5c9x
2

1
x3 + c6c9x3 + c8c10x2

+ c9c10x1x2 + c2
10
x3

(20)

LgdLfh2(x) = c3c9x2 (21)

LgqLfh2(x) = c7c8 + c7c9x1 (22)

and since the inputs ud(t) and uq(t) appear, the derivatives

of this output are stopped. Therefore, the control signal v2(t)
is defined as

ÿ2 = v2 (23)

The resulting system is




ẏ1
ẏ2
ÿ2



 =





0 0 0
0 0 1
0 0 0





︸ ︷︷ ︸

A





y1
y2
ẏ2



+





1 0
0 0
0 1





︸ ︷︷ ︸

B

[
v1
v2

]

(24)

[
y1
y2

]

=

[
1 0 0
0 1 0

]

︸ ︷︷ ︸

C





y1
y2
ẏ2



 (25)

Considering the structure of (24) it can be written as two

subsystems. For the first subsystem, it follows that
[
ẏ1
]
=

[
0
]

︸︷︷︸
a1

[
y1
]
+

[
1
]

︸︷︷︸

b1

[
v1
]

(26)

[
y1
]
=

[
1
]

︸︷︷︸
c1

[
y1
]

(27)

where v1(t) is defined by

v1 = −k1y1 (28)

v1 = −k1x1 (29)

After designed, and by considering that

v1 = Lfh1(x) + Lgdh1(x)ud (30)

v1 = −k1x1 (31)

the control law for ud(t) can be obtained, as follows:

ud =
1

Lgdh1(x)
(−k1x1 − Lfh1(x)) (32)

ud =
1

c3
(−k1x1 − c1x1 − c2x2x3) (33)

In a similar way, for the second subsystem it follows that
[
ẏ2
ÿ2

]

=

[
0 1
0 0

]

︸ ︷︷ ︸

A2

[
y2
ẏ2

]

+

[
0
1

]

︸︷︷︸

B2

[
v2
]

(34)

[
y2
]
=

[
1 0

]

︸ ︷︷ ︸

C2

[
y2
ẏ2

]

(35)

where the control law for v2(t), considering integral action,

is defined by

v2 = −k2y2 − k3ẏ2 + kiei (36)

v2 = −k2x3 − k3ẋ3 + kiei (37)

v2 = −k2x3 − k3(c8x2 + c9x1x2 + c10x3) + kiei (38)
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being ei the error integral, defined as

ei =

∫ t

0

(ωref (τ)− x3(τ))dτ (39)

being ωref the reference for ω. Therefore, ei can be also

defined as follows

ėi = ωref − x3 (40)

By considering (40), an augmented state space system can

be obtained as follows




ẏ2
ÿ2
ėi



 =





0 1 0
0 0 0
−1 0 0





︸ ︷︷ ︸

Aa





y2
ẏ2
ei



+





0
1
0





︸︷︷︸

Ba

[
v2
]
+





0
0
1





︸︷︷︸

Br

[
ωref

]

(41)

with v2 defined as

v2 =
[
k2 k3 −ki

]

︸ ︷︷ ︸

Ka





y2
ẏ2
ei



 (42)

After designed, and by considering that

v2 = L2

fh2(x) + LgdLfh2(x)ud (43)

+ LgqLfh2(x)uq (44)

v2 = −k2x3 − k3ẋ3 + kiei (45)

the control law for uq(t) can be obtained, as follows:

uq =
1

LgqLfh2(x)

(
kiei − k2x3 − k3ẋ3 − L2

fh2(x)

−LgdLfh2(x)ud)

(46)

uq =
1

c7c8 + c7c9x1

(kiei − k2x3

− k3(c8x2 + c9x1x2 + c10x3)

− (c1c9x1x2 + c2c9x
2

2
x3

+ c4c8x2 + c5c8x1x3 + c6c8x3

+ c4c9x1x2 + c5c9x
2

1
x3 + c6c9x1x3

+ c8c10x2 + c9c10x1x2 + c2
10
x3)

