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Abstract—In recent years, the use of electronic medical 

record data for disease diagnosis has received considerable 
attention. Traditional methods, however, frequently encounter 
challenges with complex data structures and limited labeled 
data. To tackle these issues, this paper presents a novel disease 
diagnosis method named HCMG that employs heterogeneous 
graph contrastive learning, tailored to address the complexities 
of electronic medical record data. By constructing path-guided 
heterogeneous graphs and employing a contrastive learning 
strategy, HCMG accurately diagnoses patient conditions. 
Initially, it captures patient relationships and shared features 
through meta-paths within electronic health records. 
Subsequently, it enhances node similarity recognition by 
contrasting learning strategies between anchor and feature 
views. Additionally, a self-learning mechanism is integrated to 
reassign sample weights, refining the model's ability to 
differentiate between negative and misjudged samples. Finally, 
disease probability distributions are predicted through 
clustering analysis. Experimental results on the MIMIC-III 
dataset demonstrate that HCMG maintains superior diagnostic 
performance, significantly surpassing existing benchmarks, 
even with limited labeled data. This research not only provides 
an effective technological route for the analysis of electronic 
health records but also offers new perspectives and 
considerations for future studies in the medical health domain. 
 

Index Terms—Heterogeneous Graph; Graph neural network; 
Contrastive Learning; Disease Diagnosis 

 

I. INTRODUCTION 

N the context of today’s information society, the rapid 
progression of medical information technology has given 

rise to unprecedented opportunities and challenges in the 
medical field. Large-scale medical data accumulation and 
application, such as electronic medical records (EMRs) [1], 
have generated new perspectives and methodologies for 
disease diagnosis. However, with the exponential increase in 
the volume of medical data and the continuous expansion of 
medical knowledge, traditional methods for medical 
diagnosis no longer suffice to meet the diverse clinical needs. 
To enhance the accuracy and efficiency of disease diagnosis, 
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the latest graph neural networks coupled with contrastive 
learning have emerged as potential solutions. 

Heterogeneous graphs (HINs) [2] represent a frequently 
encountered complex network structure in the real world that 
can efficiently portray diverse relationships and entities 
within medical data. Within HINs, different types of entities 
and relationships, are symbolized by nodes and edges 
respectively. This provides rich semantic and structural 
information for the planning and optimization of disease 
diagnosis methods. For instance, in a medical heterogeneous 
graph, entities such as patients, drugs, and operations can be 
distinct; the association information of patients using certain 
drugs or undergoing specific operations as recorded in 
electronic medical records is converted into differing edge 
types in the heterogeneous graph. Approaching disease 
diagnosis tasks based on heterogeneous graphs is 
considerably valuable in terms of enhancing diagnostic 
accuracy, reducing time costs for medical institutions, and 
improving patient treatment outcomes. 

In recent years, the application of graph neural networks 
(GNNs) [3] for node classification in heterogeneous graphs 
has shown promising results due to the advancement of data 
mining technology. However, most existing heterogeneous 
graph neural networks depend on large quantities of 
manually labeled medical training data, which are difficult to 
obtain and often associated with high costs. Therefore, it 
becomes imperative to derive supervision from the data itself 
and to utilize self-supervised learning [4] with robust 
universal embedding representations to meet this challenge. 
In particular, contrastive learning [5], a major type of 
self-supervised learning, has garnered significant interest in 
recent years. Graph neural network frameworks that utilize 
contrastive learning hold considerable advantages when 
labeled information is scarce. The purpose of contrastive 
learning is to construct pairs of positive and negative samples 
for comparison, aiming to maximize the mutual information 
between positive samples and minimize that between 
negative samples, thereby effectively using unlabeled data 
for improved embedding learning. 

In order to establish contrasting views in heterogeneous 
graph contrastive learning, some researchers have employed 
the method of meta-path [6]. A meta-path encapsulates the 
semantic relationships between entities in a heterogeneous 
graph as a sequence of entity types. For instance, in a medical 
heterogeneous graph, the entities representing patients and 
drugs are denoted by "P" and "D" respectively, thus, the 
meta-path "Patient-Drug-Patient" (PDP) signifies the 
relationships between patients who utilize the same drug. 
Specifically, if a path instance "p1-d-p2" exists, it exemplifies 
that two patients, "p1" and "p2", both use the drug "d". This 
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path instance outlines how patients "p1" and "p2" are 
contextually linked via the drug "d". Therefore, using 
meta-paths can help identify a group of path-based neighbors 
that are semantically related to the given entity and provide 
diverse contrasting perspectives. However, most models that 
utilize meta-path perspectives, such as HeCo [7], merely 
document two entities are linked via a meta-path, thereby 
overlooking the contextual information about their semantic 
connection. This can influence the model when performing 
tasks like node classification prediction; for instance, the 
usage of the same drug can provide valuable diagnostic 
insights into different diseases in different patients. Thus, it 
becomes essential to integrate the rich contextual information 
of meta-paths into the contrasting view. 

