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Abstract—To address the problems of misdetection, omission,
and low accuracy in traffic sign detection and recognition, a
novel method called RBL-YOLOv8 is presented by improving
YOLOv8. In the feature extraction network, the RepNC-
SPELAN module is used to replace the C2f module to improve
the feature extraction capability and reduce the number of
parameters. In the feature fusion network, fusion of large-
scale feature layers is added, while weighted feature fusion
is used to create cross-layer connections between shallow and
deep features to improve the utilisation of shallow features
for better detection of small targets. A lightweight detection
head is proposed to reduce the number of parameters and
computational complexity of the model, while improving the
localization and classification ability of the detection head. The
MPDIoU loss function is used to replace CIOU, which can better
accelerate the bounding box regression. The improved model is
conducted experiments on the CCTSDB and TT100K datasets
and compared with other algorithms, the results validate its
effectiveness and superiority.

Index Terms—traffic sign detection, YOLOv8, multi-scale
detection, shared convolution, lightweight.

I. INTRODUCTION

TRAFFIC sign detection and recognition task is one of
the important technical foundations of intelligent trans-

portation systems and unmanned systems. This technology
refers to the detection and recognition of traffic signs in
images or videos through image processing and deep learn-
ing, which plays an important role in guiding the subsequent
behavior of intelligent transportation systems and unmanned
systems [1]. To improve traffic safety, it is necessary to
continuously improve the accuracy and inference speed of
traffic sign detection and recognition algorithms, so how to
detect and recognize traffic signs quickly and accurately is
an urgent problem in the field of object detection. On roads,
traffic signs are usually distinguished from the environment
by eye-catching colors (red, yellow, and blue) and specific
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shapes (triangles, circles, squares, and polygons) to convey
warning, prohibition, and mandatory signals to vehicles and
pedestrians to enhance the recognizability of traffic signs.
Therefore, early traffic sign detection and recognition meth-
ods have been studied using the characteristics of traffic
sign colors and shapes [2, 3]. Color-based methods use the
RBG color space or HIS color space of color images to
extract the features of traffic signs[4, 5], however, color-based
methods are sensitive to light variations and are ineffective in
detecting faded traffic signs. Shape-based detection methods
manually extract features and set classifiers for traffic sign
detection[6–8], however, shape-based methods are sensitive
to scale changes and are ineffective in detecting deformed
and occluded traffic signs, which makes it difficult for
traditional traffic sign detection methods to be applied on
real roads.

Deep Convolutional Neural Networks have been increas-
ingly adopted in object detection due to their robust feature
extraction capabilities [9, 10]. Advanced models such as
the two-stage algorithms R-CNN [11], Fast-RCNN [12],
and Faster R-CNN [13] have emerged. These two-stage
algorithms first generate candidate regions, followed by
candidate region classification and bounding box regression
to achieve object detection. In contrast, one-stage algorithms
such as YOLO [14], SSD [15], and SPP-Net [16] directly
extract features from images using a single network for
object detection and classification. Although two-stage al-
gorithms have higher detection accuracy, they require more
computational complexity and more labelled data. Compared
to the one-stage algorithm, the two-stage algorithm has a
slower detection speed and is not suitable for real-time
detection scenarios. Recent research efforts have focused on
improving deep learning models for traffic sign detection. For
example, Wang et al. [17] reduced feature information loss
by changing the attention module and feature enhancement
module. Sun et al. [18] improved small object detection by
expanding the detection scale and incorporating Coordinate
Attention (CA) to facilitate rapid region localisation. Zhou
et al. [19] extended the model’s receptive field by combining
depth-separable convolutions with different expansion rates
to integrate contextual information and minimise information
loss. Zhang et al. [20] improved spatial and positional
focus by adding a Convolutional Block Attention Module
(CBAM) to the YOLOv8 backbone network, reducing feature
information loss during downsampling. Several studies have
proposed novel techniques to improve traffic sign detection,
such as using Swin Transformer modules [21], incorporating
ResNeSt for feature extraction with coordinate attention
mechanisms [22], and improving feature pyramids through
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path aggregation [23]. The above literatures have addressed
many issues, however, there are still some challenges, such
as the scale variation of traffic signs, light variation, and
occlusion, which can affect the detection effect, and the
need for lightweight models for deployment on resource-
constrained devices.

