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Abstract—The early identification of pulmonary nodules is
essential for enhancing lung cancer survival rates, with
computed tomography (CT) serving as the primary diagnostic
tool. However, the increasing volume of CT data poses
significant challenges, particularly in detecting small and
irregularly shaped nodules. To tackle this problem, we
developed the Small Object Detection-YOLOv8, an extension
of YOLOv8n, designed to enhance the detection of small
nodules. To mitigate overfitting in limited sample scenarios, a
multi-level prediction header was introduced alongside the
Multi-scale Contextual Attention (MCA) mechanism to reduce
noise and improve feature extraction. Moreover, the Complete
Intersection over Union (CIoU) loss function was substituted
with the Modified Partial Distance Intersection over Union
(MPDIoU) to achieve further performance improvements.
Comprehensive evaluations on the LIDC-IDRI datasets and
LUNA16 demonstrated that the proposed model achieved
mAP@0.5 scores of 0.769 and 0.775, representing
improvements of 0.055 and 0.051 over the YOLOv8n model,
respectively. These results validate the effectiveness of the
proposed method in improving the accuracy of pulmonary
nodule detection.

Index Terms—YOLOv8n ； Computer vision; Pulmonary
nodule detection

I. INTRODUCTION
he challenge of annotating lung nodule datasets
complicates the determination of the presence of

pulmonary nodules on chest X-rays. Typically, only medical
experts in this field possess the requisite expertise to
accurately label pulmonary nodules. This limitation hinders
the creation of high-quality datasets for pulmonary nodule
detection, thereby affecting the accuracy of detection
algorithms. Additionally, continuous interpretation of
X-rays can lead to fatigue among radiologists, increasing the
likelihood of diagnostic errors. Therefore, in the context of
pulmonary nodule detection, the implementation of a
medical assistant system capable of identifying pneumonia-
lesions in patients' X-ray images could be highly beneficial
in clinical practice.Additionally, it could alleviate doctors'
workload. Research on the automatic detection of
pulmonary nodules dates back to the 1950s, when Turing, a
young computer prodigy, proposed the theory of automation,
laying the groundwork for artificial intelligence. Since then,
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extensive exploration of computer artificial intelligence has
taken place from various perspectives. As computing power
advanced, detection algorithms gained traction for lung
nodule detection, yielding promising results. Target
detection, a critical element of computer vision, has
significant applications in medical diagnostics, industrial
and agricultural product inspections, autonomous driving
systems, and other practical domains. Object detection tasks
involve identifying the locations of objects within an image
and subsequently classifying these objects. In the domain of
medical detection, two well-established target detection
approaches are frequently utilized: single-stage target
detection methods and dual-stage target detection methods.
One-stage target detection algorithms include the YOLO
series [1] and SSD [2], whereas two-stage target detection
algorithms include Faster R-CNN [3] and RCNN [4]. In
two-stage target detection algorithms, a single network is
typically utilized for detecting and extracting the object
region, followed by another network for classifying and
recognizing the object region. Although the two-stage target
detection algorithm offers high accuracy, it often suffers
from slow processing speeds, which may not meet the
demands of rapid target detection in medical applications.
Released in 2023, YOLOv8 is widely regarded as the

most efficient and fastest algorithm developed to date. It can
simultaneously classify and locate targets using a single
neural network, thereby significantly enhancing
computational efficiency and improving detection speed.
The YOLOv8 series comprises five models, with the
YOLOv8 Nano (YOLOv8n) being the smallest and fastest in
terms of detection speed. In the current medical detection
landscape, where efficiency is paramount, this paper selects
YOLOv8n as the improved baseline algorithm. Despite its
proficiency in detecting full-size targets, YOLO
demonstrates suboptimal accuracy in detecting small objects.
The original hybrid convolution network based on
YOLOv8n achieves a 72.4% accuracy rate for lung nodule
image detection. To address these limitations in medical
image detection, it is essential to further optimize the
performance of the YOLOv8n algorithm.
This study integrates the MCA attention mechanism into