To address these issues, this paper proposes a disease 
diagnosis method called HCMG (Heterogeneous Contrastive 
Medical Graph) based on heterogeneous graph contrastive 
learning, aiming to improve the accuracy and efficiency of 
disease diagnosis. HCMG combines meta-path context to 
construct anchor views and feature views separately. The 
anchor view is used to record the relationship between two 
entities via meta-paths, generating node embeddings as 
anchors for each meta-path instance. The node embeddings 
generated from the feature view specifically describe the 
contextual information of how they are connected through 
meta-paths. Positive and negative samples are constructed 
based on each anchor in the anchor view. Additionally, a 
mechanism for learning the weights of negative samples [8] 
is introduced to cluster nodes, and the weights of negative 
samples are reallocated based on the clustering results to 
make full use of hard negative samples and alleviate the 
impact of false negative samples. The prototypical 
contrastive learning method is employed, where the 
clustering centers act as prototype vectors. By bringing nodes 
closer to their corresponding prototype vectors and moving 
them away from other prototype vectors, more compact node 
embeddings are learned to better distinguish between positive 
and negative samples, thereby enhancing the method's 
performance. The HCMG method learns representations of 
entities in a heterogeneous graph, making similar entities 
closer to each other in the embedding space, while dissimilar 
entities are more dispersed. By leveraging meta-path context 
and heterogeneous graph contrastive learning, the HCMG 
method better captures the complex semantic information 
between different entities and relationships in the 
heterogeneous graph, more effectively integrates the 
relevance of different types of entities, and improves the 
credibility and sensitivity of disease diagnosis. In summary, 
the main contributions of this paper are as follows: 
1) We propose a disease diagnosis method HCMG based on 

heterogeneous graph contrastive learning. This method 
formulates more accurate and effective contrasting 
views using meta-paths and graph contrastive learning, 
thereby capturing complex semantic information better 
between different entities and relationships in the 
heterogeneous graph. This enhancement aids in more 
precise interpretation of medical data and diagnostic 
assistance for disease diagnosis tasks. 

2) The HCMG method improves the ability to distinguish 
between positive and negative samples by clustering 
nodes and relearning the allocation of weights for 

negative samples. Prototypical contrastive learning is 
introduced, which aids in learning compact embeddings 
for nodes belonging to the same cluster. 

3) A series of experiments and comparative analysis are 
conducted to appraise the HCMG method. The 
performance and effectiveness of the method in disease 
diagnosis tasks are assessed by training and testing it on 
the publicly available medical dataset, MIMIC-III. 
Comparisons with state-of-the-art baseline methods 
affirm the superiority and practicality of the HCMG 
method in disease diagnosis. 

II. RELATED WORK 

A. Heterogeneous Graph Neural Networks 

In recent years, research on Heterogeneous Graph Neural 
Networks (HGNN) has garnered widespread attention, and 
various models have been proposed to address the challenges 
of heterogeneous information networks. Initially, HetGNN [9] 
utilizes a bidirectional LSTM and an attention mechanism to 
aggregate information from similar neighbors. Subsequently, 
HGT [10] designs an attention architecture akin to the 
Transformer to better capture relationships between different 
types of neighbors, thereby improving the efficiency of 
information extraction in heterogeneous graphs. HAN [11] 
introduces node-level and semantic-level attention 
mechanisms to hierarchically learn the importance of 
neighbors in meta-paths and the weights of different 
meta-paths. To further enhance the performance of node 
representation, researchers have proposed MAGNN [12], 
which integrates information from intermediate semantic 
nodes through meta-path instance encoders. Additionally, 
GTNs [13] can generate new graph structures, revealing 
useful connections between non-connected nodes in the 
original graph, and enhancing the effectiveness of node 
representation learning. Although these models excel in 
exploring heterogeneous graph data, they are unable to 
perform self-supervised learning and rely heavily on labeled 
data to a large extent. 

B. Graph Contrastive Learning 

In the field of self-supervised learning, contrastive 
learning plays a crucial role. The core idea involves 
constructing positive and negative sample pairs to bring 
similar samples closer and push dissimilar samples apart. 
Recent research explores the integration of contrastive 
learning to address the limitations of supervised learning, 
which heavily depends on labels, particularly in the realm of 
graph data [14]. GCA [15] employs data augmentation 
techniques to construct distinct contrastive views, 
encompassing diverse mechanisms including graph-graph 
contrast, node-node contrast, and graph-node contrast. For 
example, GRACE [16] generates two enhanced graph views 
by masking node features and removing edges to bring 
representations of the same nodes closer while pushing apart 
other nodes. Inspired by SimCLR [17] in the visual domain, 
GraphCL [18] applies this idea to graph-structured data, 
generating two distorted graphs through node removal and 
edge perturbation, then maximizing the mutual information 
between the two graph layers for learning. For heterogeneous 
graphs, HeCo [7] constructs two views using network 
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patterns and meta-path information to generate node 
representations, improving representation learning through 
contrastive learning between nodes. HDGI [19] extends DGI 
to heterogeneous information networks, learning advanced 
node representations by maximizing the mutual information 
between local and global representations, enabling the model 
to exchange information between different types of nodes. 
DGI[20] compares local information and global information 
through the Infomax method to promote graph representation 
learning. GMI [21] compares interaction information 
obtained from node features and topological structures, 
expanding the application scope of contrastive learning. 
MVGRL[14] compares embeddings obtained from 
first-order and second-order neighbors to facilitate 
information flow between different graph layers. Using 
graphs as an example, GCC [22] learns to differentiate 
between different instances, enhancing the model's 
generalization ability. GCA [15] randomly deletes 
unimportant edges, adds noise to node features to disrupt 
attributes, generates new views for contrastive learning, and 
strengthens the model's robustness and generalization 
performance. These studies have made positive progress in 
graph contrastive learning and have provided important 
insights and methodological support for the development of 
disease diagnosis methods [23] based on heterogeneous 
graphs. 