−c9x2(−k1x1 − c1x1 − c2x2x3))

(47)

uq =
1

c7c8 + c7c9x1

(kiei − k2x3

−k3(c8x2 + c9x1x2 + c10x3)

− (c4c8x2 + c5c8x1x3 + c6c8x3

+ c4c9x1x2 + c5c9x
2

1
x3 + c6c9x1x3

+ c8c10x2 + c9c10x1x2 + c2
10
x3) +c9x1x2k1)

(48)

By assuming the parameter c9 = 0, and the control

equation for uq can be reduced as follows:

uq =
1

c7c8
(kiei − k2x3 − k3(c8x2 + c10x3)

−(c4c8x2 + c5c8x1x3 + c6c8x3 + c8c10x2 + c2
10
x3)

)

(49)

In Fig. 1 is shown an schematic diagram of the PMSM

exact feedback nonlinear control with integral action.

Fig. 1. Schematic diagram of the PMSM exact feedback nonlinear control
with integral action

B. Controller gains design

A Linear Quadratic Regulator (LQR) controller can be

designed based on the state feedback structure. For control

law v1, it follows that

J1 =

∫ t

0

(q1x
2

1
(τ) + r1v

2

1
(τ))dτ (50)

where q1 and r1 are the weights related to x1 and v1
respectively. For control law v2, it follows that

J2 =

∫ t

0

(xT
a (τ)Qaxa(τ) + r2v

2

2
(τ))dτ (51)

being the augmented states xa defined as

xa =





y2
ẏ2
ei



 (52)

and the Qa and r2, the weights related to xa and v2
respectively. Where Qa is defined as

Qa =





q2 0 0
0 q3 0
0 0 qi



 (53)

being q2 the weight related to y2, q3 the weight related to

ẏ2, and qi the weight related to ei.

III. RESULTS

The proposed control approach is evaluated over a PMSM

Teknic-2310P with the following set of cj parameters

c1 = −1.8× 103, c2 = 4, c3 = 5000

c4 = −1.8× 103, c5 = −4, c6 = −127.9083

c7 = 5000, c8 = 5.434× 103, c9 = 0

c10 = −0.3734, c11 = −1.4165× 105

By considering these parameters, the following continuous

time model is obtained

ẋ1 = −1.8× 103x1 + 4x2x3 + 5000ud

ẋ2 = −1.8× 103x2 − 4x1x3

− 127.9083x3 + 5000uq

ẋ3 = 5.434× 103x2 − 0.3734x3

− 1.4165× 105τL

(54)

and also, the following control law is obtained for ud

ud =
1

c3
(−k1x1 − c1x1 − c2x2x3)

ud =
1

5000

(
−k1x1 + 1.8× 103x1 − 4x2x3

)
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and uq

uq =
1

c7c8
(kiei − k2x3 − k3(c8x2 + c10x3)

− c4c8x2 − c5c8x1x3 − c6c8x3

−c8c10x2 − c2
10
x3

)

uq =
1

2.7170× 107
(kiei − k2x3

− k3(5.434× 103x2 − 0.3734x3)

+ 9.7811× 106x2 + 2.1736× 104x1x3

+ 6.9505× 105x3

+2.0291× 103x2 − 0.1394x3

)

The open-loop system response by considering step inputs

for ud, uq and τL shown in Fig. 2 is shown in Fig. 3

Fig. 2. Open loop inputs

Fig. 3. Open loop outputs

The block diagram that represents the PMSM system in

continuous time is shown in Fig. 4

Fig. 4. Nonlinear multivariable model of the PMSM in continuous time

Fig. 5. Nonlinear control based on exact feedback linearization with integral
action in continuous time

In order to evaluate the performance of the proposed exact

feedback linearization approach with the optimal control

Engineering Letters

Volume 32, Issue 12, December 2024, Pages 2270-2277

 
______________________________________________________________________________________ 



design, a comparison analysis is performed by using a

pole placement based control design with two controller

configuration: with and without integral action.