Aiming at the above problems, the one-stage algorithm
YOLOv8 is improved from four aspects, namely, feature ex-
traction network, feature fusion network, detection head, and
loss function, to improve the traffic sign detection model’s
ability to be applied in real scenarios. The improved method
improves the detection accuracy, reduces the model size,
has good real-time performance, and meets the lightweight
requirement of mobile devices for deploying the model while
improving the detection effect and robustness of the detector
to multi-scale targets. The main four contributions are as
follows:

(1) Improvement of the feature extraction network. The
C2f module in YOLOv8’s feature extraction network has
been replaced by the lightweight feature extraction module
RepNCSPELAN [24], and the feature extraction capability
of the model is improved by using the network structure of
RepNCSPELAN for efficient feature aggregation and the re-
parameterisation technique.

(2) Improvement of the feature fusion network. Increase
the model’s focus on the large-scale feature layer by fusing
the P2 layer. Combining the idea of BiFPN [25], weighted
feature fusion is used to fuse shallow and deep features of
the same size to improve the utilisation of shallow features
and improve the detection of multi-scale targets.

(3) Improvement of the detection head. The convolution
in the detection head is improved using the GroupNorm
layer [26] to improve the ability of the detection head to
localize and classify. The number of 3*3 convolutions in the
detection head is reduced using shared convolution [27], and
the size of the bounding box is adjusted by feature scaling,
which reduces parameters and computational complexity of
the YOLOv8 decoupling head [28].

(4) Loss function replacement. The loss function CIoU
[29] has been replaced with MPDIoU [30] to regress the
bounding box by minimising the Euclidean distance of the
diagonal line, which takes into account the loss factors such
as overlapping area, distance from the center point, width,
etc. of the predicted box and the ground truth box, enhancing
the regression ability of the bounding box while accelerating
convergence speed.

II. RELATED WORK

YOLOv8 is a one-stage target detection algorithm [31],
and the entire network consists of the following four parts.

A. Input part

Scaling the input images to a fixed size ensures that
all images have the same dimensions and can be batch-
processed. Using the mosaic data enhancement technique,
the images are randomly scaled, cropped, and aligned, which
is used to increase the diversity of the samples and improve
the robustness of the model. The pre-processed images are
fed into the feature extraction network.

B. Feature extraction network
The Feature Extraction Network is a collection of high

performance classifiers designed to extract feature informa-
tion from targets within the image and consists mainly of
the CBS and C2f modules. The CBS module plays a crucial
role in downsampling the feature maps. As the primary
feature extraction module, the C2f module contains the
ELAN structure from YOLOv7 [32] and maximises the use
of the bottleneck module to enhance gradient information. In
particular, the C2f module excels at capturing richer gradient
information with fewer parameters, contributing to a lighter
model. Deep features are then extracted and fused using
the SPPF module. During the fusion process, the maximum
pooling module is iteratively applied to extract additional
semantic detail from the deep features, and the resulting
outputs are fed into the feature fusion network.

C. Feature fusion network
The feature fusion process of YOLOv8 is located between

the feature extraction and the detection head, and the feature
information at different levels of the feature extraction net-
work is processed and fused and then passed to the detection
head to further improve the multi-scale feature expression
capability and robustness of the network. The feature fusion
network utilizes the upsampling, CBS, and C2f modules to
construct the FPN-PAN network structure [33, 34], which
fuses the features of targets at different scales and improves
the feature fusion capability of the network, thus improving
the ability of the model to detect targets at different scales.

D. Detection head
The YOLOv8 uses decoupled headers in the form of

bounding box regression and classification, respectively.
Among them, the classification loss uses Binary Cross En-
tropy (BCE), while the bounding box regression uses a com-
bination of Distributional Focal Loss(DFL) [35] and CIoU
loss function. DFL enables the model to learn the loss of
the position around the label, and together with the Anchor-
Free centroid-based computation method (first determining
the center region, then predicting the distance from the center
to the four edges), it improves the model’s performance in
occlusion detection effect in case of occlusion. The allocation
strategy for positive and negative samples is Task Aligned
Assigner [36], which enables the model to continuously
improve its sample allocation capability with training, and
selects positive samples based on the weighting of classifi-
cation and regression scores to complement the model’s need
for positive samples in different tasks.