C. Disease Diagnosis 

Several studies propose disease diagnosis models based on 
graph neural networks [24], which integrate medical 
knowledge bases and Electronic Medical Records (EMR) 
data. These models construct medical concept graphs and 
patient record graphs, using graph encoders to learn 
embeddings of patient nodes and disease nodes for disease 
diagnosis tasks. Additionally, a multimodal learning 
framework [25] is introduced for disease diagnosis, capturing 
the correlations and complementarity between different 
modalities through attention mechanisms. Graph neural 
networks demonstrate their advantages in routine disease 
diagnosis tasks. These models can quickly learn knowledge 
from historical medical data, handle new medical data, and 
improve diagnostic accuracy. Compared to traditional 
disease diagnosis methods, the diagnostic results of graph 
neural network models are more objective and accurate, 
thereby reducing the workload of physicians and enhancing 
efficiency. 

III. PRELIMINARIES 

Definition 1. Heterogeneous Graph. An electronic medical 
record data is defined as a graph ( , , , )     , where   

represents the set of nodes and   represents the set of edges. 
It can be said that   is the set of relationships between two 
nodes in   . Simultaneously, the set of node types in   is 
denoted as  , which includes various types of nodes such 
as patients, drugs, operations, etc., and the set of edge types in 
  is denoted as   , which includes different types of edges 
such as patient-drug, patient-operation, etc. Specifically, the 
following relationships exist: 1) the relationship between 
 and   : involves a mapping      ; 2) the 

relationship between   and   : involves a mapping 
    ; 3) Definition of Heterogeneous Graph: if 

2   holds, then the graph   is referred to as a 

heterogeneous graph; otherwise, the graph   is a 

homogeneous graph. 
Definition 2. Meta Path. An instance of a meta path is 

defined as 1 2

1 2 1: ... i

i        , denoted 

as 1 2 1... i    . Here,   represents nodes, and   is a 

relationship connecting two nodes. When there is an edge 
connecting nodes x  and y  in the heterogeneous graph 

  , it signifies the existence of a path through the 

relationship   . Specifically, this paper encompasses three 
types of nodes in   , which are patients, drugs, and 
operations. There are two types of relations in  , namely 
"patient-drug" and "patient-operation". Two meta-paths, 
"Patient-Drug-Patient (PDP)" and "Patient-Operation-Patient 
(POP)", are used in this paper to extract latent associative 
information from electronic medical records. 

Definition 3. Heterogeneous Graph Contrastive Learning. 
Given a heterogeneous graph   , an anchor view and a 

feature view are established through meta-paths, and positive 
and negative samples are constructed for contrastive learning 
to generate node embeddings. By clustering the generated 
node embeddings, it is possible to diagnose whether new 
patients have a certain disease based on the probability 
distribution of the node embeddings of new patients. 

IV. THE PROPOSED FRAMEWORK 

This section provides a detailed introduction to the disease 
diagnosis method HCMG based on heterogeneous graph 

 
Fig. 1.  Overall Framework of the HCMG 
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contrastive learning, as proposed in this paper and illustrated 
in Figure 1. Initially, feature vectors of nodes of different 
types are mapped to the same dimension for preprocessing, 
and adjacency matrices are established based on the 
neighbors connected by each meta-path. Subsequently, a 
graph convolutional network encoder is used to aggregate all 
meta-path adjacency matrices to construct an anchor view 
and retain the contextual semantic information of meta-paths 
to build a feature view. The embeddings from different 
meta-paths in the feature view are fused using an attention 
mechanism. The node embeddings generated from the anchor 
view serve as anchors, while the aggregated node 
embeddings in the feature view are categorized as positive 
and negative samples based on the anchors. To mitigate the 
influence of false negative and hard negative samples, a 
clustering algorithm is applied for clustering and 
redistributing the weights of negative samples. Finally, 
prototype contrastive learning is introduced to further 
enhance model performance by jointly calculating the 
contrastive losses and prototype losses based on node 
embeddings and clustering results under the anchor view and 
feature view. The subsequent subsections will describe each 
component in detail. 