The block diagram that represents the exact feedback

nonlinear control of the PMSM system with integral action

is shown in Fig. 5.

The design of the controller gains by using a LQR

controller can be performed by selecting the weights as

follows

q1 = 1000000 (55)

r1 = 1 (56)

Qa =





0 0 0
0 0 0
0 0 5000000000



 (57)

r2 = 1 (58)

which results in the following controller gains

k1 = 1000 (59)

k2 = 3420 (60)

k3 = 82.7037 (61)

ki = 70711 (62)

The closed-loop response by using the exact feedback

nonlinear control technique and the optimal control and by

considering the inputs for ud, uq and τL shown in Fig. 6 is

shown in Fig. 7

Fig. 6. Closed loop inputs of the nonlinear control based on exact feedback
linearization with integral action and optimal control

Fig. 7. Closed loop outputs of the nonlinear control based on exact feedback
linearization with integral action and optimal control

If the exact feedback controller is designed without

considering the integral action, it follows that the control

signal uq is therefore computed as

uq =
1

c7c8
(k2(wref − x3)− k3(c8x2 + c10x3)

− c4c8x2 − c5c8x1x3 − c6c8x3

−c8c10x2 − c2
10
x3

)

uq =
1

2.7170× 107
(k2(wref − x3)

− k3(5.434× 103x2 − 0.3734x3)

+ 9.7811× 106x2 + 2.1736× 104x1x3 + 6.9505× 105x3

+2.0291× 103x2 − 0.1394x3

)

In Fig. 8 is shown the schematic diagram of the PMSM

nonlinear control based on exact feedback linearizarion

without integral action.

Fig. 8. Schematic diagram of the PMSM nonlinear control based on exact
feedback linearizarion without integral action

The block diagram that represents the exact feedback

nonlinear control of the PMSM system without integral

action is shown in Fig. 9.
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Fig. 9. Nonlinear control based on exact feedback linearization without
integral action

The design of the controller gains by using a LQR

controller without integral action can be performed by

selecting the weights as follows

q1 = 1000000 (63)

r1 = 1 (64)

Q =

[
5000000 0

0 0

]

(65)

r2 = 1 (66)

which results in the following controller gains

k1 = 1000 (67)

k2 = 2236.1 (68)

k3 = 66.87 (69)

The closed-loop response by using the exact feedback

nonlinear control technique and the optimal control without

integral action and by considering the inputs for ud, uq and

τL shown in Fig. 10 is shown in Fig. 11

Fig. 10. Closed loop inputs of the nonlinear control based on exact feedback
linearization without integral action and optimal control

Fig. 11. Closed loop outputs of the nonlinear control based on exact
feedback linearization without integral action and optimal control

For the sake of comparison, the design of the controller

gains k1, k2, k3 and ki are also designed by considering

a pole placement technique with settling time ts of 100
milliseconds, as follows:

ts =
4

p
(70)

p =
4

0.1
= 40 (71)

being p the magnitude of the dominant pole.

Therefore, for the controller gain k1 it follows that

p1(s) = s+ k1 = s+ 40 (72)

and therefore

k1 = 40 (73)

and for the controller gains k2, k3, and ki it follows that

p2(s) = det





s −1 0
k2 s+ k3 −ki
1 0 s



 (74)

p2(s) = s3 + k3s
2 + k2s+ ki (75)

p2(s) = (s+ 40)(s+ 160)2 (76)
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resulting in

k2 = 38400 (77)

k3 = 360 (78)

ki = 1024000 (79)

By considering these parameters, the closed-loop response

by using the exact feedback nonlinear control with integral

action and the pole placement technique, and by considering

the inputs for ud, uq and τL shown in Fig. 12 is shown in

Fig. 13

Fig. 12. Closed loop inputs of the nonlinear control based on exact feedback
linearization with integral action and pole placement technique

