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Abstract—The main focus of our study is the one-dimensional
parabolic Cauchy-Stefan inverse problem, which entails the
identification of initial condition data. In this context, we explore
the application of the method of fundamental solutions. This
method is employed iteratively until the optimal initial condition
data is determined. It generates an ill-conditioned matrix, which
can be addressed through different regularization methods.
Our numerical experiments and theoretical analyses of these
approaches illustrate that accurate results can be achieved.

Index Terms—inverse Cauchy-Stefan problem, method of
fundamental solutions, Tikhonov regularization, randomized
singular value decomposition.

I. INTRODUCTION

THERE are three types of inverse mathematical physics
problems: coefficient inverse problems, boundary in-

verse problems, and evolutionary inverse problems, each
of which is concerned with recovering some equation co-
efficients, boundary conditions, and initial conditions [1].
They are often ill-posed, and solving them requires the
employment of appropriate methods for developing stable
solutions. During the last two decades, the authors worked
to develop more precise techniques [2].

A specific manifestation of these challenges arises in
complex or irregular domains. For instance, the problem is
named after the slovenian physicist jozef Stefan, who defined
the general class of such problems, and it can manifest in
various formulations. It has relevance in numerous technical
applications, such as ice melting, metal solidification, cast-
ing, and ablation.

The direct problem consists of calculating the temperature
distribution and a function that describes the position of
the moving boundary interface, while the inverse problem
consists of calculating the temperature distribution as well
as reconstructing the function that describes the temperature
distribution on the boundary when the position of the moving
interface (freezing front) is known [3]. The inverse Cauchy-
Stefan problem, which corresponds to both the boundary and
evolutionary inverse problem classifications, is the subject of
this article [4].

Numerous studies on various types of free boundary prob-
lems have been conducted, both theoretically and numerically
[5], [6]. However, these numerical approaches have the disad-
vantage of necessitating domain or boundary discretization,
which becomes challenging for moving boundary problems,
such as the Stefan problems discussed here. The meshless
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approach to fundamental solutions (MFS), which does not
require domain or boundary discretization, was recently
implemented.

The method of fundamental solutions (MFS) is a complex
numerical approach that is meshless, simple to use, and has
a low computing cost compared to other frequent numerical
methods [7], [8]. This approach can be used for both direct
and inverse problems.

The authors of this paper have recently obtained numerical
solutions for the inverse Stefan problem utilizing an MFS
with boundary data recreated on the fixed boundary given
the initial conditions and the moving interface [9].

The inverse Cauchy-Stefan problem is the inverse problem
of determining the initial data. We applied the MFS to the
inverse Cauchy-Stefan problem and compared the numerical
reconstructions obtained here with those obtained here when
the initial condition was not specified.

Our key contribution is to offer a framework to construct a
fundamental solution method based on rSVD and to demon-
strate the robustness of this method for solving problems.
For comparison, we will compare this method to a popular
Tikhonov regularization technique [10], [11], [12], [13].

This article is organized as follows: We present a mathe-
matical formulation for the inverse Cauchy-Stefan problem
in section 2. Section 3 describes an MFS approximation for
this problem. In section 4, we discuss various regularization
methods. Section 5 presents and examines four numerical ex-
amples that demonstrate the accuracy of the initial condition
of the MFS for the inverse Cauchy-Stefan problem.

II. THE INVERSE CAUCHY-STEFAN PROBLEM

We have considered a one-dimensional, one-phase inverse
Cauchy-Stefan problem. The moving boundary, which we
take to be sufficiently smooth, is given by x=f(t), for 0<t≤T ,
where T is the given final positive time. We assume that
f(t)>0 for t∈(0,T ] and f(0)≥0. The heat conduction domain
is Dw=(0,f(t))×(0,T ] with closure D̄w=[0,f(t)]×[0,T ].

For the inverse Cauchy-Stefan problem, we attempt to
determine the solution w(x,t) and the moving boundary given
by x=f(t), verifying the heat equation

∂w

∂t
(x, t)− ∂2w

∂x2
(x, t) = 0, (x, T ) ∈ Dw (1)

The dirichlet and neumann conditions on the moving
boundary f(t) are given below

w(f(t), t) = k1(t), t ∈ (0, T ] (2)

∂w

∂x
(f(t), t) = k2(t), t ∈ (0, T ] (3)

In Stefan problems, usually k1(t)=0 and k2(t)=-f’(t).
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Fig. 1. The domain is generally represented Dw , boundary R=Ru∪Rf ,
and source points placed on y1 and y2 external to the domain Dw .