III. IMPROVED MODEL

According to different application scenarios, YOLOv8
uses the scaling factor to divide the model into five ver-
sions, YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and
YOLOv8x. According to the real-time and lightweight re-
quirements of traffic sign detection and recognition tasks,
YOLOv8n is selected as the benchmark model for experi-
ments, and improvements are made in four aspects, namely,
feature extraction network, feature fusion network, detection
head, and loss function, respectively, and the improved
method is called RBL-YOLOv8, and the overall network
structure is shown in Fig. 1.
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Fig. 1. The RBL-YOLOv8 structure diagram

A. Improved Feature Extraction Network

The role of the feature extraction network is to convert the
input image into high-level feature representations that con-
tain key information in the image, such as edges, texture, and
shape. In YOLOv8, it uses CBS module for downsampling
and then C2f module for feature extraction. In traffic sign
detection tasks, the model is required to have high detection
accuracy and lightweight model size for easy deployment
in resource-constrained mobile and edge devices. Therefore,
RepNCSPELAN is used instead of the C2f module as
the new feature extraction module, aiming to achieve high
accuracy while keeping the network lightweight. Thus, a
Generalized Efficient Layer Aggregation Network (GELAN)
was given by combining two gradient path planning neural
network structures, CSPNet [37] and ELAN [38], as shown
in Fig. 2(c).

The CSPNet divides the input feature map into x1 and
x2, in the channel dimension, where the feature map x1 is
fused with the feature map x2 after passing through a series
of arbitrary feature extraction modules, as shown in Fig.
2(a). However, the feature map x1 passes through several
feature extraction modules resulting in the loss of some
shallow feature information. In order to compensate for the
lost information, GELAN combines ELAN based on CSPNet
and fuses the feature map x1 with the output of each feature
extraction module it passes through with the feature map x2,
thus realizing a gradient structure with richer information.

Based on GELAN, RepNCSPEALN uses RepNCSP and
CBS modules as feature extraction modules as shown in
Fig. 3. The reparameterisation technique is used to increase

the gradient feedback path by using multiple branches (e.g.
multiple convolutional layers) in the training phase, and then
reparameterize the parameters of each branch to the main
branch in the inference phase. This reduces computation and
memory consumption and improves the inference efficiency
of the model. Taking the fusion of convolutional and BN
layers as an example, the calculation of the convolutional
layer is shown in Equation (1):

Conv (x) = W (x) + b (1)

Where W (x) is the weight and b is the bias, the BN layer
is calculated as follows:

BN (x) = γ × x−mean√
var

+ β (2)

Here γ and β are parameters learned during training, repre-
senting the weights and biases of the BN layer, respectively,
with mean representing the mean and var representing the
variance. In the inference stage, the convolutional and BN
layers are merged while the parameters are remapped as
shown in Equation (3):

BN (Conv (x)) = γ × Conv (x)−mean√
var

+ β

= γ × W (x) + b−mean√
var

+ β

=
γ ×W (x)√

var
+

(
γ × (b−mean)√

var
+ β

) (3)
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Where γ×W (x)√
var

is the fused weights and γ×(b−mean)√
var

+ β
is the fused bias.

B. Improved Feature Fusion Network

YOLOv8 uses a feature extraction network to divide the
feature map into five different scales, P1-P5. The FPN fuses
P3 with B3, and P4 with B4, forming a top-down feature
pyramid. However, the FPN structure results in the loss
of some location information during the fusion process.
To compensate for the positional information lost by FPN,
YOLOv8 combines FPN and PAN to construct a top-down
and bottom-up structure, as shown in Fig. 4. It builds a
deeper network that retains more feature information than the
FPN by fusing B4 with N4 and P5 with N5. Although the
FPN-PAN structure fuses more feature layers and enriches
semantic and location information, the FPN-PAN structure
only fuses feature maps at the P3, P4 and P5 scales, and lacks
attention to the large-scale feature P2, which leads to the
loss of some valuable information, such as the color, texture,

and shape information contained in the P2 feature map.
In addition, the original features lose some of the feature
information during up-sampling and down-sampling as the
network depth deepens, resulting in lower feature information
utilization, which limits the feature fusion capability and
reduces the detection performance of the model, so the FPN-
PAN structure needs to be further optimized.