Fig. 13. Closed loop outputs of the nonlinear control based on exact
feedback linearization with integral action and pole placement technique

In addition, if the exact feedback controller is designed

without the integral action by the pole placement technique,

the controller gains k2 and k3 can be designed as follows

p2(s) = det

(
s −1
k2 s+ k3

)

(80)

p2(s) = s2 + k3s+ k2 (81)

p2(s) = (s+ 40)(s+ 160) (82)

resulting in

k2 = 6400 (83)

k3 = 200 (84)

By considering these parameters, the closed-loop response

by using the exact feedback nonlinear control without

integral action and the pole placement technique, and by

considering the inputs for ud, uq and τL shown in Fig. 14

is shown in Fig. 15

Fig. 14. Closed loop inputs of the nonlinear control based on exact feedback
linearization without integral action and pole placement technique

Fig. 15. Closed loop outputs of the nonlinear control based on exact
feedback linearization without integral action and pole placement technique

In Table I is shown a comparison in terms of the

stationary error of the proposed exact feedback controller

(EFC) approach with and without optimal computation of

the controller gains by using the optimal control approach

and the pole-placement approach.

TABLE I
STATIONARY ERROR COMPARISON OF THE PROPOSED EFC APPROACH

BY CONSIDERING OPTIMAL AND POLE-PLACEMENT GAINS

Controller EFC EFC
Gains with Integral Action without Integral Action

Optimal 0.01 rpm 170.5 rpm

Pole-placement 0.01 rpm 180.2 rpm

It is worth noting that in Table I, it is shown that

the stationary error for speed tracking is near zero for

the proposed EFC approach by considering integral action

even when the controller gains are computed by using an

optimal approach or a pole-placement approach. On the other

hand, the EFC approach without the integral action shows a
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stationary error near 180 rpm for controller gains computed

by an optimal approach or a pole-placement approach.

IV. CONCLUSIONS

In this work is presented an optimal control design

based on a linear quadratic regulator to obtain a nonlinear

multivariable controller based on the exact feedback

linearization technique with integral action. By considering

the mathematical formulation proposed in section II, the

design of the nonlinear multivariable controller is reduced

to two linearized independent state space subsystems, and it

is straightforwardly converted to a nonlinear state feedback

controller by using the exact feedback linearization approach.

As a result it can be seen that the control effort of signals

ud and uq require less amplitude by using the optimal

control design than with the pole placement design, reducing

the magnitudes of the id and iq currents. In addition, it

can be seen that the proposed approach by considering

integral action shows a stationary error near to zero even

when the controller gains are computed by an optimal

or a pole-placement approach. For future work, it can be

considered that since the proposed approach is evaluated by

using real PMSM motor parameters, the proposed approach

can be directly validated in a real environment.

REFERENCES

[1] W. Xu, M. M. Ismail, Y. Liu, and M. R. Islam, “Parameter optimization
of adaptive flux-weakening strategy for permanent-magnet
synchronous motor drives based on particle swarm algorithm,”
IEEE Transactions on Power Electronics, vol. 34, no. 12, pp.
12 128–12 140, 2019.

[2] C. Gong, Y. Hu, J. Gao, Y. Wang, and L. Yan, “An
improved delay-suppressed sliding-mode observer for sensorless
vector-controlled pmsm,” IEEE Transactions on Industrial Electronics,
vol. 67, no. 7, pp. 5913–5923, 2020.

[3] P. Gao, G. Zhang, H. Ouyang, and L. Mei, “A sliding mode
control with nonlinear fractional order pid sliding surface for the
speed operation of surface-mounted pmsm drives based on an
extended state observer,” Mathematical Problems in Engineering,
vol. 2019, no. 1, p. 7130232, 2019. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1155/2019/7130232

[4] X. Sun, Z. Li, X. Wang, and C. Li, “Technology development of
electric vehicles: A review,” Energies, vol. 13, no. 1, 2020. [Online].
Available: https://www.mdpi.com/1996-1073/13/1/90

[5] C. Gong, Y. Hu, K. Ni, J. Liu, and J. Gao, “Sm load torque
observer-based fcs-mpdsc with single prediction horizon for high
dynamics of surface-mounted pmsm,” IEEE Transactions on Power

Electronics, vol. 35, no. 1, pp. 20–24, 2020.