We then need to find the initial condition of the solution
at t=0, i.e. determine w0(x) with

w(x, 0) = w0(x), x ∈ (0, f(0)] (4)

w(0, t) = k(t), x ∈ (0, T ] (5)

∂w

∂x
(0, t) = G(t), t ∈ (0, T ] (6)

The existence, uniqueness, and continuous data depen-
dence of a solution are defined in [14], [15]. The remainder
of this work examines the inverse Cauchy-Stefan problem,
which involves determining the temperature w(x,t) that sat-
isfies equations (1)–(3), assuming a given f(t). This study
allowed us to determine the unknown initial conditions.
The ill-posed nature of the problem was resolved, and the
convergence was enhanced using the method of fundamental
solutions with rSVD regularization.

III. THE METHOD OF FUNDAMENTAL SOLUTIONS (MFS)

MFS has become more popular in recent years as a numer-
ical method for solving linear partial differential equations
(PDEs) with an explicit fundamental solution. The MFS
has been widely used to solve elliptic linear PDEs such
as the biharmonic, Laplace, Lameé, Helmholtz, convection-
diffusion, and Stokes equations, but it has only recently been
extended to parabolic linear PDEs such as the heat equation
[16], [17].

We present the fundamental solutions of the one-
dimensional heat equation Eq.(1) see [16]

G(x, t, y, θ) =
H(t− θ)

(4π(t− θ))
1
2

e
−(x−y)2

4(t−θ) (7)

where H denotes the heaviside function.
We have constructed a new version of the method for

approximating the fundamental solutions of (1)-(3) by a
linear combination of the fundamental solutions (7) obtained
by

w∞(x, t) =
2∑

j=1

∞∑
m=1

cjmG(x, t, yj(θm), θm), (x, t) ∈ D̄w

(8)

To implement the fundamental solutions method for the
inverse Cauchy-Stefan problem, we truncate (8) by consid-
ering a finite number of terms, namely

wM (x, t) =
2∑

j=1

2M∑
m=1

cjmG(x, t, yj(θm), θm), (x, t) ∈ D̄w

(9)
cjm are real coefficients that must be determined. In addi-

tion, {yi}2i=1 are external space singularities [0,f(t)], t∈[0,T ]
and {θj}Mj =1 are time singularities that exist in the interval
(-T ,T ).

To construct the MFS matrix, we must first distribute
the source and collocation points. We place the first four
examples presented in figure 2. The source points are placed
at

(−L, θ), θ ∈ (−T, T )

(f(θ) + L, θ), θ ∈ (0, T )

(f(0) + L, θ), θ ∈ (−T, 0)

y1(θ) = −L, y2(θ) = L+ f(θjH(θj)), j = 1, ...,M + 1

Where the time points {θj}j=1,...,M+1∈(-T ,T ) are given
by

θM
2 +1−m = − T

2M
− 2T

M + 1
m,m = 0, ...,

M

2

θM
2 +2+m =

3T

2M
+

2T

M
m,m = 0, ...,

M

2
− 1

However, for the collocation points, we let

ti =
i

M
T, xi

1 = f(ti), i = 0, ...,M

Equations (2) and (3) are used at the collocation points to
determine the coefficients cji . The outcomes of the equations
are as follows:

wM (xi
1, ti) = 0, i = 0, ...,M (10)

∂wM

∂x
(xi

1, ti) = −f ′(ti), i = 0, ...,M (11)

The number of equations in the system of equations (10)
and (11) is the same as the number of unknowns, or 2(M+1).

The collocated data from the boundary is required for MFS
to compute the solution. Then, we include random noise to
(3) in the form of

wδ
x(f(t), t) = wx(f(t), t) +N(0, (σδ)2) (12)

where
σδ = δ × max

(f(t),t),t∈(0,T ]
|wx(f(t), t)| (13)

N(0,(σδ)2) denotes random noise, i.e., the normal distri-
bution with zero mean and standard deviation σδ , where σ
indicates the percentage of relative random noise.

Finally, the equation system can be presented as

Ac = g (14)
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Where matrix A represents the value of the MFS solution
at the collocation and source points, c is the vector of
unknown constants cij , and g is the vector defining the values
at the collocation points.

