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Abstract—This paper discusses the Benders decomposition
approach on the multi-objective adjustable robust counterpart
optimization model with polyhedral uncertainty set for sugar
distribution supply chain problems. It focused on the optimiza-
tion modeling of sugar distribution among producers, local
food hubs, and consumers in sub-districts. This problem is
considered a multi-objective mixed integer linear programming
problem with two objective functions: to maximize demand
fulfillment and minimize logistics costs. Uncertain data was col-
lected from real-life scenarios and analyzed using the adjustable
robust counterpart methodology with polyhedral uncertainty
set assumption. The uncertain data consisted of the adjustable
and non-adjustable variables. This research was carried out in
northern Bandung City, Indonesia. The result shows that the
evaluation of the two-stage supply chain optimization model
with adjustable robust counterpart methodology is effectively
solved using the benders decomposition approach.

Index Terms—adjustable robust counterpart, benders decom-
position, multi-objective optimization, supply chain.

I. INTRODUCTION

IN this study, the main aim was to develop the Benders
Decomposition Approach (BDA) for the multi-objective

adjustable robust counterpart (ARC) optimization model with
a polyhedral uncertainty set for supply chain problems,
especially in the case of processed sugar distribution. This
work includes numerical experiments to validate the result
using R Software. The discussion focused on supply chain
management issues, which, according to Irmansyah et al.
[1], is essential to regularly meet consumer demand, en-
sure goods capacity, and maintain economic efficiency. The
ARC methodology was adopted to overcome the problem
of uncertainty in the multi-objective integer optimization
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model. This method was selected based on two kinds of
variables: integer and continuous decision variables applied
at the first and second stages, respectively. Multi-objective
optimization modeling is used by Wihartiko et al. [2] to study
the agricultural product price recommendation problem.

Several studies have been conducted on ARC, each focus-
ing on various problems. For example, Chaerani et al. [3]
investigated the adjustable robust maximum flow problem
with parametric ellipsoidal and polyhedral uncertainty sets.
A study by Wei et al. [4] focused on the comprehensive
Mixed Integer Linear Programming (MILP) model for the
distribution of energy reserves using the ARC methodol-
ogy. Cranmer et al. [5] conducted a study on household
resource management with a profit-maximizing portfolio,
using fundamental network models to track the wake effects
through a series of wind farms. Chen et al. [6] minimizes
operational cost for combined cooling, heating, and power-
based microgrid (CCHP-MG) using a two-stage adjustable
robust optimization. Ji et al. [7] focused on modern power
systems by formulating a two-stage adjustable robust op-
timization model designed to address the uncertainties in
photovoltaic outputs. Min et al. [8] concentrated on a ro-
bust two-stage omega portfolio optimization with cardinality
constraints. Furthermore, Sun et al. [9] used a mixed integer
programming method to analyze economic network design
problems. Another study by Zhao et al. [10] focused on the
robust optimization of mixed-load school bus routes using a
multi-objective genetic algorithm. Chaerani et al. [11] also
studied spatial land-use allocation problems and solved the
problem as a robust optimization model using ellipsoidal and
polyhedral uncertainty sets.

The BDA was considered a suitable method for solving
ARC because it is similar to a two-stage robust optimization.
According to Bisschop [12], BDA divided the problem into
two parts, namely, linear or continuous and nonlinear or
integer variables, which are challenging to solve. When
applying BDA, the main concern is partitioning the variables
into two sets, x and y, as continuous and integer vari-
ables. This optimization method effectively resolves issues
with feasible subproblems. Previous studies have focused
on developing mathematical methods for solving the robust
counterpart (RC) multi-objective integer optimization model
using the BDA approach. For example, Siddiqui et al. in
[13] discusses how Benders decomposition can be used
to solve mixed-integer robust optimization problems with
interval uncertainty. Saito and Murota in [14] contribute
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to robust mixed integer programming by determining the
benders decomposition approach. See also Karbowski [15]
designed a large-scale MILP optimization model with both
objective and convex constraint functions. Sha et al. [16]
studied the MILP optimization model designed for distribu-
tion problems, implementing the Cutting Plane Method in
the first stage. Meanwhile, Gong and Zhang [17] focused
on the MILP optimization model containing inequalities,
local branching, In-out variant method, and scenario-based
aggregated cuts. In Liu et al. [18], a study on multi-objective
mixed integer programming modeling for closed-loop supply
chain network design is presented.

To claim the novelty, a literature search has been done
for the last three years (2022-2024). By considering the
keywords ”Benders Decomposition Approach,” ”Robust Op-
timization,” ”Mixed Integer Programming,” and ”Supply
chains,” there are 57 articles as a result of literature search-
ing. Based on the title, abstract, keywords, and paper content,
only 15 articles are considered for determining the state of
the art of the research, as presented in Table I.

TABLE I: Summary of the aspect covered in our article and
existing articles.

Article Robust Uncertainty MILP Supply Benders

Optimization Set chains Decomposition

[19] - - ! - !

[20] ! Box ! ! !

[21] ! Stochastic ! ! !

[22] ! ! ! ! !

[23] - - ! ! !

[24] ! Interval ! ! !

[25] ! Interval ! ! !

[26] ! Stochastic ! ! -
[27] ! Interval ! ! -
[28] ! Interval ! ! -
[29] - - ! ! -
[30] ! Convex ! - -
[31] - - ! ! -
[32] - - ! ! -
[33] - ! ! ! -

Our Article ! Polyhedral ! ! !

Thus, in this paper, a new result is expected on how the
ARC model and the numerical experiments are obtained
to show the use of the BDA in addressing supply chain
problems in sugar distribution. The uncertain selling price
data is assumed to be polyhedral uncertainty. In addition,
two objective functions were analyzed to maximize demand
fulfillment and minimize logistics costs. The case of numer-
ical experiment on sugar distribution was selected due to the
significant influence as an agricultural processed product.