A. Data Preprocessing 

1) Node feature transformation 

In the data preprocessing stage, considering the existence 
of different types of nodes in the heterogeneous graph, each 
type of node necessitates the transformation of raw features. 
Initially, the fundamental feature information of nodes is 
extracted, and continuous features are standardized by 
converting the raw feature data into a sparse matrix 
representation. Additionally, a relationship graph is 
constructed based on the association information between 
nodes, leading to the generation of the adjacency matrix of 
nodes using edge information from the data. Moreover, for 
potential multi-class labels, One-Hot encoding is applied to 
convert labels into vector form, thereby establishing a 
foundational data structure for subsequent classification tasks. 
Specifically, the node feature matrix N DX R   is first 
created, where N signifies the number of nodes, and D 
represents the feature dimension of each node. During the 
node feature transformation process, for each object ix  of 

type T, a type-specific mapping matrix 'D D
TW R   is 

employed, where 'D  represents the transformed feature 
dimension. The transformation process can be expressed as: 

 i T ix W x   (1) 

where ix  denotes the embedding of the node object ix  in 

the transformed feature space. This transformation process 
ensures that the features of each node type are mapped to the 
same space, providing consistent feature embedding for 
subsequent data analysis and modeling. The technique for 
constructing an adjacency matrix typically involves 
representing the associative data information to capture the 
relationships between nodes. To construct the adjacency 
matrix of patient graphs based on the associative information 
between patient nodes, the following formula is utilized:  

 1,   

0,
i j i jP D or P O

ij otherwiseA    (2) 

If a patient iP  has used the drug jD  or undergone the 

operation jO , the position ijA  in the generated adjacency 

matrix is assigned a value of 1; otherwise, it is set to 0. 
For datasets containing multiple category labels, with a 

label featuring k  categories, where each category is 
represented by an integer ranging from 0 to 1k  , One-Hot 
encoding transforms each category into a vector of length k , 
with only the position corresponding to the category set to 1, 
while other positions are assigned a value of 0. The One-Hot 
encoding for the i-th category label is denoted as iy : 

    0,0, ,1, ,0iOne Hot y     (3) 

In this scenario, the i-th element in iy  is 1, and the 

remaining elements are 0. Utilizing One-Hot encoding 
facilitates the transformation of original category labels into a 
vector format that can be directly processed by models like 
neural networks, enhancing the model’s ability to 
comprehend and analyze categorical information.  

2) Neighborhood Node Aggregation 

When aggregating neighbor nodes in heterogeneous 
medical graphs, leveraging meta-paths can more precisely 
capture the relationships and common features among 
patients, thereby enhancing information propagation and 
feature learning efficiency in graph neural networks. 
However, the complex structure of medical heterogeneous 
graphs and intricate data relationships may lead to challenges 
when aggregating neighbor nodes based on meta-paths, such 
as aggregating an excessive number of neighbors 
simultaneously or aggregating neighbors with significant 
gaps. Aggregating a large number of neighbors at once or 
neighbors with substantial gaps may blend vast amounts of 
information, including irrelevant details, diminishing the 
model’s effectiveness. This approach could also extend the 
information propagation path, heighten information loss, and 
impact the model’s learning capability. To address these 
issues, this paper introduces the PathSim [26] algorithm. By 
computing the similarity between paths in the adjacency 
matrix, the algorithm enables the exploration of potential 
relationships between neighbor nodes, selection of crucial 
neighbor nodes for aggregation, and regulation of 
information propagation distances between nodes to prevent 
information bottleneck occurrences. Specifically, given a 
symmetric meta-path P , PathSim assesses the path similarity 
between two identically typed vertex objects, x and y, 
according to the formula: 

   
2 :

( , )
: :

x y x y

x x x x y y y y

p p P
s x y

p p P p p P

 


  

 

   

 (4) 

Where x yp   represents the path instance connecting x 

and y, and x xp   represents the path instance connecting x 

with itself, PathSim is utilized to compute path similarity. 
Subsequently, the top K most relevant neighbor nodes are 
selected for aggregation. The aggregation process is 
structured as follows: 

 
1

( )
n

agg i i x
i

h softmax x x self


     (5) 

Here, n signifies the number of neighbor nodes, and each 

ix  denotes a feature vector of a neighbor node. The feature 
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vector of the input node is depicted by xself . The feature 

vectors of the neighbor nodes undergo element-wise 
multiplication and summation. This result is normalized 
using a softmax function, and then element-wise multiplied 
with the feature vector of the input node to produce the final 
aggregation embedding. 

B. Contrasting Views Construct 

1) Anchor View 

The purpose of this section is to construct an anchor view 
based on meta-paths. The anchor view is a simplified 
representation of the heterogeneous medical graph dataset, 
describing which nodes are connected by meta-paths, 
providing reference points for further analysis. After 
aggregating neighboring nodes according to Equation (5) to 

obtain the final embedding result, denoted as vh  , it is used as 

the original input, and a two-layer graph convolutional 
network encoder is applied for computation: 

 1 ˆ( ), 0,1l l
v v lh Ah W l    (6) 

Where l
vh  represents the embedding representation of the 

l-th layer, lW  is the weight matrix, Â  is the result of 

normalizing the heterogeneous graph adjacency matrix A , 
and   indicates the activation function. In particular, 

0
v vh h   . The encoder obtains the processed anchor 

embedding representation 2a
i vx h  , which is used to 

construct the anchor view that records meta-path 
connections. 