[6] K. Zhao, N. Jia, J. She, W. Dai, R. Zhou, W. Liu, and X. Li,
“Robust model-free super-twisting sliding-mode control method
based on extended sliding-mode disturbance observer for pmsm drive
system,” Control Engineering Practice, vol. 139, p. 105657, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0967066123002265

[7] S. Xiao and A. Griffo, “Pwm-based flux linkage and rotor temperature
estimations for permanent magnet synchronous machines,” IEEE

Transactions on Power Electronics, vol. 35, no. 6, pp. 6061–6069,
2020.

[8] P. Kumar, D. V. Bhaskar, U. R. Muduli, A. R. Beig, and R. K. Behera,
“Iron-loss modeling with sensorless predictive control of pmbldc
motor drive for electric vehicle application,” IEEE Transactions on

Transportation Electrification, vol. 7, no. 3, pp. 1506–1515, 2021.
[9] K. Karthick, S. Ravivarman, R. Samikannu, K. Vinoth, and

B. Sasikumar, “Analysis of the impact of magnetic materials on
cogging torque in brushless dc motor,” Advances in Materials

Science and Engineering, vol. 2021, no. 1, p. 5954967, 2021.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1155/
2021/5954967

[10] A. Darcy, G. Jegha, P. Subathra, N. Manoj Kumar, U. Subramaniam,
and S. Padmanaban, “A High Gain DC-DC Converter with Grey
Wolf Optimizer Based MPPT Algorithm for PV Fed BLDC Motor
Drive,” Applied Sciences, vol. 10, p. 2797, 2020. [Online]. Available:
https://www.mdpi.com/2076-3417/10/8/2797

[11] S. Velarde-Gomez, A. Molina-Cabrera, and E. Giraldo, “Model-based
adaptive control of a 3d printed permanent magnet synchronous
motor,” Engineering Letters, vol. 31, no. 4, pp. 1804–1812, 2023.

[12] S. Velarde-Gomez and E. Giraldo, “Robust state space embedded
control of a 3d printed permanent magnet synchronous motor,” IAENG

International Journal of Applied Mathematics, vol. 54, no. 2, pp.
255–261, 2024.

[13] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, ser.
Interdisciplinary Applied Mathematics. Springer New York, 2013.

[14] S. Velarde-Gomez and E. Giraldo, “Real-time identification and
nonlinear control of a permanent-magnet synchronous motor based on
a physics-informed neural network and exact feedback linearization,”
Information, vol. 15, no. 9:577, pp. 1–23, 2024.

[15] H. Sira-Ramirez, R. Marquez, F. Rivas-Echeverria, and
O. Llanea-Santiago, Control de sistemas no lineales: Linealizacion

aproximada, extendida y exacta. New York: Pearson - Prentice Hall,
2005.

[16] J. S. Velez-Ramirez, L. A. Rios-Norena, and E. Giraldo, “Buck
converter current and voltage control by exact feedback linearization
with integral action,” Engineering Letters, vol. 29, no. 1, pp. 168–176,
2021.

[17] F. Osorio-Arteaga, D. Giraldo-Buitrago, and E. Giraldo, “Sliding mode
control applied to mimo systems,” Engineering Letters, vol. 27, no. 4,
pp. 802–806, 2019.

[18] M. Nicola and C.-I. Nicola, “Improvement of linear and nonlinear
control for pmsm using computational intelligence and reinforcement
learning,” Mathematics, vol. 10, no. 24, 2022. [Online]. Available:
https://www.mdpi.com/2227-7390/10/24/4667

Engineering Letters

Volume 32, Issue 12, December 2024, Pages 2270-2277

 
______________________________________________________________________________________ 