The feature information of small-sized traffic signs is
usually contained in the shallow feature map, and FPN-PAN
has limited utilization of the shallow feature information.
To solve this problem, the utilization of the shallow feature
information is improved by reconstructing the feature fusion
network. First, the P2, P3, P4 and P5 layers are each
passed through a 1*1 convolutional layer to obtain the same
number of channels, which can reduce the parameters in the
feature fusion process. Then, the B2 layer is obtained by
up-sampling the B3 layer, and the B2 layer is fused with
the P2 layer to increase the scale of feature fusion, which
can improve the attention to the large-scale feature layer.
In addition, the idea of BiFPN is introduced to improve the
utilization of feature information in layers P3 and P4, specifi-
cally, the feature map fused from B2 and P2 is downsampled
to obtain N3, and an extra path is added between layers
P3 and N3, P4 and N4 using cross-layer connection to fuse
layers P3 and N3, P4 and N4, as shown in Fig. 5.

YOLOv8 fuses feature maps of different resolutions by
summing them after resizing them to the same size, but
the information contained in the feature maps of different
resolutions does not contribute equally to the output feature
maps. To solve this problem, a weighted feature fusion
method is used to add additional learnable weights to each
input feature map, so that it can automatically update the
weights during the learning process, thus achieving a more
reasonable feature fusion, the specific steps are as follows:

First, additional weights are added to each of the input
feature maps Ii as shown in Equation (4):

O =
∑
i

wi · Ii (4)
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Where wi is the learnable weight. If wi corresponds to
a scalar weight, since scalars are unbounded, leaving them
unbounded will lead to an unstable training process, so a
Softmax treatment is added for each weight, limiting the
range of values for each weight to be between 0 and 1, as
shown in Equation (5):

O =
∑
i

ewi∑
j e

wj
· Ii (5)

However, by adding the exponential operation to the
Softmax operation, the processing speed of the GPU is
significantly reduced. To solve this problem and reduce the
computational cost, the exponential operation in Eq. (5) is
removed, and a ReLU function is added after each weight
to ensure wi ≥ 0 , and a minimum ϵ = 0.0001 is added to
ensure that the value is stable, as shown in Equation (6).

O =
∑
i

wi

ϵ+
∑

j wj
· Ii (6)

In this way, the value range of each normalized weight is
still between 0 and 1, but the Softmax operation is avoided
and the computational efficiency is improved.

C. Lightweight Detection Head

Many ITS systems use embedded devices, which usually
have limited computing resources and storage space. The
lightweight model reduces hardware requirements and is eas-
ier to deploy on cloud platforms or edge devices, improving
the deployability and flexibility of ITS, which is crucial for
large-scale deployment scenarios.

Through experiments, it is found that the number of
parameters and computation of the YOLOv8 detection head
occupies almost half of the whole model, which greatly
increases the complexity of feature decoupling. Therefore,
it is crucial to lightweight the detection head, which can
effectively reduce the number of parameters and computa-
tional complexity of the model. The YOLOv8 detection head
adopts a decoupled form, which divides the detection head
of each scale into two branches, and outputs the localization
loss and the classification loss after a series of convolutional
operations, as shown in Fig. 6. In the convolution process,
there are two 3*3 CBS modules and one 1*1 regular convolu-
tion, where Pi represents the feature maps of different scales.
Thus each scale of the detection head contains four 3*3
convolutional layers, which is the main reason for increasing
the number of detection head parameters.

Pi

CBS*2

CBS*2

Conv2d

Conv2d

Bbox_Loss

Cls_Loss

Fig. 6. YOLOv8 detection head structure

To optimize the detection head, a lightweight detection
head scheme, LGSCD (Lightweight GroupNorm Share Conv
Detection Head), is proposed, which aims to optimize the
structure of the detection head of YOLOv8, and to reduce
the parameters and the computational complexity of the
model. LGSCD first utilizes 1*1 convolution to adjust the
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number of channels for different scales of feature maps
to reduce the computational effort of the model. Then, a
shared convolution consisting of two 3*3 convolutions is
used to traverse the feature maps from different scales, and
the output is divided into localization loss and classification
loss. In addition, replacing BatchNorm with GroupNorm in
the CBS module and improving CBS to CGS improves the
localization and classification performance of the detection
head[39]. The structure of LGSCD is shown in Fig. 7.
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Fig. 7. LGSCD structure

For the input feature map RC×H×W , the number of
parameters after convolution is shown in equation (7):

Parameters = c1 × c2 × k2 (7)

Where c1 denotes the number of channels of the input
feature map, c2 is the number of output channels after
convolution, and k denotes the convolution kernel size.