2) Feature View 

Unlike the simplified construction of the anchor view, the 
feature view contains rich contextual information from 
meta-paths and requires distinguishing between positive and 
negative samples based on the reference provided by the 
anchor view. The meta-path context consists of path 
instances capturing detailed information on how two objects 
are connected. By selecting the middle node ix  of the 

meta-path  and obtaining the feature vector set    j j N i
h


 of 

its neighboring nodes , where  N i  is the set of neighbor 

nodes of node ix  and j represents the j-th jump neighbor of 

ix  . Subsequently, the following formula is used to aggregate 

and generate the initial feature embedding for ix  : 

 
1

( )
P

v i

l
P
i i pj v

j x N

h h W h
 

    (7) 

In which, l is the total length of meta-paths, and pjW  is the 

learnable parameter matrix. After obtaining the initial feature 

embedding P
ih  that aggregates meta-path context 

information, the initial feature embedding and normalized 

adjacency matrix Â  is calculated using the same dual-layer 
graph convolutional network encoder (5) as in the anchor 
view, resulting in the feature embedding quantity featurex  

containing meta-path context information. Aggregation of 
long meta-path instances may lead to excessive context 
information and the inclusion of a large amount of irrelevant 
information that impacts the model’s effectiveness. 

Therefore, nodes and edges are first subjected to feature and 
edge masking, constructing a meta-path-induced graph. 

Specifically, for the given adjacency matrix n n
iA R   where 

n represents the number of nodes, a mask matrix iM  is used 

to mask edges, where  0,1
n n

iM
  indicates the edges to be 

masked, resulting in the masked adjacency matrix 
mask
i i iA A M   . Similarly, for the given feature matrix 

n dX R   where d represents the feature dimension, let fM  

be the feature mask vector,  0,1
d

fM   indicates the feature 

dimensions to be masked, and the feature matrix after 
masking the node features is represented as 

mask fX X M   . After introducing noise to the nodes and 

edges, ix  is selected again to aggregate with its 

feature-masked neighbors according to formula (7), resulting 
in the second feature embedding quantity maskx  . At this point, 

for each node ix  in the meta-path P, two feature embedding 

quantities  , |embed feature maskx x x x P   are generated. 

Subsequently, an attention mechanism [28] is used to 
dynamically aggregate the neighboring node features based 
on the weighted importance of node features, and the two are 
fused to generate the final feature embedding quantity. The 
calculation formula for attention weights is as follows: 

 ( || )T
ij i je LeakyReLU W h h     (8) 

 
 

 
 
ij

ij
ik

k N i

exp e
a

exp e





 (9) 

W is the learned weight matrix, ||  denotes vector 

concatenation operation, ( )N i  represents the set of 

neighboring nodes of node ix  , and by substituting featurex  

and maskx  into ih  and jh  , attention weights are calculated to 

obtain the final feature embedding quantity using the 
following formula: 

 
( )

f
i ij j

j N i

x a Wh


 
  

 
  (10) 

C. Disease Diagnosis 

After the aforementioned calculations, for each node ix  , 

anchor embeddings a
ix  and feature embeddings f

ix  are 

aggregated with neighboring node context information to 
generate comprehensive embeddings. The anchor 
embeddings a

ix  are used as contrastive anchors, while the 

feature embeddings f
ix  are used as positive samples. All 

other nodes in the feature view are considered negative 
samples. Due to the large number of negative samples, to 
allow the model to focus more on important samples, positive 
samples are taken as clustering centers, negative samples in 
the feature view are clustered multiple times, and weights  
are introduced to differentiate the importance of different 
samples. Specifically, this study uses the gradient descent 
algorithm to update weight parameters, and the gradient 
update rule for weight parameters is as follows: 
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 1t t
i i

i

loss

w
    

∂
∂

 (11) 

Where   represents the learning rate, t denotes the 

number of iterations, and 
i

loss

w

∂
∂

 is the gradient of the loss 

function with respect to the weight parameters. By learning 
the weight parameters from the model, the model can 
autonomously redistribute sample weights to compactly 
center misclassified negative samples and push away difficult 
negative samples to reduce their influence. 

After weighting the samples, the softmax function is used 
to calculate the probability distribution of the nodes: 

 
 

   
1

exp
ˆ

exp exp
i

pos

K

pos neg
i

s
p

s s










 (12) 

Where poss  and negs  represent the similarity scores of the 

positive and negative samples, respectively, and K denotes 
the number of negative samples. At this point, the model’s 
loss is calculated using the InfoNCE loss function as follows: 

 
 

 1

/

/

f a
i iInfoNCE

i K f a
i i ii

exp x x
log

exp x x



 






  (13) 

Where   is the temperature parameter, used to control the 
"softening" among the similarity scores. 

To further improve the model's effectiveness and make the 
distribution of feature embeddings within the same cluster 
more compact, the prototype contrastive learning loss 
function [29] is introduced. Specifically, for the feature 
embedding ix  and the clustering result 

 1 2, ,...,result NC c c c  , where ic  denotes the cluster number 

to which the i-th sample belongs, first, the prototype vectors 

k  of each cluster are calculated as follows: 

 
1

k

k i
i Ck

x
C




   (14) 

Next, the similarity log /ik i kits x     , between the i-th 

sample ix  and the prototype of the k-th clustering cluster k  

is computed. The formula for calculating the prototype 
contrastive learning loss function is as follows: 
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By combining the InfoNCE and prototype contrastive 
learning loss functions, the overall loss function of the model 
is obtained as: 

 InfoNCE ProtoNCE     (16) 

Where   is a hyperparameter used to adjust the model's 
emphasis on the prototype loss during training. 