The matrix A contains a large number of conditions, we
must use regularization methods such as Tikhonov regu-
larization and randomized singular value decomposition to
produce a more efficient regularization [18], [19], [20].

IV. REGULARIZATION METHODS

Regularization methods are essential for the solution of the
ill-conditioned linear system. The Tikhonov regularization
method of ill-posed problems seeks to redefine the concepts
of inversion and approximate solution so that the regularized
solution developed by regularized inversion depends contin-
uously on the data and corresponds to the exact solution. In
its simplest form, Tikhonov regularization changes the linear
system (14) with the regularized system given as follows.

(ATA+ αI)c = AT g (15)

AT represents the transpose of the matrix A, I represents
the identity matrix, and α ≥ 0 represents the regularization
parameter.

In this paper, we use randomized SVD methods to study
the acceleration of an ill-conditioned linear system.

Randomized algorithms have demonstrated their efficacy
in solving the ill-conditioned linear system [21]. Another
approach is to use random to identify the subspace of the
dominant matrix A. This is accomplished by multiplying
A by a random matrix on its right or left side, and then
obtaining the orthonormal basis matrix Q of the subspace.

A low-rank approximation of A can be computed using Q,
giving the estimated truncated SVD. Because the dimension
of the subspace is significantly smaller than that of range(A),
this method makes it simpler to compute near-optimal A
decompositions. The algorithm presents a basic randomized
SVD (rSVD) [22], [23], [24]:

• Input:A∈Rm×n, rank parameter k, power parameter p
• Output:U∈Rm×k, S∈Rk×k, V∈Rn×k

• Ω = randn(n,k+s)
• Q = orth(AΩ)
• for i = 1, 2, ··· , p do
• G = orth(AT Q)
• Q = orth(AG)
• end
• B = QT A
•

[
U, S, V

]
= svd(B)

• U = QU
• U=U(:,1:k), S=S(1:k,1:k), V=V(:,1:k).
We use gaussian elimination to solve this well-conditioned,

linear system of equations for the coefficients of c [25].

V. NUMERICAL RESULTS

A. Example 1

We will commence by examining example 1 from refer-
ence [26], wherein the initial data are unspecified. It becomes
evident that the free boundary is delineated by the linear
function.

Fig. 2. Particularisation of Fig.1 for example 1, example 2 and example
3.

f(t) =
√
2− 1 +

t√
2
, t ∈ [0, T = 1] (16)

We position the source points, as defined by equation (13),
along the external boundaries (-L,θ), θ∈(-1,1), (f(θ)+L,θ),
θ∈[0,1) and (f(0)+L,θ), θ∈(-1,0); For a graphical represen-
tation, refer to figure 2. We then apply the solution of the
heat equation in the domain Dw, depicted by

w(x, t) = −1+exp(1− 1√
2
+
t

2
− x√

2
), (x, t) ∈ [0, f(t)]×[0, 1]

(17)
We establish the subsequent boundary conditions at the

moving boundary

w(f(t), t) = 0, t ∈ (0, 1] (18)

∂w

∂x
(f(t), t) = −f ′(t) = − 1√

2
, t ∈ (0, 1] (19)

Random additive noise is introduced into the neumann data
(18) as described below

wδ
x(f(t), t) = − 1√

2
+N(0, δ2) (20)

Where N(0, δ2) corresponds to the normal distribution
with mean zero and standard deviation

σ = δ × max
(f(t),t),t∈(0,1]

|wx(f(t), t)| =
δ√
2

(21)

Where δ is the relative noise level.
We aim to determine the initial condition at t=0, denoted

as

w(x, 0) = −1+exp(1− 1√
2
− x√

2
), x ∈ [0, f(0) =

√
2−1]

(22)
We choose α =10−6 for δ=1% and δ=3%, α=10−5 for

δ=5%, See [4].
The simulation parameters are outlined in table 1.
Figures 3 and 5 present plots of the MFS approximations

for the reconstructed data w(x,0) corresponding to varying
noise levels σ=1% and σ=3% with α=10−6, subsequently,
figure 7 displays plots of the MFS approximations for the
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TABLE I
THE SIMULATION CONDITIONS

Hardware or Software Parameters

CPU Intel(R) Core (TM) i7-10750H CPU

RAM 16 Go

Platform MATLAB R2016a

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

w
(x

,0
)

Exact solution

Tikhonov

Rsvd

Fig. 3. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=2, α = 10−6, k=30, M=16 and
δ=1%.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x

0

0.5

1

1.5

2

2.5

3

3.5

|w
(x

,0
)-

 w
M

(x
,0

)|

×10
-4

Error the Tikhonov

Error the Rsvd

Fig. 4. Error between the exact solution w(x,0) and the MFS approximation
with Tikhonov and rSVD established with δ=1%.

reconstructed data w(x,0) under the noise level σ=5% with
α=10−5.