Some motivations were added to show the importance
of the supply chain system, mainly agricultural processed
goods. For instance, Gao et al. [34] and Liu et al. [35]
focused on green agri-food blockchain technology. Winarno
et al. [36] conducted a study focused on food hubs and brief
supply chains.

According to Harrington et al. [37], establishing a food
hub was considered the best and most efficient way to ensure
smooth product delivery. Developing a food hub is essential
for farmers aiming to expand their respective businesses by
providing a comprehensive range of production, distribution,

and marketing services. Matson et al. [38], [39] stated that
a food hub plays a critical role in establishing regional and
local connections between producers, including farmers and
ranchers, as well as consumers, namely hospitals, schools,
restaurants, etc.

Food hubs expand market opportunities on a larger scale
by serving as a centralized pick-up location for distributors
and consumers. Furthermore, it provides job opportunities
and benefits to consumers and the general public. Mittal et
al. [40] defined Local Food Hubs (LFH) as food distribution
centers operating locally. In the case of Bandung City, LFH
was constructed in every district (Perdana et al. [41]) or
any area where it can function optimally. LFH served as
a significant distribution center between the producer and
consumer zones on a local scale.

Therefore, this study aimed to identify the most suitable
location for LFH development in North Bandung and analyze
how the supply chain is connected with product distribution
from the producers to LFH and consumers. The numerical
experiments relied on secondary data obtained in 2022 from
various sources. The districts in the northern part of Bandung
City, including Andir, Bandung Wetan, Cibeunying Kaler,
Cibeunying Kidul, Cicendo, Cidadap, Coblong, Sukajadi,
Sukasari, and Sumur Bandung, served as the locations for
conducting these experiments. The Andir Market, the largest
wholesale market for granulated sugar suppliers and sellers
in the Andir District, influenced the choice of this area.
Furthermore, this study is also an extension of the inves-
tigation on applying robust optimization to resolve supply
chain problems (Chaerani et al. [42]).

The study is organized as follows: Section 2 discusses
materials and methods. Section 3 shows the results, followed
by the numerical experiment results and conclusions in
Sections 4 and 5, respectively.

II. MATERIALS AND METHODS

A. Optimization Model Formulation for Supply Chain Prob-
lems

The optimization model formulation for supply chain
problems was adapted from the study by Perdana et al.
[41] and Irmansyah et al. [1]. It focused on distribut-
ing agricultural processed products among producers, LFH,
and consumers across all districts in Bandung. The model
adopted several sets, including demand/consumer zone, LFH,
production zones/producer, and commodity (types of pro-
cessed agricultural products) denoted by I, J,K, and C,
respectively. This MILP, formulated in equations (1) to (10),
addressed the complexities of the supply chain system. The
parameters used in the model are dci which represents the
product request for c in district i (tons/day), fck denotes the
production capacity for product c in the district producer k
(tons/day), vci is the selling price of product c in district
i (Rp/tons), κ depicts the development costs of LFH (Rp/
building), and q signifies the cost of handling health protocols
(Rp/tons).
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max
∑
c∈C

∑
i∈I

∑
j∈J

vciwcji , (1)

min

κ∑
j∈J

xj + q
∑
c∈C

∑
j∈J

pcj

 , (2)

s.t.
∑
k∈K

fckyckj = pcj ,∀c ∈ C, j ∈ J, (3)∑
i∈I

dciwcji = pcj ,∀c ∈ C, j ∈ J, (4)∑
j∈J

yckj≤1,∀c ∈ C, k ∈ K, (5)∑
j∈J

wcji≤1,∀c ∈ C, i ∈ I, (6)

yckj≤xj ,∀c ∈ C, k ∈ K, j ∈ J, (7)
wcji≤xj ,∀c ∈ C, j ∈ J, i ∈ I, (8)
pcj = (p1, p2, ..., pi)≥0, (9)
yckj , wcji , xj ∈ {0, 1} . (10)

The decision variables used were defined as xj with the
following descriptions. If the LFH was built in district j, then
xj = 1 and xj = 0 if otherwise, for all j ∈ J . The LFH
capacity for products c in district j (tons/day) is denoted by
pcj . Next, assume that yckj = 1 if the whole product c in the
district producer k was sent to LFH in the district j and yckj
= 0 if otherwise, for all c ∈ C, k ∈ K, j ∈ J . Also, suppose
that wcji = 1 if the entire product demand LFH fulfilled c
in the district i in the district j and wcji = 0 if otherwise,
for all c ∈ C, j ∈ J, i ∈ I .

The complete optimization model of formulation (1) to
(10) is a multi-objective optimization problem, with the
first and second objective functions aimed to maximize the
fulfilled demand and minimize logistics costs, respectively.

The model had eight constraints, and the first two ensured
that the LFH capacity for product c was determined based
on production demand. The third constraint prevented the
production of product c sent from producers in district k to
LFH in district j from exceeding the capacity. The fourth
constraint ensured that the fulfillment of demand by LFH
did not exceed the demand requested by district i. The fifth
constraint guaranteed that no product c was sent to the red
zone if the LFH was not built in the area. The sixth constraint
guaranteed no demand was fulfilled, assuming the LFH was
not built in the zone, while the last two constraints defined
each decision variable.

B. Robust Optimization
The theory of Robust Optimization is discussed. Refers

to Bental and Nemirovski [43] and Gorissen et al. [44], let
c ∈ Rn, b ∈ Rm and A ∈ Rm × Rn are the parameters of
the linear programming problems as formulated ini (11).

min
x

{
cTx : Ax ≤ b

}
(11)

In case the data (c, A, b) are uncertain but are known in an
uncertain set U , a version of uncertain (11) becomes a focus
problem of Robust Optimization. Noted that the (11) is a
family of problems, one for each realization (c, A, b) ∈ U :

min
x∈Rn

{
cTx : Ax ≤ b

}
(c,A,b)∈U (12)

Refers to Gorissen et al. [44], the decision environment is
assuemed such that:

1) When the value of the actual parameters are taken
as the here-and-now-decision. Thus the entire decision
vector x is to be fixed before knowing

2) In uncertain LP (12), note that the variables
(x1, . . . , xn) is needed to be determined as the here-
and-now-decision. Some uncertain parameters become
known (”wait and see” decision) after the rest may be
determined.