the original algorithm, allowing the network to prioritize
diverse channel information through multi-head attention,
thereby improving its ability to capture key features and
enhancing overall target detection performance. To further
optimize small object detection, we refined the
multi-detection head, specifically boosting the prediction
capabilities for small, multi-level features, such as
pulmonary nodules. Evaluation on the LIDC-IDRI and
LUNA16 datasets demonstrated that these optimizations
significantly enhanced the network's representation
capabilities.
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II. MATERIALS ANDMETHOD

A. Overall Structure
The YOLO series was initially proposed by Joseph

Redmon in 2015 as a material measurement method based
on convolutional neural networks [5]. Each component of
YOLOv1 requires separate training, making the training
process intricate. In response, Ultralytics, a small start-up,
has developed and maintained the YOLOv8 algorithm to
support image classification, detection, and instance
segmentation. As depicted in Figure 1, the YOLOv8
network architecture comprises four main components: the
Input module, the Backbone (neural network structure), the
Neck (feature aggregation layer), and the Head (prediction
network layer).

B. Component Structure
The input module mainly includes Mosaic image

augmentation, adaptive anchor box computation, and
adaptive image scaling. Mosaic Image Enhancement,
introduced by YOLOv4 [6], involves the random splicing of
four images into one during training to enrich the dataset for
pulmonary nodule detection. Adaptive Anchor Frame
Calculation automatically computes the most suitable
anchor frame parameters for the input image through
learning prior to network training, enhancing target
detection accuracy and robustness without requiring manual

configuration. However, the image aliasing enhancement
technology proposed by YOLOv4 may impact training
accuracy when enabled throughout the entire training
process. YOLOv8 addresses this by deactivating the image
aliasing enhancement technology during the later stages of
training, thereby improving overall training efficacy.
The backbone network is a crucial component of the

overall network, designed to extract image features. Its
comprehensive structure comprises ConvBiSiLU (CBS),
shortcut (C2F), Spatial Pyramid Pooling Fast (SPPF), and
other essential modules. ConvBiSiLU (CBS) performs
convolution operations on input images and aids C2F
(shortcut) in feature extraction, while Spatial Pyramid
Pooling Fast (SPPF) achieves adaptive size output. This
section is mainly tasked with extracting feature
representations from the target.
Among these modules, CBS and SPPF are adopted from

YOLOv5, whereas the C2F (shortcut) module is influenced
by the ELAN design concept introduced in YOLOv7 [7],
effectively replacing the original C3 module with the C2F
(shortcut) module. The C3 module within the YOLOv5
architecture improves the network's depth, expands the
receptive field, and strengthens its feature extraction
capabilities. The structural diagram of the C2F (shortcut)
module in YOLOv8 is presented in Figure 2, while the
structural diagram of the C3 module in YOLOv5 is depicted
in Figure 3. The bottleneck represents a specialized residual
structure.

Fig. 1. Network structure of YOLOv8
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Fig. 2. C2F module structure of YOLOv8

Fig. 3. C3 module structure of YOLOv5

The Neck structure, as depicted in Figure 4, is a
sophisticated network layer that consists of a convolutional
layer and a C2F module. This architecture strategically
integrates the Path Aggregation Network (PAN) [8] and
Feature Pyramid Network (FPN) [9] frameworks to enhance
multi-scale feature fusion. The primary goal of this design is
to effectively transfer image features to the prediction layer,
ensuring robust performance across varying image scales.
In the left section of Figure 4, the PAN structure is

illustrated. The PAN architecture employs down-sampling
to link low-resolution feature maps with high-resolution
ones, facilitating effective feature integration. This creates
an interconnected pathway that allows for the fusion of
information between adjacent layers of the feature map.
Consequently, feature maps across various scales are
enriched with both semantic and visual details, enhancing
prediction accuracy regardless of the input image size.
The right section of Figure 4 illustrates the FPN structure.