Since the reconstructed feature fusion network has 4
scales of output, the number of parameters of the YOLOv8
detection head is shown in Equation (8):

Parameters (Y OLOv8) = c1 × c2 × 32 × 16

= 144× c1 × c2
(8)

The number of parameters of LGSCD is as follows:

Parameters (LGSCD) = c1 × c2 × 32 × 6

= 54× c1 × c2
(9)

By comparing Eq. (8) and Eq. (9), the number of parame-
ters in LGSCD has been reduced by more than half compared
to YOLOv8 detection head, achieving lightweighting.

D. MPDIoU Loss Function

YOLOv8 uses CIoU Loss to calculate the bounding box
loss. CIoU Loss introduces centroid distance loss and aspect
ratio loss. The calculation formula is shown in Equation (10).

LCIOU = 1− IOU (A,B) + ρ2 (Actr, Bctr) /c
2 + αv

v =
4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

α =
v

(1− IOU) + v
(10)

Where ρ denotes the Euclidean distance, Actr and Bctr

represent the centroids of A and B, c denotes the diagonal

length of the smallest bounding box enclosing A and B, and v
and α represent the difference in aspect ratio. However, when
the aspect ratios of the predicted box and the ground truth
box are the same, the aspect ratio loss of the CIoU loss is
constant at 0, resulting in no gradient backpropagation, which
leads to the inability to continue learning the aspect ratio
loss, which is detrimental to the bounding box regression.
To solve this problem, the loss function MPDIoU is used
to replace the CIoU in the YOLOv8, and the MPDIoU
regresses the predicted box by minimizing the Euclidean
distances between the upper-left and lower-right corners of
the predicted box and the ground truth box, as shown in Fig.
8.

Fig. 8. MPDIoU regression method

MPDIoU Loss is calculated as shown in equations (11)
through (14):

d21 =
(
xprd
1 − xgt

1

)2

+
(
yprd1 − ygt1

)2

(11)

d22 =
(
xprd
2 − xgt

2

)2

+
(
yprd2 − ygt2

)2

(12)

MPDIoU = IoU − d21
w2 + h2

− d22
w2 + h2

(13)

LMPDIoU = 1−MPDIoU (14)

Where w and h represent the width and height of the picture,
respectively, and

(
xgt
1 , ygt1

)
represent the coordinates of the

upper-left and lower-right corners of the ground truth box,
and

(
xgt
2 , ygt2

)
represent the coordinates of the upper-left and

lower-right corners of the predicted box, and
(
xprd
1 , yprd1

)
and

(
xprd
2 , yprd2

)
represent the Euclidean distance between

the upper-left and lower-right corners of the predicted box
and the ground truth box, respectively.

IV. EXPERIMENT

A. Experimental Environment and Parameter Setting

The input image size is 640*640, the initial value of the
learning rate is 0.001, the momentum size is 0.98, the weight
decay parameter is 0.001, the batch size is set to 32, the
model is based on the PyTorch framework using CUDA
11.7, Windows system, the graphics card model is NVIDIA
GeForce RTX 3060, the graphics card RAM size is 12G,
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memory size is 32G, processor model is 12th Gen Intel(R)
Core(TM) i5-12490F.

B. Experiment Dataset

CCTSDB 2021 [40] is selected as the baseline dataset for
the experiment, which includes images under six types of
weather: foggy, snowy, rainy, evening, cloudy, and sunny,
the extreme weather can better validate the robustness of the
model. The dataset categorizes the signs into three categories:
Mandatory, Prohibitory, and Warning as shown in Fig. 9.
In order to improve the generalization ability of the model,
1004 images with a resolution of 2048*2048 are added to
CCTSDB 2021, and the number of targets in the Warning
category is increased by 1342 to balance the number of
categories. The number of images in the extended training
set is 17360, and the number of images in the test set is
1500, and the extended dataset is named CCTSDB-N.