3) The data (c, A, b) is represented by a compact uncer-
tainty set U .

4) The hard constraint is the inequality constraints Ax ≤
b. This means that all constraints must be satisfied
whenever the uncertain parameters reside in U .

Next, with all the above assumptions, the uncertain family
of the problems (12) is converted into the following single
deterministic problem using a robust optimization approach.
The result is called robust counterpart (RC) as in (13).

π∗ = min
x∈Rn

{
cTx : Ax ≤ b, (c, A, b) ∈ U

}
(13)

Whenfor all realizations (c, A, b) ∈ U , x∗ is feasible, thus
vector x∗ is called a robust optimal solution. The π∗ is
claimed to be the best value of the objective function.

Problem (13) can be written equivalently as a problem with
a linear specific objective function t and uncertain constraints
as follows in (14).

min t

s.t cTx− t ≤ 0, (14)
aTi x− bi ≤ 0, i = 1, . . . ,m,

x ≥ 0

∀(c, A, b) ∈ U.

From Gorissen et al. [44], the first way of handling robust
linear optimization (RLO) is making the objective cTx as a
certain function. There is no uncertainty in the objective, and
the uncertainty appears in a constraint, as can be seen in (14).
Secondly, make sure that the right-hand side b is specific. In
case b is uncertain, define a new variable xn+1v = 1 and
convert the problem into (15).

min t

s.t cTx− t ≤ 0,

aTi x− bixn+1 ≤ 0,

xn+1 = 1, i = . . . ,m, (15)
∀(A, b) ∈ U.

Third, to achieve robustness concerning U , the uncertainty
set U can be formulated constraint-wise and must be a closed
and convex set. This means that the convex hull of U , i.e.,
the smallest convex set that includes U , can replace the
uncertainty set U .

To reformulate the uncertain problem into a tractable
optimization problem, thus finding a suitable U becomes
a challenge. Each constraint that involves uncertain data
is reformulated since the robustness based on U can be
formulated constraint-wise. Refers to Gorissen et al. [44],
see the following constraint

aTx− b ≤ 0,∀(a, b) ∈ U, (16)
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where a is a vector in Rn and b is the representatives of
ai and bi, also Ui represents U . Thus, assuming that a, b,
and U are uncertain parameters, reformulate the parameters
in factor ζ ∈ RL. Namely,

a = ā+Qζ, b = b̄+ qT ζ (17)

where ā ∈ Rn, Q ∈ Rn×L, b̄ ∈ R and q ∈ RL and

U =


 a = ā+Qζ

b = b̄+ qT ζ

 : ζ ∈ Z

 (18)

where Z ⊂ RL is the uncertainty set for the primitive factors.
The fixed vector ā and the scalar b̄ will be called nominal.
Thus (16) can be written as (19) as follows.

(āTx− b̄) + (QTx− q)T ζ ≤ 0,∀ζ ∈ Z. (19)

In the case of the use of a polyhedral uncertainty set,
formulation (16) can be written in the system of linear
inequalities as in (20).

(ā+ Pζ)Tx ≤ b,∀ζ : d−Dζ ≥ 0. (20)

This (20) is equivalent with

āTx+ max
ζ : d−Dζ≥0

(PTx)ζ ≤ b. (21)

For this formulation, the robust counterpart formulation can
be obtained by defining its dual formulation as follows. The
primal problem (22)

max
{

(PTx)ζ : d−Dζ ≥ 0
}

(22)

is equivalent to its dual (23).

min
{
dT y : DT y = PTx, y ≥ 0

}
. (23)

Hence x satisfies (21) if and only if x satisfy

āTx+ min
y

{
dT y : DT y = PTx, y ≥ 0

}
≤ b. (24)

If a feasible y satisfy this constraint, i.e., that satisfies DT y =
PTx, y ≥ 0 then the minimum over y certainly satifsfy the
constraint. Further, the minimum can be deleted. This means
that x satisfies (21) if and only if there exists a y such that
(x, y) satisfies

āTx+ dT y ≤ b,DT y = PTx, y ≥ 0. (25)

Since it is clear that (25) is a system of linear (in) equalities,
then it can be concluded that result is very tractable.

C. Adjustable robust counterpart (ARC) optimization

Yanıkoğlu et al. [45], introduced a special method for
handling adjustable integer variables in the optimization
problem of ARC. The method starts from the general RC
problem, which was stated as follows.

maxx,y,z c(x, y, z),

s.t A(ζ)x+B(ζ)y + C(ζ)z≤q, (26)
∀ζ ∈ Z.

with x ∈ R and y ∈ Zn2 representing the here-and-now
variables, while z ∈ Zn3 denotes a wait-and-see variable,
A (ζ) , B (ζ) served as indeterminate the here-and-now vari-
ables coefficient matrices. However, the integer wait-and-see

variable z had an indeterminate coefficient matrix C (ζ),
enabling the method to address the problem of uncertainty in
the wait-and-see integer variable coefficients. For simplicity,
it was assumed that the indeterminate coefficient matrix was
linear in ζ. Additionally, without omitting generalization,
c(x, y, z) was assumed to be a linearly indeterminate ob-
jective function.

To model ARC with integer variables, the set of uncer-
tainties Z was initially divided into many m disjoint subsets
(Zi, i = 1, 2, 3, ...,m) as stated in (27).

Z =
⋃
i=1m

Zi. (27)

An additional integer variable zi ∈ Zn3(i = 1, . . . ,m)
which models the decision in Zi was introduced. Next,
the indeterminate constraint and objective function stated in
equation (27) were reformulated for each zi and the set of
uncertainty Zi as stated in (28).

maxx,y,zi,t t,

s.t c(x, y, zi)≥t,
A(ζ)x+B(ζ)y + C(ζ)zi≤q, (28)
∀ζ ∈ Zi,∀i = 1, . . . ,m.