For the new patient node, the HCMG method integrates it 
into the existing graph structure, assigning relevant features 
based on patient data attributes and context information. 
HCMG establishes connections between the new node and 
neighboring nodes to capture contextual relationships. 
Anchor embeddings a

newx  are initialized for the newly added 

patient node, and feature embeddings f
newx  are generated 

based on patient attributes and neighboring context. The 
feature embeddings of the new node are treated as positive 
samples, while other nodes are considered negative samples. 
The softmax function is used to calculate the probability 
distribution of the node, considering the similarity scores of 
positive and negative samples, and the disease label with the 
highest similarity score is predicted as the disease the patient 
is likely to have: 

  ˆ newy softmax x  (17) 

Through the above steps, HCMG effectively integrates the 
new patient node, generates node embeddings, and performs 
accurate disease diagnosis. 

V. EXPERIMENTS AND EVALUATION 

This section introduces the dataset, evaluation metrics, and 
parameters used in the experiments. It conducts extensive 
comparative experiments with various baseline methods, 
carries out ablation experiments to verify the model's 
effectiveness, and analyzes the experimental results 
accordingly. 

A. Dataset 

MIMIC-III (The Medical Information Mark for Intensive 
Care III), a large, freely available public dataset of 
de-identified intensive care medical records. MIMIC-III 
comprises de-identified data of patients in the intensive care 
units at Beth Israel Deaconess Medical Center from 2001 to 
2012, and includes vital signs, medications, patient 
observations recorded by nursing staff, operation codes, 
diagnosis codes, length of hospital stay, survival data, and 
more. For this study, five representative diseases from the 
MIMIC-III dataset are selected as experimental data: Sepsis, 
Coronary, Gastritis, Heart Failure, and Respiratory Failure. 
The experiment focuses on 1396 drugs used by patients with 
the aforementioned diseases, 570 surgical operations, and 
specific medical record texts. Two meta-paths, 
"Patient-Drug-Patient (PDP)" and "Patient-Operation-Patient 
(POP)," are established to develop a model for predicting the 
probability distribution of patients possibly afflicted with the 
five representative diseases mentioned previously. Details of 
patient data statistics are presented in Table 1: 

B. Evaluation Metrics 

This study utilizes Micro-F1, Macro-F1, and Area Under 
the Curve (AUC) scores as evaluation metrics for disease 
diagnosis results. 

TABLE I 
STATISTICS OF THE DATASET 

Disease Number of Patients 

Sepsis 1937 

Coronary 2921 

Gastritis 415 

Heart Failure 853 

Respiratory Failure 1287 

Total 7413 
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1) Micro-F1 

Micro-F1 evaluates the model’s performance by 
aggregating the predictions of each class into a single large 
category and then calculating the precision and recall for this 
collective category. Here is the calculation: 
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
 

  
 (18) 

Where TP represents true positive samples, FP represents 
false positive samples, and FN represents false negative 
samples. 

2) Macro-F1 

Macro-F1 assesses the model’s performance by computing 
the F1 score for each class individually and then taking their 
average. The calculation formula is presented below: 
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3) AUC 

AUC is a widely used metric for evaluating the 
performance of binary classification models. It measures the 
likelihood that the classifier will rank positive samples higher 
than negative samples across different thresholds. AUC is 
determined by calculating the area under the ROC curve.  

C. Baselines 

To evaluate the effectiveness of our method, we used the 
following eight advanced methods as baseline methods for 
comparison with the proposed HCMG method: 

1) Homogeneous Graph-Based Methods 

DGI [20] utilizes the Infomax method to compare local 
and global information, thereby promoting graph 
representation learning. 

GraphSAGE [29] generates node embedding 
representations by aggregating information from a fixed 
number of neighboring nodes. 

2) Semi-Supervised Methods Based on Heterogeneous 
Graphs 

HAN [11] introduces node-level and semantic-level 
attention mechanisms to hierarchically learn the importance 
of neighbors under meta-paths and the weights of different 
meta-paths. 

GCN [2] generates a classic graph convolutional neural 
network, commonly used as a model for studying graph 
embeddings.  

GAT [27] introduces a self-attention mechanism to 
aggregate features by calculating the attention coefficients of 
nodes, serving as a classic graph attention mechanism model. 

3) Unsupervised Methods Based on Heterogeneous Graphs 

HetGNN [9] utilizes a bidirectional LSTM and attention 
mechanism to aggregate information from similar neighbors. 

Mp2vec [30] constructs node embedding representations 
using random walks based on meta-paths. 

Heco [7] utilizes network patterns and meta-path 
information to construct two views for generating node 
representations, and enhances representation learning by 
utilizing contrastive learning between nodes. 