(c)Warning(c)Warning(b)Prohibitory(b)Prohibitory(a)Mandatory(a)Mandatory

Fig. 9. Classification of the CCTSDB

To verify the generalization of the model on different
datasets, TT100K 2021 [41] was chosen as the auxiliary
dataset for comparison experiments. The images in TT100K
have a resolution of 2048*2048 and contain more small
targets with 240 categories of traffic signs. However, some
categories have only a small number of instances, so the
categories with more than 100 instances are extracted using a
Python program.The processed dataset contains 45 categories
of traffic signs, and the number of images in the training set
is 7222, and the number of images in the test set is 1948.

C. Evaluation Index

The evaluation metrics referenced in the experiments
include precision, recall, mean average precision (mAP),
average precision (AP), the number of parameters, and the
number of floating point operations per second (FLOP). The
formulas for precision and recall are shown in (15) and
(16), where TP and TN represent the positive and negative
samples with correct predictions, and FP and FN represent
the positive and negative samples with incorrect predictions,
respectively.AP denotes the precision of a single category,
and mAP denotes the average precision over all categories,
and the computation of AP and mAP is shown in (17) and
(18), respectively. FLOPs denotes the computational amount
of the model, which is used to measure the computational
complexity of the model.

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

AP =

∫ 1

0

P (r) dr (17)

mAP =
1

N

N∑
i=1

APi (18)

D. Comparison of Feature Extraction Modules

To verify the superiority of RepNCSPELAN in feature
extraction networks. Comparison experiments are conducted
by replacing other modules, the experiments are based on the
CCTSDB-N dataset. The experiment compares four modules,
namely C2f, OREPANCSPELAN [42], DBBNCSPELAN
[43] and DRBNCSPELAN [44], and the experimental results
are shown in Table I.

E. Loss Function Comparison

In order to test the effectiveness of the loss function
MPDIoU, experiments are conducted on the CCTSDB-N
dataset, comparing the five loss functions, CIoU, EIoU,
SIoU, WIoU, and MPDIoU. The results of the comparison
are shown in Table II.

As evidenced by the experimental results presented in
Table II, the MPDIoU loss function outperforms other loss
functions with respect to all indices. Compared with the
CIoU loss function, the mAP50 improves by 0.6%, the
precision improves by 3.4%, and the recall improves by
1.1%. These findings substantiate the efficacy and superiority
of the loss function MPDIoU in the domain of traffic sign
detection.

F. Compared with Other Advanced Algorithms

To verify the superiority of the improved model, it is
compared with other advanced traffic sign detection algo-
rithms. Experiments are conducted on the CCTSDB-N and
TT100K datasets, respectively, to verify the robustness of
the model under different datasets. The improved model is
compared with the other algorithms: YOLOv3, YOLOv7-
tiny, YOLOv5s, YOLOv8n, and YOLOv8s. The results of
these comparisons are presented in Table III and Table IV.

From Table III, it can be seen tha the improved model
exhibits a mAP50 of 84.2%, a mAP50-95 of 54.1%, FLOPs
of 10.7G, a model size of 2.8M, and an accuracy and
recall of 88.2% and 77.1%, respectively. In comparison
with other prevalent algorithms, the improved model exhibits
the optimal mAP50, which is 5% superior to YOLOv8n,
and mAP50-95 is only surpassed by YOLOv8s. However,
the FLOPs are 37.6% of YOLOv8s and the model size is
only 12.6% of YOLOv8s. The above comparison indicates
that the improved model outperforms other state-of-the-art
algorithms.

To verify the performance effect of the improved model on
different datasets, experiments are conducted on the TT100K
2021 dataset. From the experimental results in Table IV, it
can be seen that although the YOLOv3 model achieves the
best accuracy, the computational complexity and model size
of the model are much higher than other algorithms, and
it is not suitable for traffic sign detection and recognition
tasks. YOLOv5s and YOLOv8s have much higher computa-
tional complexity and model size than the improved model,
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TABLE I
COMPARISON OF FEATURE EXTRACTION MODULES

Models mAP50(%) P(%) R(%) FLOPs Params (M)