The integer ARC formulation (28) was more flexible than the
non-adjustable (26) in selecting integer variable values. The
ARC integer (28) had a special decision zi for each subset
Zi. Therefore, the integer ARC formulation at (28) produced
robust optimal results, which were as effective as the regular
ARC formulation at (26).

D. Benders Decomposition Approach (BDA)

The BDA is a mathematical method aimed at partitioning
or dividing a problem into linear and nonlinear parts, thereby
simplifying the process. The initial problem P (x, y) stated
in (29) must be considered.

min cTx+ f (y) ,

s.t Ax + F (y) = b, (29)
x ≥ 0, y ∈ Y,

where A ∈ Rm×n, x, c ∈ Rn, b ∈ Rm, y ∈ Y ⊂ Rp, in
this case, f(y) and F (y) are nonlinear, and Y representing
a discrete or continuous range. Based on the studies by
Bisschop [12], the steps for applying the BDA are as follows.

1) First, define a feasible subproblem P (x|y) as a Linear
Programming problem in the terms of x with a fixed
value of y ∈ Y . Assume that ∀ y ∈ Y , there is
a finite optimal solution x for P (x|y), Thus (29) is
reformulated into a constraint equivalent to P1(x, y)
using equation (30):

min
y

{
f (y) + min

x

{
cTx : Ax = b− F (y) , x≥0

}}
,

(30)
where

min
x

{
cTx : Ax = b− F (y) , x≥0

}
(31)

is called an inner optimization problem that is assumed
to have an optimal solution x for every y ∈ Y .
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Input:
ε ≥ 0 relative convergence tolerance.
B := ∅ set with generated constraint.
UB = inf upper bound for P (x, y).

Solve M(y,m = 0).
Get LB = f(y) lower bound for P (x, y).

Solve S(u|y) to get u.
UB = min(UB, f(y) + [b− F (y)]T ).

Is UB < LB + ε|LB| ?

C = ([b− F (y)]Tu ≤ m) construct new constraint.
B = B + [C] add a new constraint to M(y,m).

Solve M(y,m).
Then get a new lower bound for P (x, y)

LB = f(y) +m.

STOP

Yes

No

Fig. 1: Benders decomposition algorithm flowchart [12]

2) Second, for the inner optimization, find a dual problem
formulation. Thus, formulation (29)can be rewritten as

min
y

{
f (y) + max

u
{(b− F (y))

T
u : ATu≤c}

}
.

(32)
In the inner optimization problem (32), the constraints
depend on u and free from y . Using (32), the optimal
solution obtained is finite because x in formulation
(31) had an optimal solution x for every y ∈ Y . This
implied that the optimal solution was at the extreme
point u ∈ U . Formulation (32) was rewritten as follows

min
y

{
f (y) + max

u
(b− F (y))

T
u
}
. (33)

3) Third, present the Full Master Problem (33) into a
simple minimization issue as follows :

min f (y) +m,

s.t (b− F (y))
T
u≤m,u ∈ U, (34)

y ∈ Y.

Next, the Relaxed Master Problem M(y,m) of (34)
becomes (35) where B is an empty set and m is
initialized as 0.

min f (y) +m,

s.t (b− F (y))
T
u≤m,u ∈ B, (35)

y ∈ Y.

Benders subproblem refers to a problem that solves an u with
a fixed value y ∈ Y , essentially considered a maximization
problem.

S (u |y ) = max
{

(b− F (y))
T
u : ATu≤c

}
, (36)

where u ∈ R,S(u|y) has a finite optimal solution. The
algorithm of BDA can be seen in Figure 1.

E. Lexicographic Method for Multiobjective Optimization

Refers to Rao in [46], a multi-objective optimization
problem is defined as follows. Find x ∈ Rn which minimized
f1(x), . . . , fk(x) subject to gj(x) ≤ 0, j = 1, . . . ,m, where
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k is the number of objective functions to be minimized. The
functions fi(x) and gj(x) can be nonlinear. According to
Rao [46], the Lexicographic Method is one of the methods to
solve multi-objective optimization problems. In this method,
the objectives are ranked in order of importance. The priority
scale for the minimization objective function was denoted by
additional indexes i and l, with l = (i− 1) .

min fi(x),

s.t. gj(x)≤0, j = 1, 2, 3, . . . ,m, (37)
fl(x) = f∗l , l = 1, 2, 3, . . . , (i− 1).

The optimal solution calculation process is done by sequen-
tially minimizing the objective functions, starting from the
most important and progressing according to the number
and level of importance. The iterative approach continued
until the optimum solution x was obtained. Multi-objective
optimization problems can be effectively resolved using the
Lexicographic Method. Rao [46] stated that this method
sorts objective functions based on the interests or priorities
determined by several studies.

III. RESULTS

A. ARC Optimization Model Using Polyhedral Uncertainty
Sets for Supply Chain Problems

The section focused on modeling ARC and the numerical
experiments addressing supply chain problems. It included
thoroughly explaining the model, using the BDA on the
acquired data, and the calculation process performed using
RStudio software. The general formulations of the ARC
Optimization model were analyzed using polyhedral uncer-
tainty sets and the BDA to address supply chain problems.
Additionally, the data for numerical experimentation was
reviewed using RStudio software.

The first step entailed determining the uncertainty pa-
rameter assumptions and adjustable decision variables to
formulate the ARC optimization model using the polyhedral
uncertainty set and referring to models (1) to (10), the study
focused on the sixth and seventh constraint functions.

There are two parameters containing uncertainty that
were assumed to be, i.e.,

1) The product selling price c in district i (Rp/tons), vci .
2) The yckj is considered as an adjustable decision vari-

able representing wait-and-see variables.

Thus, the discrete values, xj , wcji , pcj is considered as the
non-adjustable variable denoting here-and-now.