D. Parameter Settings 

In this study, 40, 60, and 80 randomly selected labeled 

samples for each disease were used as the training set from 
the experimental data. Additionally, the remaining data was 
evenly split into validation and test sets. The model was 
constructed using the PyTorch framework and optimized 
using the Adam optimizer with a total learning rate of 0.0005. 
To prevent overfitting, a dropout ratio of 0.5 was set. For the 
model details, the dimension of the embedding layer was set 
to 128, the ratio of feature and edge perturbations was 0.2, 
each node aggregated context information from up to 100 
neighboring nodes, and a maximum of 1200 clusters were 
allowed for each clustering. The temperature parameter  for 
computing InfoNCE was set to 0.4, and the weight for 
fine-tuning prototype contrastive learning loss was set to 0.1. 
During model training, if the metric did not improve for 30 
consecutive rounds, the training was stopped.  

E. Experimental Results and Analysis 

Through multiple experiments, the final experimental 
results of the HCMG method and various baseline methods 
are shown in Table 2. The experimental results indicate that 
the proposed HCMG method performs significantly better 
than the vast majority of baseline methods, especially when 
the number of labeled nodes provided is small. The HCMG 
method outperforms all baseline methods as the number of 
labeled nodes decreases, with its performance approaching 
that of the state-of-the-art Heco. Additionally, in terms of the 
AUC metric, the performance of HCMG far exceeds all other 
baseline methods. Although the experimental performance of 
DGI is relatively close compared to other heterogeneous 
graph methods, finding completely isomorphic medical 
datasets in reality is challenging. In contrast to HAN, GCN, 
and other semi-supervised heterogeneous graph models, it 
can be observed that unsupervised algorithms consistently 
achieve outstanding results when labeled data is scarce. 
Comparatively, the disease diagnosis method proposed in 
this paper based on heterogeneous graph contrastive learning 
shows the most advanced predictive effects compared to 
HetGNN and Mp2vec, among other unsupervised 
heterogeneous graph methods. Although there may be 
instances where it falls behind the state-of-the-art Heco 
method in terms of Micro-F1 and Macro-F1, it significantly 
surpasses Heco in the AUC metric. This difference could be 
attributed to the presence of data type imbalances in medical 
datasets. For example, in the MIMIC-III dataset utilized in 
this study, the number of patients with coronary heart disease 
is more than seven times the number of patients with gastritis. 
Therefore, the AUC score can better reflect the model’s 
predictive performance on imbalanced datasets. 

The experimental results indicate that disease diagnosis 
methods based on heterogeneous graph contrastive learning 
are highly effective, exhibiting superior performance, 
particularly in scenarios where manual medical labeling data 
is lacking. 

F. Clustering Result 

In this section, we employ the k-means algorithm to cluster 
node embeddings derived from the experimental results, 
thereby visually validating the model's performance. The 
final clustering results are scored using the Adjusted Rand 
Index (ARI) and the Normalized Mutual Information (NMI), 
obtaining scores of 72.16% and 69.58%, respectively. The 
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clustering results are visualized in Figure 2. The introduction 
of prototype contrastive learning in HCMG encourages the 
node embeddings to be more compact within the same cluster, 
thereby helping to improve node clustering. From the above 
results, it can be concluded that the node embeddings 
generated by the HCMG method can effectively distinguish 
patient node embeddings with different diseases.  

G. Hyperparameters Study 

This section discusses the performance differences of 
HCMG under various hyperparameter settings. The main 
focus is on the impact of changes in the model’s learning rate, 
Dropout, the number of filtered aggregated neighboring 
nodes, and the ratio   of the prototype contrastive learning 
loss function. In the experiment, we maintain all other 

parameters unchanged, altering only the parameter under 
investigation for each test. This study helps to investigate the 
influence of the specific parameter on the model and to 
explore the optimal hyperparameter settings for improved 
method performance. The experiments were conducted using 
a dataset comprising 40 labeled data points. Figure 3 presents 
the results of the hyperparameter research. Conclusions 
drawn from the figure are as follows: 
1) In the experiment described in Figure 3(a), training was 

conducted with learning rates set at 0.0005, 0.0006, and 
0.0007. The model performance gradually declined as 
the learning rate increased. This trend may be due to 
excessively large learning rates leading to 
disproportionately large parameter updates, making it 
difficult for the model to converge stably during training, 
which resulted in decreased performance. 

2) The experiment described in Figure 3(b) set Dropout 
values at 0.3, 0.5, and 0.7 to identify the optimal training 
parameters that balance the model’s fitting ability and 
generalization capacity. Experimental results indicate 
that smaller dropout values (such as 0.3) limit the 
model’s capacity and increase generalization ability but 
may lead to underfitting. Conversely, larger dropout 
values (such as 0.5) can more effectively prevent 
overfitting, while excessively large values (such as 0.7) 
may cause too many neurons in the model to be 
randomly dropped, making it challenging for the model 
to effectively learn patterns in the data, thus reduceing 
performance. 