Figure 3 illustrates how to determine the initial condi-
tion using MFS, the rSVD regularization method, and the
Tikhonov method. We added 1% additive noise to demon-
strate the stability of these methods, and we observed that
using MFS with the rSVD regularization method is more
accurate than the exact solution.

Figure 5 illustrates that using MFS to find the initial
condition with the rSVD regularization approach is more

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

w
(x

,0
)

Exact solution

Tikhonov

Rsvd

Fig. 5. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=2, α = 10−6, k=30, M=16 and
δ=3%.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x

0

1

2

3

4

5

6

7

|w
(x

,0
)-

 w
M

(x
,0

)|

×10
-4

Error the Tikhonov

Error the Rsvd

Fig. 6. Error between the exact solution w(x,0) and the MFS approximation
with Tikhonov and rSVD established with δ=3%.

accurate than the Tikhonov method when the additive noise
is increased to 3%.

Figure 7 shows that MFS numerical results for finding the
initial condition with rSVD regularization are more accurate
than the Tikhonov method when the additive noise is 5%.

In this paper, we show that our results for the inverse
Cauchy-Stefan problem outperform those in [4].

Figures 4, 6, and 8 demonstrate the difference between
the exact solution and the MFS approximation using rSVD
and Tikhonov regularization. We see that the method of
fundamental solutions with rSVD regularization produces a
smaller error than Tikhonov regularization. We can therefore
determine that MFS with rSVD regularization produces more
accurate and stable results than Tikhonov regularization at
different additive noise levels.
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Exact solution
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Fig. 7. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=2, α = 10−5, k=30, M=16 and
δ=5%.
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1

1.2

|w
(x

,0
)-

 w
M

(x
,0

)|

×10
-3

Error the Tikhonov

Error the Rsvd

Fig. 8. Error between the exact solution w(x,0) and the MFS approximation
with Tikhonov and rSVD established with δ=5%.

B. Example 2
The second example uses a non-linear function to construct

a moving boundary

f(t) = 2−
√
3− 2t, t ∈ [0, 1] (23)

The source points are positioned on the external bound-
aries (-L,θ),θ∈(-1,1), (f(θ)+L,θ),θ∈(0,1) and (f(-θ)+L,θ),
θ∈(-1,0). The exact solution is given by

w(x, t) = −x2

2
+2x− 1

2
− t, (x, t) ∈ [0, f(t)]× [0, 1] (24)

In this example, the boundary conditions were as follows

w(f(t), t) = 0, t ∈ (0, 1] (25)

∂w

∂x
(f(t), t) = −f

′
(t) =

√
3− 2t, t ∈ (0, 1] (26)
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x
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0

w
(x

,0
)

Exact solution

Tikhonov

Rsvd

Fig. 9. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=2.5, α = 10−6, k=30, M=16 and
δ=1%.
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7
|w

(x
,0

)-
 w

M
(x

,0
)|

×10
-4

Error the Tikhonov

Error the Rsvd

Fig. 10. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=1%.

Random additive noise, simulating measurement errors in
the Neumann data (25), was introduced as

wδ
x(f(t), t) =

√
3− 2t+N(0, σ2), t ∈ (0, 1] (27)

The dirichlet and neumann boundary conditions on the
fixed boundary x=0 are as follows

w(0, t) = −1

2
− t, t ∈ [0, 1] (28)

∂w

∂x
(0, t) = 2, t ∈ [0, 1] (29)

We want to find the initial condition at t=0, given by

w(x, 0) = −x2

2
+2x− 1

2
, x ∈ [0, f(0)], f(0) = 2−

√
3 (30)
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Fig. 11. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=2.5, α = 10−6, k=30, M=16 and
δ=3%.

0 0.05 0.1 0.15 0.2 0.25

x

0

0.002

0.004

0.006

0.008

0.01

0.012

|w
(x

,0
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M

(x
,0

)|
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Error the Rsvd

Fig. 12. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=3%.

Figure 9 shows a comparison of the MFS approxima-
tion with rSVD regularization and Tikhonov regularization
against the exact solution with additive noise equal to 1%.