Next, assumed that

vci = (v1, v2, ..., vi) ∈ U1, (38)

and

yckj = (y1, y2, ..., yi) ∈ U2 (39)

with U1, U2 ∈ U . Thus,

vci(ζ1) = v̄ci + Pciζ1, (40)
yckj (ζ2) = ȳckj +Qckj ζ2, (41)

where

Pci = (P1, P2, ..., Pi) ∈ Rn×L1 , (42)

ζ1 =
(
ζ
(1)
1 , ζ

(2)
1 , ..., ζ

(i)
1

)
∈ RL1 , (43)

ȳckj = (ȳ1, ȳ2, ..., ȳi, ) ∈ Rm (44)
Qckj = (Q1, Q2, ..., Qi) ∈ Rm×L2 , (45)
v̄ci = (v̄1, v̄2, ..., v̄i, ) ∈ Rn, (46)

ζ2 =
(
ζ
(1)
2 , ζ

(2)
2 , ..., ζ

(i)
2

)
∈ RL2 . (47)

Parameters v̄ci and ȳckj denoted the nominal value vector,
while Pci , Qckj depicted the confounding matrix, and ζ1, ζ2
represented a primitive uncertainty vector. Due to the uncer-
tainty in the objective function and fundamental assumptions
related to the general model of the robust optimization
problem, an uncertain model formulation was obtained and
stated as follows.

max t,

min

κ∑
j∈J

xj + q
∑
c∈C

∑
j∈J

pcj

 ,

s.t (ȳckj +Qckj ζ2)≤xj ,∀c ∈ C, k ∈ K, j ∈ J,
wcji≤xj ,∀c ∈ C, j ∈ J, i ∈ I,∑
c∈C

∑
i∈I

∑
j∈J

(v̄ci + Pciζ1)wcji≤t, (48)

ζ1 ∈ Z1; ζ2 ∈ Z2;Z1, Z2 ∈ Z,
pcj = (p1, p2, ..., pi)≥0,

yckj , wcji , xj ∈ {0, 1} ,
t unrestricted.

The next step was to formulate the ARC model by applying
the polyhedral uncertainty set, defined as follows:

Z1 = ζ1 : {b−Bζ1≥0}, (49)
Z2 = ζ2 : {d−Dζ2≥0}. (50)

Based on the formulation of the indeterminate model in (48),
two constraint functions contained uncertainty vectors ζ1 and
ζ2. The steps for determining the ARC formulation with
the polyhedral uncertainty set for the first constraint are as
follows.

(ȳckj +Qckj ζ2)≤xj ,∀c ∈ C, k ∈ K, j ∈ J (51)

which is equivalent to (52).

(ȳckj +Qckj ζ2) ≡ ȳ +Qζ2

≡ ȳ + max
ζ2:{d−Dζ2≥0}

Qζ2 (52)

≡ ȳ + min
ρ
{dT ρ : DT ρ = Q, ρ≥0}

≡ ȳ + dT ρ≤x,DT ρ = Q, ρ≥0

with ρ denoting a dual variable. The final result (52) is
converted to the following sigma form.

ȳckj +
∑
h∈H

dhρh≤xj ,∀c ∈ C, k ∈ K, j ∈ J,∑
z∈Z

Dzhρh = Qzckj ,∀c ∈ C, k ∈ K, j ∈ J, z = 1, . . .L2 ,

ρh = (ρ1, . . . , ρh)≥0,∀h ∈ H, (53)
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which is a substitute for the first constraint. Similarly, the
ARC formulation and the polyhedral uncertainty set were
determined for the third constraint of the uncertain model
(48), which were stated as follows∑

c∈C

∑
i∈I

∑
j∈J

(v̄ci + Pciζ1)wcji≤t, (54)

is equivalent to

(v̄ + Pζ1)Tw = v̄Tw + (Pζ1)Tw

= v̄Tw + max
ζ1:{b−Bζ1≥0}

(PTw)T ζ1

= v̄Tw + min
ε
{bT ε : BT ε = PTw, ε≥0}

≤ t. (55)

This implies that

v̄Tw + bT ε≤t, (56)
BT ε = PTw, (57)
ε≥0 (58)

with ε denoting the dual variable. The final result (55) was
converted to sigma form as stated in (59).∑

c∈C

∑
i∈I

∑
j∈J

v̄ciwcji +
∑
y∈Y

byεy≤t,∑
y∈Y

Bzyεy =
∑
c∈C

∑
i∈I

∑
j∈J

Pzjwcji ,∀z = 1, . . . ,L1 ,

εy = (ε1, . . . , εy)≥0,∀y ∈ Y. (59)

which is a substitute for the third constraint, resulting in
the overall formulation of the ARC supply chain model
with the polyhedral uncertainty set obtained, as stated in the
optimization model (60).

max t,

min

κ∑
j∈J

xj + q
∑
c∈C

∑
j∈J

pcj

 ,

s.t ȳckj +
∑
h∈H

dhρh≤xj ,∀c ∈ C, k ∈ K, j ∈ J,∑
z∈Z

Dzhρh = Qzckj ,

∀c ∈ C, k ∈ K, j ∈ J, z = 1, . . .L2 ,

wcji≤xj ,∀c ∈ C, j ∈ J, i ∈ I,∑
c∈C

∑
i∈I

∑
j∈J

v̄ciwcji +
∑
y∈Y

byεy≤t, (60)∑
y∈Y

Bzyεy =
∑
c∈C

∑
i∈I

∑
j∈J

Pzjwcji ,∀z = 1, . . . ,L1 ,

pcj = (p1, p2, ..., pi)≥0, ρh = (ρ1, . . . , ρh)≥0,

εy = (ε1, . . . , εy)≥0, Qzckj = (Q1, . . . , Qi)≥0,

yckj , wcji , xj ∈ {0, 1} ,
t unrestricted.

The resulting ARC Optimization Model Using Polyhedral
Uncertainty Sets for Supply Chain Problems is the opti-
mization model (60). This model is obtained by assuming
the data uncertainties lie in a polyhedral uncertainty set.
Thus, the robustness is guaranteed since the ARC is obtained
as a mixed linear programming problem. The existence of
discrete variables is handled using BDA.