3) The experiment described in Figure 3(c) set the number 
of top-K relevant neighboring nodes, filtered and 

TABLE Ⅱ 
EXPERIMENT RESULTS OF HCMG AND BASELINES 

Metric # DGI SAGE HAN GCN GAT HetGNN Mp2vec Heco HCMG 

Micro-F1 

40 62.4±3.9 49.7±3.1 70.7±2.1 69.6±2.2 70.8±1.9 61.5±2.5 60.8±0.4 78.8±1.3 81.70±0.14 

60 63.9±2.9 52.1±2.2 71.3±2.3 74.0±2.1 73.2±2.2 68.5±2.2 69.7±0.6 80.5±0.7 80.16±0.14 

80 63.1±3.0 51.4±2.2 74.4±2.1 76.0±2.7 76.5±2.1 65.6±2.2 63.9±0.5 82.5±1.4 80.41±0.23 

Macro-F1 

40 51.6±3.2 42.6±2.5 47.0±3.1 52.0±1.4 53.3±3.0 50.1±0.9 54.8±0.5 71.4±1.1 77.93±0.18 

60 54.7±2.6 45.8±1.5 53.4±3.1 56.6±2.1 58.3±2.2 59.0±0.9 64.8±0.5 73.8±0.5 74.17±0.16 

80 55.4±2.4 44.9±2.0 54.4±2.2 59.7±3.1 61.2±2.2 57.3±1.4 60.7±0.3 75.8±1.8 75.43±0.19 

AUC 

40 75.9±2.2 70.9±2.5 78.9±2.3 75.4±2.0 77.2±2.5 78.0±1.4 81.2±0.2 90.8±0.6 95.13±0.02 

60 77.9±2.1 74.4±1.3 80.7±2.1 76.9±1.7 79.3±2.3 83.1±1.6 88.8±0.2 92.1±0.6 93.98±0.02 

80 77.2±1.4 74.2±1.3 80.4±1.5 78.2±1.9 80.1±1.7 84.8±0.9 85.6±0.2 92.4±0.7 94.17±0.08 

 

Fig. 2.  Result of Patient Node Clustering 
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aggregated by the Pathsim algorithm, at 10, 100 and 500. 
From the results, it is concluded that aggregating a 
smaller number of neighboring nodes (K=10) compared 
to 100 shows less effective performance; however, 
aggregating too many neighbors (K=500) may increase 
noise content and reduce model performance. 

4) The experiment described in Figure 3(d) set the ratio λ of 
the prototype contrastive learning loss function at 0.1, 1 
and 10 to study the impact of compact clustering results 
from prototype contrastive learning on model 
performance. Experimental results indicate that setting 
the ratio of the prototype contrastive learning loss 
function too high can lead to decreased model 
effectiveness. This might be due to overly compact 
clustering making it more difficult to distinguish 
between hard negative samples and false negative 
samples when they are classified into the same cluster. 

Subsequently, we studied the impact of the number of 
labeled samples on the model’s effectiveness, with 
experimental results organized in Table 3. The data 
demonstrate that, while our method can achieve good 
predictive outcomes with a relatively small number of 
labeled samples, a too low count severely limits the model’s 
ability to acquire sufficient information, severely impacting 
prediction results. Therefore, maintaining a certain number of 
labeled samples is essential to ensure the model obtains 

adequate information and addresses the issue of sample 
scarcity. 

H. Ablation Experiment 

This section conducts ablation experiments on the HCMG 
method to verify the validity of each module. According to 
the main function of the HCMG method, the first variant 
HCMG_nm is proposed, where the aggregated neighboring 
nodes during the process of generating feature views come 
directly from the anchor's immediate neighbors, without 
aggregating the multi-hop neighbors connected through a 
meta-path. This is to verify the necessity of aggregating 
contextual information through a meta-path in the HCMG 
method. The second variant HCMG_nw no longer 
re-evaluates the weights assigned to negative samples, in 
order to assess the impact of false negative and mislabeled 
negative samples on the method. The third variant 
HCMG_np evaluates the optimization effect of using a 
prototype contrastive learning loss function for the method. 
The results of the ablation experiments are shown in Figure 4. 
The ablation experiments demonstrate that the various 
methods proposed in this paper effectively enhance the 
practical predictive performance of the model, with the 

TABLE Ⅲ 
RESULT OF THE NUMBER OF LABELED SAMPLES 

number Macro-F1 Micro-F1 AUC 

5 50.5±0.6 51.6±0.6 81.9±0.3 

10 68.8±0.3 71.4±0.2 87.8±0.1 

20 70.5±0.3 75.2±0.8 91.8±0.2 

40 81.7±0.1 77.9±0.2 95.3±0.1 

 
 

 
Fig. 3.  Results of Hyperparameters Study 

Fig. 4.  Result of Ablation Experiment 
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aggregation of neighboring contextual information through a 
meta-path playing a crucial role in the method.  

VI. CONCLUSION 

The disease diagnosis method HCMG, based on 
heterogeneous graph contrastive learning proposed in this 
study, effectively applies heterogeneous graph and 
contrastive learning methods to the task of disease diagnosis. 
The experimental results indicate that the model significantly 
improves both accuracy and efficiency in handling medical 
data, particularly exhibiting outstanding performance in 
scenarios with limited labeled data. Future research 
directions may further explore the application range of the 
method, optimize algorithm performance, and attempt to 
apply this method to other tasks in the medical field to 
enhance the effectiveness of disease diagnosis. 
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