C2f 81.3 88.6 73.1 12G 3.5
OREPANCSPELAN 81.6 84.8 72.4 10.7G 2.94

DBBNCSPELAN 81.9 88 74.2 10.7G 2.96
DRBNCSPELAN 83.2 87 76.2 10.7G 2.83
RepNCSPELAN 83.4 89.1 74.4 10.7G 2.8

TABLE II
LOSS FUNCTION COMPARISON

Models mAP50(%) mAP50-95(%) P(%) R(%)

CIoU 83.6 53.5 84.8 76
EIoU 80.4 51.1 87.4 72.9
SIoU 81.8 52.2 84.4 72.8
WIoU 80.6 52.8 87 74.3

MPDIoU 84.2 54.1 88.2 77.1

TABLE III
COMPARATIVE EXPERIMENTS ON CCTSDB-N

Models mAP50(%) mAP50-95(%) FLOPs Params (M) P(%) R(%)

YOLOv3 82.7 53.3 154.6G 117 89.2 76.7
YOLOv7-tiny 68.8 39.7 13.2G 11.6 81.7 60.1

YOLOv5s 80.7 52.3 15.8G 13.6 89.3 74.2
YOLOv8n 79.2 50.4 8.1G 6 87.4 72.2
YOLOv8s 84.1 54.6 28.4G 21.4 91.7 75.3

Ours 84.2 54.1 10.7G 2.8 88.2 77.1

TABLE IV
COMPARATIVE EXPERIMENTS ON TT100K

Models mAP50(%) mAP50-95(%) FLOPs Params (M) P(%) R(%)

YOLOv3 91.2 70.8 155.3G 118 88.7 88.1
YOLOv7-tiny 77.8 58.5 13.4G 12 76.9 71.7

YOLOv5s 85.2 65.1 16.1G 14 85.4 78.7
YOLOv8n 79.6 60.8 8.1G 6 78.4 72.1
YOLOv8s 87.1 68.7 28.5G 22 87.6 78

Ours 85.1 66.4 10.9G 3 83.8 77.2

although their accuracy is slightly higher than that of the
improved model. Compared with YOLOv8n, the improved
model increases the mAP50 by 5.5%, the model size is
reduced by half, and the FLOPs increase by only 2.8 G.
Compared with the other models, the improved model has the
best combined performance in terms of detection accuracy,
computational complexity, and model size. The experiments
on the TT100K dataset can prove that the improved model
has excellent performance under different traffic sign datasets
and can be used for traffic sign detection and recognition
tasks.

In terms of performance, computational resource require-
ments and model size, the improved model has clear advan-
tages in the traffic sign detection task, which is suitable for
various application scenarios, including resource-constrained
mobile and embedded devices, and can provide an efficient
and accurate solution for traffic sign detection applications.

G. Ablation Study

To verify the effectiveness of the improved method, ab-
lation experiments are conducted based on the CCTSDB-N

dataset using the YOLOv8n algorithm as a baseline, and the
results of the ablation experiments are shown in Table V.

As can be seen from Experiment A, by using the recon-
structed feature fusion network, the mAP50 of the model
is increased by 3%, and the model size is reduced by
1.5M. This indicates that combining the BiFPN network
structure to increase the focus on large-scale features can
effectively increase the detection effect of the model on
multi-scale targets. Although the computational complexity
of the model increases, by adjusting the number of channels,
the parameters in the process of feature fusion number is
reduced, making the model lighter.

According to Experiment B in Table V, it shows that the
mAP50 and mAP50-95 of the model are improved by 1.3%
and 1%, respectively, the FLOPs are reduced by 1.5G, and
the size of the model is reduced by 0.5M after replacing
the C2f module of the feature extraction network with the
RepNCSPEALN module. This indicates that the lightweight
feature extraction module RepNCSPELAN can effectively
improve the feature extraction ability of the model, and
reduce the computational complexity and number of param-
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TABLE V
ABLATION EXPERIMENTS ON THE CCTSDB-N

Models P2-BiFPN RepNCSPELAN LGSCD MPDIoU mAP50(%) mAP50-95(%) FLOPs Params (M)

YOLOv8n 79.2 50.4 8.1G 6
A ✓ 82.2 52.4 16.9G 4.5
B ✓ ✓ 83.5 53.4 15.4G 4
C ✓ ✓ ✓ 83.6 53.5 10.7G 2.8
D ✓ ✓ ✓ ✓ 84.2 54.1 10.7G 2.8