B. BDA to the ARC Optimization Model Using Polyhedral
Uncertainty Sets for Supply Chain Problems

Referring to the model as stated in formulation (60),
the existence of discrete and continuous decision variables
implied that BDA was required. As mentioned in Section
2.4, using the Lexicographic Method was essential for han-
dling the multi-objective function. This entailed performing
calculations on the model sequentially, according to the
most crucial objective function. The model in formulation
(60) comprised two types of objective functions: maximiza-
tion and minimization. The maximization objective function
was considered more important than the minimization type.
Therefore, the BDA was applied twice for each function.

1) BDA for the first objective function: In the initial
application of the BDA, the objective function used is the
maximization of t . Referring to the model in formula-
tion (61), there are three discrete-valued decision variables,
namely yckj , wcji , and xj assumed to be v1. Meanwhile, four
continuous value decision variables, namely ρh, εy, Qzckj ,
and t, were assumed to be v2. Thus, we obtain the following
results.

i. Relaxed Master Problem M(v1,m = 0) is a separate
model that solely contained decision variables v1, ob-
tained as follows

max 0

s.t. wcji≤xj ,∀c ∈ C, j ∈ J, i ∈ I,
yckj , wcji , xj ∈ {0, 1} . (61)

ii. Inner Optimization Problem P (v2, v1) is a separate
model containing decision variables v2. Assuming the
decision variable v1 = 1, the formulation obtained was
as follows.

max t,

s.t
∑
h∈H

dhρh≤0,∑
h∈H

Dzhρh −Qz = 0,∀z = 1, . . .L2 ,∑
y∈Y

byεy − t≤
∑
c∈C

∑
i∈I

v̄ci , (62)∑
y∈Y

Bzyεy =
∑
y∈Y

Pzy ,∀z = 1, . . . ,L1 ,

ρh = (ρ1, . . . , ρh)≥0,

εy = (ε1, . . . , εy)≥0,

Qz = (Q1, . . . , Qz)≥0,

t unrestricted.

iii. Dual Subproblem S(α, β, γ, θ|v1) (first decomposition
result) is equivalent to the dual result P (v2, v1) in (62).
Since the model in formulation (62) had four decision
variables, it defined four dual variables, namely α, β, γ,
and θ. to each constraint sequentially. The formulation
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S(α, β, γ, θ|v1) was obtained as follows

min
∑
j∈J

∑
i∈I

v̄iγji +
∑
j∈J

Pzj θj ,

s.t.
∑
h∈H

dhαh +
∑
h∈H

Dzhβh≤0,∀z = 1, . . . ,L2 ,∑
y∈Y

byγy +
∑
y∈Y

Bzyθy≤0,∀z = 1, . . . ,L1 ,

βh = (β1, . . . , βh)≥0, (63)
αh = (α1, . . . , αh)≤0,

γji = (γ1, . . . , γi)≤0,

γy = (γ1, . . . , γy)≤0,

θj , θy unrestricted.

iv. Benders’ Cut formulated as an objective function con-
straint on S(α, β, γ, θ|v1) by m, was introduced as
a new constraint function added to M(v1,m = 0),
expressed as follows.

∑
c∈C

∑
i∈I

v̄ciγci +
∑
j∈J

Pzj θzj≤m,∀z = 1, . . . ,L1 . (64)

v. Full Master Problem M(v1,m)(second decomposition
result) was obtained by adding the value of m on the
objective function M(v1,m = 0), which is stated as
follows.

maxm,

s.t. wcji≤xj ,∀c ∈ C, j ∈ J, i ∈ I,
wcji , xj ∈ {0, 1} . (65)

2) BDA for the second objective function: : In the second
application of the BDA, the objective function used was
minimization

κ∑
j∈J

xj + q
∑
c∈C

∑
j∈J

pcj

 . (66)

Referring to the model in formulation (59), three discrete-
valued decision variables, namely yckj , wcji , and xj were as-
sumed as v3. While five continuous value decision variables,
namely pcj , ρh, εy, Qzckj , and t represented v4. The same
method was used to obtain the formulation of the Relaxed
Master Problem or M(v3,m = 0), which was stated as
follows.

min κ
∑
j∈J

xj ,

s.t wcji≤xj ,∀c ∈ C, j ∈ J, i ∈ I, (67)
wcji , xj ∈ {0, 1} ,

Inner Optimization Problem formulation P (v4, v3), is stated
by (68).

min q
∑
c∈C

∑
j∈J

pcj ,

s.t.
∑
h∈H

dhρh≤0,∑
h∈H

Dzhρh −Qz = 0,∀z = 1, . . . ,L2 ,∑
y∈Y

byεy − T ∗≤
∑
c∈C

∑
i∈I

v̄ci , (68)∑
y∈Y

Bzyεy =
∑
j∈J

Pzj ,∀z = 1, . . . ,L1 ,

pcj = (p1, . . . , pi)≥0,

ρh = (ρ1, . . . , ρh)≥0,

εy = (ε1, . . . , εy)≥0,

Qzckj = (Q1, . . . , Qi)≥0,

where T ∗ is an optimal value of the first objective function
t.

Dual subproblem formulation S(δ, σ, µ, λ|v3) (first decom-
position result) was obtained using (69).

min
∑
j∈J

∑
i∈I

v̄iµji +
∑
j∈J

Pjλj , (69)

s.t.
∑
h∈H

dhδh +
∑
h∈H

Dzhσh≤0,∀z = 1, 2, 3, ...,L2 ,∑
y∈Y

byµy +
∑
y∈Y

Bzyλy≤0,∀z = 1, 2, 3, ...,L1 ,

σh = (σ1, σ2, ..., σh)≥0,

δh = (δ1, δ2, ..., δh)≤0,

µji , µy, λy, λj unrestricted.