Figure 11 shows a comparison of the MFS approxima-
tion with rSVD regularization and Tikhonov regularization
against the exact solution with additive noise equal to 3%.

In Figure 13, we increase the additive noise to 5%,
illustrating a comparison of the MFS approximation with
rSVD regularization and Tikhonov regularization against the
exact solution.

Figures 10, 12, and 14 demonstrate that MFS with rSVD
regularization is more accurate and stable than the Tikhonov
method, even when additive noise increases. We observe that
the error with rSVD regularization stays smaller than that
with Tikhonov regularization.
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)

Exact solution

Tikhonov

Rsvd

Fig. 13. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=2.5, α = 10−5, k=30, M=16 and
δ=5%.
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Fig. 14. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=5%.

C. Example 3

The linear function presents a moving boundary in this
example [27]

f(t) =
13

4
− (

81

16
− 2t)1/2, t ∈ [0, 1] (31)

The source points are positioned on the external bound-
aries (-L,θ),θ∈(-1,1), (f(θ)+L,θ),θ∈(0,1) and (f(-θ)+L,θ),
θ∈(-1,0). The exact solution is given by

w(x, t) = (x− 13

4
)2 + 2(t− 81

32
), (x, t) ∈ [0, f(t)]× [0, 1]

(32)
Such as this example has the following boundary condi-

tions

w(f(t), t) = 0, t ∈ (0, 1] (33)
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Fig. 15. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=2.2, α = 10−10, k=30, M=16
and δ=1%.

∂w

∂x
(f(t), t) = −f

′
(t) =

13

2
− 2(

81

16
− 2t)1/2, t ∈ (0, 1]

(34)
Random additive noise simulating measurement errors to

the neumann data (33) has been included as

wδ
x(f(t), t) =

13

2
−2(

81

16
−2t)1/2+N(0, σ2), t ∈ (0, 1] (35)

The dirichlet and neumann boundary conditions on the
fixed boundary x=0 are as follows:

w(0, t) =
13

4

2

+ 2(t− 81

32
), t ∈ [0, 1] (36)

∂w

∂x
(0, t) = −13

2
, t ∈ [0, 1] (37)

We want to find the initial condition at t=0, given by

w(x, 0) = (x− 13

4
)2 − 81

16
, x ∈ [0, f(0)], f(0) = 2−

√
3

(38)
We have seen that the MFS approximation is shown in fig-

ure 15, figure 17, and figure 19 for finding initial conditions
with parameter the regularization and three types of additive
noise. These approximations show that rSVD regularization
will be more accurate than the Tikhonov method.

Figures 16, 18 and 20 show that the rSVD method
performs better and is more stable than the Tikhonov method
when the regularization parameters are α=10−10.

D. Example 4

In this example, the exact solution is given by

w(x, t) = 1− 1

3
x+ t, (x, t) ∈ [0, f(t)]× [0, 1] (39)

and
f(t) = 3t+ 3, t ∈ [0, 1] (40)

Thence
w(f(t), t) = 0, t ∈ (0, 1] (41)
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Fig. 16. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=1%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1

0

1

2

3

4

5

6
w

(x
,0

)
Exact solution

Tikhonov

Rsvd

Fig. 17. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=2.2, α = 10−10, k=30, M=16
and δ=3%.

∂w

∂x
(f(t), t) = −f

′
(t) = −1

3
, t ∈ (0, 1] (42)

Random additive noise and modeling measurement errors
in neumann data (43) has been established as

wδ
x(f(t), t) = −1

3
+N(0, σ2), t ∈ (0, 1] (43)

The dirichlet and neumann boundary conditions on the
fixed boundary x=0 are as follows:

w(0, t) = 1 + t, t ∈ [0, 1] (44)

∂w

∂x
(0, t) = −1

3
, t ∈ [0, 1] (45)

We want to find the initial condition at t=0, which is given
by

w(x, 0) = 1− 1

3
x, x ∈ [0, f(0)], f(0) = 3 (46)
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Fig. 18. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=3%.
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Fig. 19. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=2.2, α = 10−10, k=30, M=16
and δ=5%.

Figure 21 illustrates the MFS approximation to determine
the initial condition using two methods of regularization
rSVD and Tikhonov, and additive noise 1%, with the reg-
ularization parameter α=10−5.