The FPN is constructed by down-sampling high-resolution
feature maps and up-sampling low-resolution feature maps
to create a pyramid structure. This architecture facilitates the
integration of information between layers, ensuring that
essential target information from high-level feature maps is
preserved, while low-level background details are enhanced
by the high-level features. This dual integration approach
ensures comprehensive feature representation, contributing
to more accurate detection and classification in diverse
visual tasks.

Fig.4. Neck structure: PAN-FPN

Figure 5 illustrates the structure of the head prediction
layer. Due to the differing focuses on classification and
positioning—where classification prioritizes texture content
and positioning emphasizes edge information—YOLOv8
employs decoupled detection headers. This segregation into
distinct branches for classification and detection tasks
enhances overall detection effectiveness. Additionally, the
channel configuration of the regression header is adjusted to
further optimize performance.
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Fig.5. Head structure: Decoupled head

III. IMPROVED STRATEGY

A. MCA Attention Mechanism
The attention mechanism in deep learning emulates the

visual focus observed in biological systems, particularly the
human eye, which selectively emphasizes specific areas
with "high resolution." This technique empowers models to
prioritize and discern critical feature information within an
image, thereby enhancing their interpretative capabilities.
The attention mechanism operates by varying the degree of
attention assigned to different elements of the input,
accomplished through the application of weights.
Conceptually, it integrates a query matrix, key, and a
weighted average to form what is known as a Multilayer
Perceptron (MLP) attention mechanism, as depicted in
Figure 6.
In a broader context, channel attention plays a pivotal role

in substantially improving network performance. This
enhancement arises from the ability of channel attention to
direct the network ’ s focus towards essential semantic
information within the image, while simultaneously filtering
out extraneous details. By doing so, channel attention
effectively reduces the negative impact of noise on feature
extraction from the input image, thus resulting in a notable
improvement in the model's detection accuracy. This
selective attention mechanism is especially valuable in
scenarios where precision and accuracy are paramount, as it

facilitates more refined and reliable outcomes in deep
learning tasks.

Fig.6. Principle of attention mechanism

Similarly, Multi-scale Cross-axis Attention (MCA) [10]
aims to address the challenges of multi-scale information
and long-range dependencies in medical image
segmentation. This method effectively captures global
information by employing efficient axial attention to
calculate the two-way cross-attention between parallel axial
attention. To accommodate significant variations in
individual lesion size and organ shape, multiple strip
convolutions with varying kernel sizes are utilized in each
axial attention path to enhance the efficiency of spatial
information encoding. This method is incorporated into the
MSCAN backbone network, forming what is referred to as
MCANET. The architecture of the MCA attention
mechanism is depicted in Figure 7. Notably, MCANET, with
only 4M+ parameters, outperforms many previous attention
mechanisms in four challenging tasks: skin lesion
segmentation, nuclear segmentation, abdominal multi-organ
segmentation, and polyp segmentation.
The MCA Attention Mechanism enhances the axial

attention mechanism by integrating strip convolution to
introduce multi-scale features, thereby improving precision
in localizing target areas. Concurrently, a double
cross-attention mechanism is established between two
spatial axial attentions to effectively leverage multi-scale
features and identify ambiguous boundaries. MCANET
adeptly encodes global context and accommodates diverse
sizes and shapes of lesion regions or organs, thereby
enhancing the accuracy of medical image detection.
Furthermore, MCANET enhances the model's global
context perception by integrating multiple scales of attention,
thus contributing to more precise medical image detection.