Benders cut formulation was stated in (70).∑
c∈C

∑
i∈I

v̄ciµci +
∑
j∈J

Pzjλzj≤m2,∀z = 1, 2, 3, ...,L1 , (70)

Complete Master Problem formulation M(v3,m) (second
decomposition result) was stated in (71).

min κ
∑
j∈J

xj +m2,

s.t. wcji≤xj ,∀c ∈ C, j ∈ J, i ∈ I, (71)
wcji , xj ∈ {0, 1} .

The algorithm for solving the optimization model obtained
with the BDA was explained in the numerical experiments
section using the RStudio software.

C. Research Data and Numerical Experiment

The numerical experiments conducted in this study used
secondary data obtained from various sources in 2022. The
study specifically focused on districts in the northern part of
Bandung City, including Andir, Bandung Wetan, Cibeuny-
ing Kaler, Cibeunying Kidul, Cicendo, Cidadap, Coblong,
Sukajadi, Sukasari, and Sumur Bandung. These districts
were selected as the objects for numerical experiments due
to their significance in the supply chain. Meanwhile, the
northern city of Bandung was chosen because it had the
largest wholesale market, Andir Market, which served as a
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center for sugar suppliers and sellers. Based on the supply
chain optimization model (59), the ten selected districts
acted as producers, consumers, and potential zones for LFH
construction. Based on the index i, j, k = {1, 2, 3, ..., 10},
the sequence symbolized these. Table II shows population
data for the ten districts.

The agricultural processed products used were solely
granulated sugar, rendering the index c irrelevant. Total
consumer demand for commodities was calculated by multi-
plying the average consumption per capita multiplied by the
number of residents in each district. In the northern city of
Bandung, the predicted average consumption of granulated
sugar per capita in 2022 is 13.6 kg/capita. Moreover, the
production capacity of granulated sugar exceeded the total
demand by 46%, with a maximum distribution capacity of
20 tons per line. Data on consumer demand and production
capacity for granulated sugar are shown in Table III.

TABLE II: Population Data by District in Bandung City in
2022 (Disdukcapil Bandung City, 2022)

Index District
Total Population

(people/year)

1 Andir 99,288
2 Bandung Wetan 28,686
3 Cibeunying Kaler 70,261
4 Cibeunying Kidul 112,583
5 Cicendo 95,826
6 Cidadap 53,992
7 Coblong 3,947
8 Sukajadi 102,352
9 Sukasari 77,384
10 Sumur Bandung 37,469

TABLE III: Consumer Demand Data and Sugar Production
Capacity

Index District
Demand Capacity

(tons/year) (tons/year)

1 Andir 1,350 1,971
2 Bandung Wetan 390 570
3 Cibeunying Kaler 956 1,395
4 Cibeunying Kidul 1.531 2,235
5 Cicendo 1,303 1,903
6 Cidadap 734 1,072
7 Coblong 54 78
8 Sukajadi 1,392 2,032
9 Sukasari 1,052 1,537

10 Sumur Bandung 510 744

The selling price of granulated sugar in each district was
assumed to be the same, approximately Rp. 12,833/kg or
equivalent to Rp.12,833,000/ton (for all districts) based on
PIHPS [47]. Additionally, the construction cost for LFH was
estimated to be Rp. 300,000,000 per building, while the
cost of implementing health protocols was approximately Rp.
200,000/ton.

As it is assumed that the product selling price c in district
i (Rp/tons), vci is uncertain, thus in Table IV and Figure 2,
the polyhedral of vci can be presented as the convex hulls
of the uncertain data of selling price of granulated sugar in
each district.

TABLE IV: Determination of uncertainty parameters of the
selling price of granulated sugar

Form in matrix:

Se
lli

ng
Pr

ic
e

of
Su

ga
r

Line equation
y − 0x = 12, 833, 000

y − 0x = 12, 833, 000

y − 0x = 12, 833, 000

y − 0x = 12, 833, 000

y − 0x = 12, 833, 000

y − 0x = 12, 833, 000

y − 0x = 12, 833, 000

y − 0x = 12, 833, 000

y − 0x = 12, 833, 000



1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0


[
y

x

]
≤



12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000



B =



1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0


, b =



12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000

12, 833, 000



Fig. 2: Convex hulls of vci.

In this case study, the granulated sugar data capacities
are assumed to lie within a polyhedral uncertainty set. The
data can be seen in Table III. Thus, the determination of the
convex hull for uncertain capacities of granulated sugar data
parameters is based on the optimization model (60). Table V
and Figure 3 present the polyhedral uncertainty set.

The next stage entailed conducting a numerical experiment
using the RStudio software as a calculating tool to obtain
the optimal solution. The BDA was applied following these
calculation steps:

1) Finding the optimal solution for the discrete-valued
decision variables yckj , wcji , and xj or the assumed v1
in formulation Relaxed Master Problem. The optimal
value of the objective function f(v1) was considered
the lower bound (LB) or the lower limit.

2) Finding the optimal solution for the dual variable
α, β, γ, and θ in Dual Subproblem formulation denoted
as S(α, β, γ, θ|v1).. The optimal value of the objective
function S(α, β, γ, θ|v1) is f(α, β, γ, θ) used to calcu-
late the upper bound (UB) or limit is determined in the
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Fig. 3: Convex hulls of yckj

TABLE V: Determination of uncertainty parameters capaci-
ties of granulated sugar data

Form in matrix:

D
ec

is
io

n
V

ar
ia

bl
e

O
pt

im
al

So
lu

tio
n
y
c
k
j Line equation

y − 1, 401x≤− 3, 372

y − 98.4x≤− 766.8

y + 222x≤1, 476
y + 793x≤8, 674
y + 495x≤5, 992
y + 45x≤2, 392

y − 80.3x≤1, 890.7



1 −1, 401
1 −98.4
1 222

1 793

1 495

1 45

1 80.3


[
y

x

]
≤



−3, 372
−766.8
1, 476

8, 674

5, 992

2, 392

1, 890.7



D =



1 −1, 401
1 −98.4
1 222

1 793

1 495

1 45

1 80.3


, d =



−3, 372
−766.8
1, 476

8, 674

5, 992

2, 392

1, 890.7



following formulation.