(a) Daytime (b) Snowy weather (c)Evening

Fig. 10. Comparison of YOLOv8n (top) and RBL-YOLOv8 (bottom) detection results

eters of the model, making the model more lightweight.
From Experiment C, it can be seen that the average

accuracy of the model remains unchanged by using the
improved lightweight detection head LGSCD, but the FLOPs
are reduced by 4.7 G, and the model size is reduced by 1.2
M. This indicates that LGSCD reduces the computational
complexity and the parameters of the model by utilizing the
strategy of shared convolution, which further lightens the
model, and improves model positioning and classification
capabilities by using GroupNorm.

As can be seen from Experiment D, by replacing the
loss function CIoU with the MPDIoU, the mAP50 and
mAP50-95 of the model are both improved by 0.6%, and
the computational complexity and the parameters remain
unchanged. This indicates that the loss function MPDIoU
effectively improves the regression of the bounding box by
minimizing the Euclidean distance between the diagonals of
the predicted box and the ground truth box, and improves
the overall detection of the model.

Compared to the original YOLOv8n algorithm, the abla-
tion experiments show that the improved model improves
mAP50 by 5%, mAP50-95 by 3.7%, the size of the model is
reduced by half and the FLOPs increase by only 2.6G. The
improved model improves the detection accuracy, reduces
the complexity of the model, realizes the lightweight of the

model, and verifies the effectiveness of the proposed module.

H. Visualization Analysis

To demonstrate the detection effect of the improved
model more intuitively, the detection results of the original
YOLOv8n algorithm (top panel) and RBL-YOLOv8 (bottom
panel) are visualized and compared, revealing the advantages
and performance enhancement of the improved model rela-
tive to YOLOv8n in different scenarios by comparing the
results in three scenarios, namely, daytime, snowy day, and
evening, and the detection results are shown in Fig. 10.

As can be seen in Fig. 10, the original YOLOv8n algo-
rithm misses detection in the daytime, snowy, and evening
scenarios, and the improved model detects more traffic signs.
In the daytime scenario, the original YOLOv8 lost the distant
traffic sign targets, and the improved model enhanced the
detection of small targets. In the snowy and evening scenar-
ios, the original YOLOv8n algorithm misses the detection of
adjacent traffic signs, and the improved algorithm accurately
detects and recognizes adjacent traffic signs.

In conclusion, the RBL-YOLOv8 demonstrates superior
performance compared to the YOLOv8n algorithm in diverse
scenarios. It reduces missed detections, exhibits enhanced
detection accuracy, stronger robustness, and superior adapt-
ability, providing a more reliable solution for traffic sign

Engineering Letters

Volume 32, Issue 11, November 2024, Pages 2180-2190

 
______________________________________________________________________________________ 



detection.

V. CONCLUSION

A lightweight multi-scale traffic sign detection and recog-
nition method, RBL-YOLOv8, is presented to reduce the
computational complexity and parameters of the model and
improve the detection accuracy. Specifically, the RepNC-
SPELAN module is utilized to improve the feature extraction
network, which improves the detection accuracy and reduces
the size of the model. Combined with the BiFPN idea, the
feature fusion network is reconstructed, which improves the
utilization rate of the network on the shallow features and
improves the detection of multi-scale targets. The lightweight
detection head LGSCD is utilized to reduce the computa-
tional complexity and the number of parameters in the detec-
tion head part, which achieves lightweight while improving
the ability of detection head localization and classification.
Finally, the loss function MPDIoU is used to replace CIoU,
which enhances the localization ability of the model, accel-
erates the convergence speed, and improves the detection
accuracy. Experiments are conducted on the CCTSDB-N and
TT100K datasets, respectively, and the experimental results
show that the mAP50 of the improved model reaches 84.2%
and 85.1%, respectively, which is 5% and 5.5% higher than
the original YOLOv8n algorithm, and the detection effect in
different scenarios has been significantly improved. The size
of the improved model is 2.8M, which is reduced to half of
the original model, and lays a good foundation for subsequent
deployment to mobile devices and edge devices. In future
work, we will further to improve the detection ability of
the RBL-YOLOv8 model for traffic signs and improve it for
difficult samples such as occlusion and blur.
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