Fig.7. MCA network structure
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B. Multiple Detection Head Optimization
The target detection network model utilizes established

backbone networks such as VGG [11], ResNet [12],
DenseNet [13], MobileNets [14], EfficientNet [15],
CSPDarknet 53, and Swin Transformer [16], known for their
robust feature extraction capabilities in classification tasks.
Consequently, this study adopts the original YOLOv8
network architecture as the backbone. The backbone
network primarily performs feature extraction, while the
head uses these feature maps to detect target position and
category. Detection heads are generally classified as
single-stage or two-stage detectors. The RCNN series is
widely acknowledged as the leading representative of
two-stage detectors. In contrast, single-stage detectors
concurrently predict both the bounding box and the object
class, offering faster processing speeds but generally lower
accuracy. Notable single-stage detectors in deep learning
include the YOLO series, SSD, and RetinaNet [17]. Since
the introduction of YOLOv3 [18], the YOLO detector has
been enhanced with three prediction headers, integrating
various detection scales and feature levels to optimize
performance across diverse scenarios.
Detecting pulmonary nodules, especially small targets,

remains a significant challenge in medical image detection.
Enhancing the accuracy of TB detection for small targets is a
primary focus in medical detection. Feature extraction in
CNNs can lead to loss of crucial information, especially for
small targets, complicating this issue. To address this, a
prediction header is implemented to detect multi-level
features of small-sized pulmonary tuberculosis targets.
When combined with the other three prediction heads, this
approach effectively mitigates overfitting in scenarios with
small sample sizes. The enhanced small object
detection-YOLOv8 network structure, illustrated in Figure 8,
demonstrates significant improvements in detecting small
objects without introducing additional model parameters or
computational overhead.

C. Loss Function Improvement
Selecting an appropriate loss function in deep learning is

vital for determining the overall effectiveness of the trained
model. In YOLOv8, the employed loss function differs from
that used in the YOLOv5 and YOLOv7 series, as it is
divided into two components. Specifically, VFL Loss [19] is
utilized for classification loss coordination, while the default
loss function employed is CIoU Loss [20]. The calculation
of the CIoU loss is as follows:

2

( , )1
gt

CIoU
b bL IoU av
C


    (1)

A BIoU
A B



 (2)

2

2

4 arctan arctan
gt

gt

w wv
h h

         
    (3)

 1
va

IoU v


  (4)

2 2 2

2 2 2

8 arctan arctan

8 arctan arctan

gt

gt

gt

gt

v w w h
w h h w h

v w w w
h h h w h





                 


              

(5)

Where A is the prediction box and B indicates the true
box. IoU represents the intersection ratio between A and
B , specifically defined as the proportion of the overlapping
area of A and B to the total area of their union. A higher
value of IoU indicates that the predicted box is closer to the
ground truth box. However, in cases where there is no
overlap between the predicted box and the ground truth box,
or when they are perfectly aligned, IoU cannot be
evaluated. b represents the center of the predicted box, gtb
represents the center of the ground truth box, and  refers
to the Euclidean distance calculation. C denotes the
diagonal length of the smallest enclosing area that can
contain both the predicted and ground truth boxes.
Parameter a is used to adjust the balance ratio, Parameter v
is utilized to represent the similarity in aspect ratio between
the predicted box and the ground truth box. When the centers
coincide, v serves as an indicator to evaluate the closeness
between the predicted and actual boxes.
YOLOv8's CIoU loss integrates overlap, center point

distance, and aspect ratio, leading to more stable bounding
box regression. but it is not perfect. Parameter v assesses
aspect ratio similarity relative to the ground truth box's
width and height but does not represent their actual values,
which may hinder model optimization. When one of the
values of w and h increases, the other must decrease, and
they cannot maintain the same increase and decrease, this
can result in slower convergence of the loss function and
imprecise localization of the regression box. To enhance the
algorithm's performance and detection accuracy, this paper
utilizes MPDIoU loss [21] as a replacement for CIoU loss.
The formula for calculating MPDIoU loss is given as
follows.
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In the formula, id denotes the separation between the
top-left and bottom-right corners of the predicted box and
the actual box, respectively. As illustrated in Figure 9, the
bottom-right box represents the ground truth, whereas the
top-left box corresponds to the predicted box. The MPDIoU
loss functions to minimize loss by reducing the distance
between two predicted corner points. As a method based on
point distance measurement, the MPDIoU loss effectively
resolves the issue of existing loss functions in optimizing
predicted boundary boxes and real boundary boxes with
similar aspect ratios but vastly different length-width values.
This method streamlines the calculation process and exhibits
enhanced adaptability for target detection across diverse
scales. Moreover, the MPDIoU loss is agnostic to boundary
frame size, enabling effective management of scenarios
involving substantial variations in target scale while
bolstering localization capabilities for small targets.
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Fig. 8. Network structure of small object detection-YOLOv8