UB = min (UB =∞, f(v1) + f(α, β, γ, θ)) . (72)

3) Perform a limit test to check whether UB < LB +
ε|LB |,∀ε > 0, using the following criteria.

a) If True, then proceed to point four.
b) If False, then the Benders Cut constraint function

is added to the Full Master Problem formulation
or M(v1,m), returns to point one, and the itera-
tion continues.

4) Finding the optimal solution for the continuous-valued
decision variable ρh, εy, Qxckj and t was assumed as
v2 by substituting the optimal solution in point one
into the formulation of the Inner Optimization Problem
or P (v2, v1). İn addition, the iteration process was
stopped.

IV. DISCUSSION

The four points of BDA were applied to the constructed
model, as stated in formulations (60) to (64) and (65) to (70)
for the first and second objective functions using the same
method. In the case of granulated sugar, as stated in Section

TABLE VI: First Objective Function Optimal Solution

Stage Information Result

1

Optimal
x1, x2, ..., x10 = 1

solution
M(v1,m = 0) wcji = 0, ∀j, i = 10, c = 1

Lower bound
f(v1) = LB = 0

calculation

2

Optimal
f(α, β, γ, θ) = −405, 522, 800solution

S(α, β, γ, θ|v1)
Upper bound UB = min(∞,−405, 522, 800)
calculation = −405, 522, 800

3 Bound test
UB < LB + ε|LB |, ∀ε > 0

−405, 522, 800 < 0 + ε|0|, ∀ε > 0

(True)

4

t = 5, 531, 801

(demand maximization optimal result)
x1, x2, ..., x10 = 1

solution w121, w141, w151 = 1

P (v2, v1) w161, w171, w191 = 1

w112, w122, w132, w142 = 1

w162, w182, w192 = 1

w113, w133, w155 = 1

w163, w173, w183 = 1

w124, w134, w144 = 1

w154, w174, w194 = 1

III-C, Table V was used to determine the uncertain parameter
for generating the polyhedral uncertainty set. The resulting
calculation outputs were obtained in Table VI and Table
VII. The optimal solution for the first objective function is
presented in Table VI. Based on the Lexicographic Method
in Section 2.4, the calculation process continued using the
second objective function, delivering the final optimal solu-
tion in Table VII.

The final optimal solution of the ARC optimization model
with polyhedral uncertainty sets was shown in Table VII.
The result was obtained using the BDA for supply chain
problems. Therefore, it was concluded that to maximize
demand and minimize logistics costs, all districts in northern
Bandung were selected as the optimal location for building
LFH because the outputs were x1, x2, ..., x10 = 1. Further-
more, wcji = 1,∀j, i = 10, c = 1 the result showed that the
optimal distribution of granulated sugar across all LFH, each
with a capacity of 2,000 tons fulfilled the demand.

V. CONCLUSIONS

In conclusion, a new result is obtained as it is expected
how the ARC model is solved using the BDA in addressing
supply chain problems in sugar distribution. In this case, the
uncertain data is on the selling price, which is assumed to
be polyhedral uncertainty. The resulting model is a multi-
objective optimization model with two objective functions,
i.e., to maximize demand fulfillment and minimize logistics
costs. The case of numerical experiment on sugar distribution
was selected due to the significant influence as an agricultural
processed product. The local solution obtained from solving
the multi-objective integer ARC optimization model with a
guaranteed polyhedral uncertainty set was globally optimal,
based on the convexity analysis of the entire set of solutions,
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TABLE VII: Optimal Solution of Second Objective Function
(Final Solution)

Stage Information Result

1

Optimal
x1, x2, ..., x10 = 1

solution
M(v1,m = 0) wcji = 0, ∀j, i = 10, c = 1

Lower bound
f(v3) = LB ′ = 3× 109

calculation

2

Optimal
f(α, β, γ, θ) = 0solution

S(α, β, γ, θ|v1)
Upper bound

UB = min(UB =∞, 0) = 0
calculation

3 Bound test
UB′ < LB; +ε|LB ′|, ∀ε > 0

0 < 3× 109 + ε|3× 109|,
∀ε > 0(True)

4

f(v4, v3) = 4, 000, 000

Optimal (demand maximization optimal result)
solution x1, x2, ..., x10 = 1

P (v2, v1) wcji = 1, ∀j, i = 10, c = 1

pcj = 2, 000,∀j = 10, c = 1

objective, and constraint functions. Numerical experiments
were carried out for all districts in northern Bandung. The
final optimal solution for addressing supply chain problems
in sugar distribution is obtained.

For future research, solving the ARC with integer multi-
objective using machine learning is recommended (see Lee
et al. in [48]), also by using dynamic programming as
mentioned by Shapiro [49].
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[45] İ. Yanıkoğlu, B. L. Gorissen, and D. den Hertog, “A survey of
adjustable robust optimization,” European Journal of Operational
Research, vol. 277, no. 3, pp. 799–813, 2019.

[46] S. S. Rao, Engineering Optimization: Theory and Practice, 4th ed.
New Jersey: John Wiley & Sons, Inc, 2009.

[47] Priangan, “Portal informasi harga pangan (pihps),” 2022, accessed on
10 April 2022. [Online]. Available: https://hargapangan.id/

[48] I. G. Lee, Q. Zhang, S. W. Yoon, and D. Won,
“A mixed integer linear programming support vector
machine for cost-effective feature selection,” Knowledge-
based systems, vol. 203, p. 106145, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705120303944

[49] A. Shapiro, “A dynamic programming approach to adjustable robust
optimization,” Operations Research Letters, vol. 39, no. 2, pp. 83–87,
2011.

Engineering Letters

Volume 32, Issue 11, November 2024, Pages 2153-2164

 
______________________________________________________________________________________ 