Figure 23 illustrates the MFS approximation to find the
initial condition using two methods of regularization rSVD
and Tikhonov, and additive noise 3%, with regularization
value α=10−5.

Figure 25 shows an MFS approximation for determining
the initial condition based on rSVD and Tikhonov regular-
ization, with 5% additive noise. The regularization parameter
is α=10−4.

The results show that as the additive noise increases,
the MFS approximation remains more accurate with rSVD
regularization than with Tikhonov regularization.

Figures 22, 24, and 26 show that the error between the
MFS approximation and the exact solution is small with the
rSVD method compared to the Tikhonov method when the
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Fig. 20. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=5%.
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Fig. 21. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=1.3, α = 10−5, k=30, M=26 and
δ=1%.

regularization parameters are α=10−5 and α=10−4.

E. Example 5

In this example, the exact solution is given by

w(x, t) = −1+exp(t−x+1), (x, t) ∈ [0, f(t)]×[0, 1] (47)

and
f(t) = t+ 1, t ∈ [0, 1] (48)

Thence
w(f(t), t) = 0, t ∈ (0, 1] (49)

∂w

∂x
(f(t), t) = −f

′
(t) = −1, t ∈ (0, 1] (50)

Random additive noise and modeling measurement errors
in neumann data (51) has been established as
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Fig. 22. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=1%.
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Fig. 23. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=1.3, α = 10−5, k=30, M=26 and
δ=3%.

wδ
x(f(t), t) = −1 +N(0, σ2), t ∈ (0, 1] (51)

The dirichlet and neumann boundary conditions on the
fixed boundary x=0 are as follows:

w(0, t) = −1 + exp(t+ 1), t ∈ [0, 1] (52)

∂w

∂x
(0, t) = −exp(t+ 1), t ∈ [0, 1] (53)

We want to find the initial condition at t=0, which is given
by

w(x, 0) = −1 + exp(−x+ 1), x ∈ [0, f(0)], f(0) = 1 (54)

Figure 27 shows the MFS approximation for determining
the initial condition using two regularization methods, rSVD
and Tikhonov, additive noise 1%, and regularization param-
eter α=10−5.

0 0.5 1 1.5 2 2.5 3

x

0

0.05

0.1

0.15

|w
(x

,0
)-

 w
M

(x
,0

)|

Error the Tikhonov

Error the Rsvd

Fig. 24. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=3%.
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Fig. 25. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=1.3, α = 10−4, k=30, M=26 and
δ=5%.

Figure 29 shows the MFS approximation for determining
the initial condition using two regularization methods, rSVD
and Tikhonov, additive noise 3%, and regularization param-
eter α=10−5.

Figure 31 illustrates an MFS approximation to deter-
mine the initial condition using rSVD and Tikhonov regu-
larization, with 5% additive noise, and the regularization pa-
rameter is α=10−5.

The results show that the rSVD regularization outperforms
the Tikhonov regularization. We additionally observe that the
MFS approximation becomes more accurate with the rSVD
regularization when the additive noise increases.

Figures 28, 30, and 32 show how the rSVD reg-
ularization method performs to the Tikhonov method.
We can see that employing MFS with the rSVD regulariza-
tion method results in a smaller error than the exact solution.
On the other hand, utilizing MFS with the Tikhonov reg-
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Fig. 26. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=5%.
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Fig. 27. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=1.8, α = 10−5, k=30, M=16 and
δ=1%.

ularization method results in higher error than the exact
solution. This performance is illustrated in all of these fig-
ures as the added noise increases.

VI. CONCLUSION

This paper introduces the Fundamental Solutions Method,
which uses two methods of regularization to obtain the
initial condition for the one-dimensional inverse Cauchy-
Stefan problem. Our findings show that using MFS and
rSVD regularization produces significantly more consistent
and accurate results than Tikhonov regularization.

Numerical examples vividly demonstrate the effectiveness
of MFS in solving the initial condition for the inverse
Cauchy-Stefan problem. As part of our forthcoming research,
we intend to explore the method precision and applicability
across different problem classes, including direct problems,
as well as two-dimensional inverse Cauchy-Stefan problems.
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Fig. 28. Error between the exact solution w(x,0) and the MFS approxima-
tion with Tikhonov and rSVD established with δ=1%.
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Fig. 29. The exact solution w(x,0) and the MFS approximation with
Tikhonov and rSVD established with L=1.8, α = 10−5, k=30, M=16 and
δ=3%.
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