Fig. 9. Schematic of MPDIoU loss

IV. ANALYSIS OF EXPERIMENTS AND RESULTS
The experimental platform consists of a hardware

configuration featuring an Intel Core i7-11700 CPU
alongside an NVIDIA GeForce GTX 3070 GPU. The
software framework utilizes PyTorch 1.8-GPU as the
primary deep learning environment, with PyCharm
Community IDE employed for model design and training
execution. The experiment parameters include 100 epochs, a
batch size of 16, and a data division strategy where the
dataset is split into training, validation, and testing sets in an
8:1:1 ratio.

A. Data Set Selection
The LIDC-IDRI (Lung Image Database Consortium and

Image Database Resource Initiative) dataset offers a
comprehensive collection of 1,018 thoracic CT scans
designed for developing and evaluating lung nodule
detection algorithms. It includes scans with varying slice
thicknesses and a wide range of nodule types. Each scan is

independently annotated by four radiologists, with nodules
larger than 3 mm classified as "consensus nodules" if
identified by at least three radiologists. The dataset covers
nodules of varying sizes and malignancy levels, providing a
diverse and clinically representative challenge, making it
ideal for testing model generalization across different
clinical scenarios.
In contrast, the LUNA16 dataset[22], which is a curated

subset of LIDC-IDRI and part of the LUng Nodule Analysis
2016 Challenge, consists of 888 thin-slice CT scans,
excluding 130 scans with slice thicknesses exceeding 2.5
mm. The dataset identifies 1,186 nodules with an average
diameter of 8.3 mm, each annotated with precise coordinates
(XYZ) and diameter. Divided into 10 subsets for ten-fold
cross-validation, LUNA16 focuses on nodules larger than 3
mm, identified by at least three of the four radiologists from
LIDC-IDRI, while excluding non-nodular micronodules (<3
mm) and irrelevant findings. This makes LUNA16 an
essential benchmark for evaluating nodule detection models
in a more controlled yet relevant context. Figure 10 provides
a partial view of the LUNA16 dataset.

Fig. 10. A partial display of the LUNA16 dataset
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B. Experimental Evaluation Criteria
This study employs Mean Average Precision (mAP) [23]

and Rank-n as key metrics for evaluating model
performance. mAP acts as a foundational measure for
assessing retrieval capabilities, incorporating both Precision
and Recall to provide a well-rounded evaluation of retrieval
accuracy. Specifically, it represents the average precision
(AP) across several queries, reflecting the model's ability to
consistently deliver accurate results. In contrast, Rank-n
quantifies the likelihood of finding the correct match within
the top n retrieved results, thereby offering insight into the
model's proficiency in effectively identifying relevant
matches. A higher Rank-n value is indicative of superior
retrieval performance. The formula for calculating mAP is
presented in Equation 8.

m
AP

mAP
m

i i  1

（8）

Where m represents the total number of classes, and

iAP indicates the average precision for the i -th class.

C. Model Evaluation and Comparison Experiment
The principal performance metric used in this

comparative analysis is mean Average Precision (mAP) at
an Intersection over Union (IoU) threshold of 0.5. This
metric is computed by determining the Average Precision
(AP) for each class, evaluating all images corresponding to
that class, and then averaging these AP values across all
classes. This approach provides a comprehensive evaluation
of the model's detection accuracy, thereby serving as a
critical performance indicator for the algorithm.
Beyond mAP, additional metrics were employed to

ensure a well-rounded evaluation of the network models.
These include the total number of trainable parameters,
which is indicative of the model's capacity and inherent
complexity, and the number of floating-point operations
(FLOPs), which represents the model's computational cost
and efficiency. Additionally, frames per second (FPS) was
used to assess the model's real-time processing capability,
which is crucial for many practical applications. Together,

these metrics offer a thorough, multidimensional assessment
of the detection algorithms' performance, efficiency, and
computational feasibility. For a detailed comparison, Table
1 compiles the key performance indicators, enabling an
analysis of the trade-offs between detection accuracy,
computational overhead, and real-time processing abilities.
The Small Object Detection-YOLOv8 algorithm

demonstrated significant improvements in terms of mAP
and FPS compared to the original YOLOv8n, when tested on
the LIDC-IDRI and LUNA16 datasets. Its mAP@0.5 scores
reached 0.769 and 0.775, representing improvements of
0.055 and 0.051, respectively (Figure 11, LUNA16 dataset).
To better understand the performance under varying levels
of overlap, we also evaluated mAP@0.5:0.95, which
computes precision by averaging across all IoU thresholds
for all classes. This provides a more rigorous and nuanced
measure of detection performance. Figure 12 highlights the
enhanced performance of Small Object Detection-YOLOv8
compared to the baseline.
Despite a slight increase in computational complexity—

FLOPs rising to 9.2 and 9.4, respectively—the Small Object
Detection-YOLOv8 still maintains a lower parameter count
than models like YOLOv5s, Faster R-CNN, and YOLOv7,
all of which deliver inferior accuracy scores. Figure 13
illustrates the superior mAP@0.5 performance achieved by
Small Object Detection-YOLOv8 on the LUNA16 dataset,
highlighting its effectiveness for small object detection
tasks.
Figure 14 further compares the training loss curves of

YOLOv8n and Small Object Detection-YOLOv8, showing
that the latter exhibits faster convergence along with a more
stable and smoother training process. The increased stability
demonstrates consistent optimization, minimizing
fluctuations that often hinder convergence, thereby
enhancing the training efficiency.
In summary, the improvements introduced in Small

Object Detection-YOLOv8 make it more robust, effective,
and adaptable compared to the original YOLOv8n model. It
achieves a higher accuracy in detecting small targets,
balances computational cost effectively, and maintains
superior real-time processing capabilities, making it a strong
candidate for practical deployment in small object detection
scenarios.

TABLE I
COMPARISON WITH ADVANCED ALGORITHMS

Model LIDC-IDRI LUNA16
MAP@0.5 Params Gflops FPS MAP@0.5 Params Gflops FPS

YOLOv7 0.357 36.8 104.7 61 0.278 37.1 105.1 50
Faster rcnn 0.339 142.1 283.4 37 0.285 137.099 370.21 45

Eff 0.546 3.924 5.2 63 0.261 3.874 5.234 59
YOLOv5s 0.523 7.215 16.5 156 0.685 7.013 15.8 62
SSD[24] 0.485 34.126 45.1 21 - - - -

3D-CNN[25] 0.561 61.2 121.3 17 - - - -
YOLOv8n 0.713 3.157 8.8 71 0.724 3.157 8.9 70
small object

detection-YOLOv8
0.769 3.528 9.2 68 0.775 3.254 9.4 73
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Fig. 11. Comparison chart of mAP@0.5 (LUNA 16)

Fig. 12. Comparison chart of mAP@0.5:0.95 (LUNA 16)

Fig. 13. Map@0.5 comparison chart (LUNA 16)

D. Ablation Experiment
To evaluate the impact of individual components in the

enhanced algorithm, a comprehensive set of ablation
experiments was performed to compare several
configurations. The first configuration involved modifying
the original YOLOv8n model by incorporating a Small
Object Detection (SOD) head, which aims to improve the
model's ability to identify small-scale objects that are often

challenging for standard detection networks. In the second
scenario, the original YOLOv8 model was augmented by
integrating a Multi-scale Context Aggregation (MCA)
attention mechanism. This attention module is designed to
capture contextual information across different scales, thus
enhancing the model’s robustness in detecting objects of
varying sizes and handling complex environments. Lastly,
the third experiment focused on improving the loss function
of the original YOLOv8 model by incorporating the
MPDIoU (Mean Performance Distance Intersection over
Union) metric. This improvement aims to optimize the
bounding box regression by providing a more effective
assessment of the overlap between predicted and actual
bounding boxes, thereby leading to more precise
localization of objects.
To ensure consistency in evaluating these modifications,

all experiments were conducted under identical
experimental conditions using the LUNA16 dataset. These
conditions included controlling image resolutions,
Non-Maximum Suppression (NMS) thresholds, confidence
thresholds, and model weights (in megabytes, MB). By
holding these parameters constant, it was possible to isolate
the effects of the individual algorithmic enhancements and
provide a fair comparison between different configurations.
The ablation studies were particularly focused on comparing
the detection accuracy across these models, with an
emphasis on the specific contributions made by each
enhancement.
The experimental results obtained under these controlled

settings are thoroughly summarized in Table II. These
results include insights into how the integration of the SOD
head improved the model’s ability to detect small objects,
how the MCA attention mechanism enhanced feature
extraction by aggregating contextual information, and how
the MPDIoU loss function contributed to a more stable and
accurate regression process. In addition to detection
accuracy, the experiments also examined the influence of
image resolution and the impact of various NMS and
confidence thresholds on overall model performance.
The goal of these ablation studies was to rigorously

determine the value added by each component in improving
the detection capabilities of the model, especially in the
context of small object detection, which is critical for
medical imaging tasks such as identifying pulmonary
nodules. By conducting these systematic experiments, the
study was able to quantify the effects of each individual
enhancement, thus providing deeper insight into how
specific modifications affect the model ’ s ability to
generalize across various scenarios and image conditions.
The detailed analysis, as presented in Table II, offers a
comprehensive overview of the improvements achieved,
ultimately establishing the efficacy of the proposed
components in enhancing the overall performance of
YOLOv8.

TABLE II
ABLATION EXPERIMENT

Model Map Imgsz Iou Conf Wsz
YOLOv8n+SOD 76.6 640 0.7 0.01 5.99
YOLOv8n+MCA 72.6 640 0.7 0.01 5.96

YOLOv8n+MPDIoU 72.1 640 0.7 0.01 5.95
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E. Visualization of Search Results
The dataset was carefully divided into five distinct subsets,

where one subset was designated for testing purposes, while
the remaining four were utilized for training. This
partitioning scheme enabled a comprehensive evaluation of
both the original YOLOv8n model and the YOLOv8 model
enhanced with a small object detection mechanism. To
ensure the robustness of the results, the experiment was
conducted over five different iterations, as described in
Table III, with each iteration representing an independent
test cycle. This methodology allowed for a thorough
assessment of the models' performance under varying
conditions.
The average mean Average Precision at an Intersection

over Union threshold of 0.5 (mAP@0.5) was recorded as
0.719 for the YOLOv8n model, while the small object
detection-enhanced YOLOv8 achieved an average
mAP@0.5 of 0.766 across the five iterations. These values
highlight the superior detection capabilities, reliability, and
stability of the enhanced YOLOv8 model in comparison to
the original version. The enhanced model's consistent
performance in achieving higher detection accuracy further
supports its suitability for small object detection tasks,
particularly in challenging environments.
Figure 15 provides a visual comparison of the detection

results from both models, clearly illustrating the increased
detection accuracy and improved localization of small
objects by the enhanced YOLOv8. The results demonstrate
that the small object detection-enhanced YOLOv8 more

effectively identifies small-scale targets, reducing false
negatives and improving overall detection performance.
The consistent success of the small object

detection-enhanced YOLOv8 model across multiple
experimental iterations reinforces its robustness and
generalizability. This consistency indicates the model's
ability to maintain stable performance across varying test
conditions, establishing it as a reliable choice for
applications involving small object detection, such as
medical imaging or surveillance, where accuracy and
dependability are critical. Overall, these findings underscore
the advantages of incorporating small object detection
mechanisms into YOLOv8, positioning it as a more capable
and dependable model for specialized detection tasks.

TABLE III
CROSS VALIDATION YOLOV8N AND SMALL OBJECT

DETECTION-YOLOV8

Model YOLOv8n small object
detection-YOLOv8

Test1
mAP@0.5

0.718 0.763

Test2
mAP@0.5

0.723 0.767
Test3

mAP@0.5
0.716 0.771

Test4
mAP@0.5

0.725 0.761

Test5
mAP@0.5

0.712 0.766
Average
Value

0.719 0.766

Fig. 14. Comparison of the loss functions (LUNA 16)
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(a) YOLOv8n (b) small object detection-YOLOv8
Fig. 15. Detection Results of the YOLOv8n and small object detection-YOLOv8s (LUNA 16)

V. CONCLUSIONS
This research introduces Small Object

Detection-YOLOv8, an advanced algorithm specifically
designed to enhance the detection of pulmonary nodules in
medical imaging. By incorporating the Multi-scale Context
Aggregation (MCA) attention mechanism into the baseline
YOLOv8n model, the proposed approach significantly
improves its ability to capture global contextual information
through bidirectional cross-attention. This enhanced
attention mechanism enables the model to focus more
effectively on relevant regions in medical images, thereby
increasing the overall detection accuracy for small and
subtle targets such as pulmonary nodules.
Additionally, an extra small-object detection head has

been integrated alongside the original three prediction heads
in the model. The introduction of this specialized prediction
head contributes to reducing overfitting, particularly in
datasets with limited samples, which is often the case in
medical image analysis. The extra head specifically targets
small object detection, resulting in improved precision for
identifying pulmonary nodules amidst challenging visual
contexts.
The model's loss function was also optimized by

substituting the Complete Intersection over Union (CIoU)
loss with the Mean Performance Distance Intersection over
Union (MPDIoU) loss. The MPDIoU loss function was
chosen for its streamlined computation and enhanced
capability for multi-scale object localization. This
substitution leads to more stable and accurate bounding box
regression, which is crucial for correctly identifying the
boundaries of small nodules, thereby improving the
reliability of predictions.
When evaluated on benchmark medical imaging datasets,

the enhanced Small Object Detection-YOLOv8
demonstrated significant performance improvements
compared to the original YOLOv8n. Specifically, the model

achieved an increase in mean Average Precision (mAP) at an
Intersection over Union threshold of 0.5 (mAP@0.5) by
0.055 and 0.051 on the LIDC-IDRI and LUNA16 datasets,
respectively. These gains highlight the superior detection
capabilities of the improved model. Despite a moderate
increase in floating-point operations (FLOPs) by 0.4 and 0.5
for each respective dataset, this computational trade-off is
well-justified by the enhanced detection accuracy,
particularly for small object instances.
Moving forward, future research will focus on further

refining and optimizing the Small Object
Detection-YOLOv8 algorithm to address the remaining
challenges inherent to small object detection tasks,
especially those related to pulmonary nodules. These efforts
will include exploring more sophisticated feature extraction
techniques, enhancing the robustness of the model against
noisy data, and potentially integrating semi-supervised
learning approaches to leverage unlabeled medical images.
Such advancements aim to push the boundaries of detection
accuracy and ensure the model's practical applicability in
real-world clinical settings, where early detection of
pulmonary nodules is critical for improving patient
outcomes in lung cancer treatment.
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