
Albertson(Alb) Energy of Product of Graphs
Jane Shonon Cutinha, Sabitha D’Souza, Swati Nayak*

Abstract—Albertson energy Albϵ(G) is defined as the sum
of the absolute values of the Albertson eigenvalues of G.
This paper computes the Albertson energy of various graph
products, relating it to graph properties like order, degree,
energy, or Albertson energy of the base graph. Our primary
focus is on deriving formulas for the Albertson energy of
the Cartesian, strong, and tensor products when one graph is
regular. We also compute the Albertson energy of join, corona
and hierarchical products of regular graphs. Furthermore, we
calculate the Albertson energy of p-shadow and p-duplicate
graphs.

Index Terms—Irregularity measure, Albertson energy, Graph
products, Shadow graph, Duplicate graph, Kronecker product.

I. INTRODUCTION

LET G = (V,E) be a simple, undirected graph. Vertices
u and v in G are said to be adjacent, if uv ∈ E and

denoted as u ∼ v. The degree of a vertex v, denoted as
deg(v) in G is the number of edges incident with v. A graph
G is said to be regular if all its vertices have same degree.
A point v is said to be the central vertex if eccentricity of
v is equal to radius of G and center of G is the set of all
central vertices.

Spectral graph theory revolves around the exploration of
the eigenvalues associated with matrix derived from graphs.
Let A be the adjacency matrix of a graph G with n vertices,
and let λ1, λ2, . . . , λn be the eigenvalues of A. The key
outcome of this exploration is the energy of graph [1] which
is defined as

E(G) =

n∑
i=1

|λi|.

A graph which is not regular is an irregular graph. It is
natural to inquire about the extent of irregularity exhibited by
an irregular graph. Hence numerous measures for quantifying
irregularity have been proposed by various authors. One
notable index introduced by M. O. Albertson in [2] is the
Albertson index, which is defined as

Alb(G) =
∑

uv∈E(G)

|deg(u)− deg(v)|.

It is also known as third Zagreb index. The corresponding
Albertson matrix [3] Alb(G) = [xij ] is an n × n matrix,
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where

xij =

{
|deg(vi)− deg(vj)|, if vi ∼ vj in G

0, otherwise.

The eigenvalues of Alb(G) are referred to as Albertson
eigenvalues of G. Consequently, Albertson energy of a graph
G is defined as the sum of the absolute value of Albertson
eigenvalues of G. Suppose ξ1 < ξ2 < . . . < ξr, r ≤ n
are distinct Albertson eigenvalues of G with multiplicities
m1,m2, . . .mr, then we shall write

spec(Alb(G)) =

(
ξ1 ξ2 · · · ξr

m1 m2 · · · mr

)
.

For more information on these topics, additional studies can
be found in [4]–[7]. Recent work in [8] has investigated
Albertson energy of splitting graphs and shadow graphs for
regular graphs. Building on these findings, we aim to extend
the understanding of Albertson energy of p-shadow and p-
duplicate graphs for any graph. Additionally, we examine the
behavior of Albertson energy for different graph products.

Section 2 establishes fundamental definitions and results
essential to prove subsequent results. In Section 3, we de-
velop a general formula for computing the Albertson energy
of Cartesian, strong, and tensor products when one of the
graphs involved is regular. Additionally, we calculate the
Albertson energy of the corona product and join of two
regular graphs, as well as the hierarchical product of G⊓Pm

and G ⊓ K1,m, where G is any graph, Pm is a path and
K1,m is a star graph. Finally, Section 4 focuses on calculating
Albertson energy of the p-shadow and p-duplicate graphs.

Let In, Jn and 0n denote the identity matrix, the zero
matrix, and the matrix with all entries equal to 1 of order n,
respectively.

II. PRELIMINARIES

Let G and H be any two graphs of order n and m
respectively. The corona product of G and H denoted by
G⊙H is a graph obtained by taking one copy of G and n
copies of H and joining the ith vertex of G to each vertex
in the ith copy of H , where i = 1, 2, . . . , n.

Definition 1: The join G▽H of two graphs G and H is a
graph obtained from joining each vertex of G to all vertices
of H .

The vertex set of Cartesian product, strong product, tensor
product and hierarchical product of G and H is V (G) ×
V (H).

Definition 2: The Cartesian product G□H of graphs
G and H is a graph in which any two vertices (u, u′) and
(v, v′) are adjacent if and only if either
(i) u = v in G and u′ ∼ v′ in H or

(ii) u′ = v′ in H and u ∼ v in G.
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Definition 3: The strong product G⊠H of graphs G and
H is the graph in which any two vertices (u, u′) and (v, v′)
are adjacent if and only if either
(i) u = v in G and u′ ∼ v′ in H or

(ii) u′ = v′ in H and u ∼ v in G or
(iii) u ∼ v in G and u′ ∼ v′ in H .

Definition 4: The tensor product G×H of graphs G and
H is a graph in which any two vertices (u, u′) and (v, v′)
are adjacent if and only if u ∼ v in G and u′ ∼ v′ in H .

Definition 5: [9] The hierarchical product G ⊓ H of
graphs G and H having a distinguished or root vertex labeled
0, in which any two vertices (u, u′) and (v, v′) are adjacent
if and only if either
(i) u = v and u′ ∼ v′ in H or

(ii) u′ = v′ = 0 and u ∼ v in G.
We notice that the Cartesian product, strong product and ten-
sor product exhibit commutativity, unlike the corona product
and hierarchical product.

Remark 1: By the definition of Cartesian, strong, tensor
and hierarchical product, it follows that, for any
(u, v) ∈ V (G1)× V (G2),

(i) deg(u, v) = deg(u) + deg(v) in G1□G2.
(ii) deg(u, v) = deg(u) + deg(v) + deg(u)deg(v)

in G1 ⊠G2.
(iii) deg(u, v) = deg(u)deg(v) in G1 ×G2.

(iv) deg(u, v) =

{
deg(u) + deg(v), if v is the root vertex

deg(v), otherwise.

Definition 6: The p-shadow graph Dp(G) of a connected
graph G is a graph constructed by creating p identical copies
of G and then joining each vertex u in Gi to every neighbour
of the corresponding vertex v in Gj for all 1 ≤ j ≤ p.

Remark 2: Let v1, v2, . . . , vn be the vertices of G and
Gi be the ith copy of G in Dp(G), whose vertices are
v
(i)
1 , v

(i)
2 , . . . , v

(i)
n such that each v

(i)
j corresponds to vertex

vj in G for 1 ≤ i ≤ p and 1 ≤ j ≤ n. We note that for each
1 ≤ i ≤ p and 1 ≤ j ≤ n, deg(v(i)j ) in Dp(G) = p deg(vj)
in G.

Definition 7: [10] Let V ′ be a set such that V ∩ V ′ = ∅,
|V | = |V ′| and f : V → V ′ be bijective map (we write f(a)
as a′). A duplicate graph of G is D(G) = (V1, E1), where
the vertex set V1 = V ∪ V ′ and the edge set E1 of D(G)
is defined as the edge ab is in E if and only if both ab′ and
a′b are in E1. In general, Dp(G) = Dp−1(D(G)).
For (n,m) graph G, p-duplicate graph contains 2pn vertices
and 2pm edges.

Theorem 1: [10] Let D(G) be the duplicate graph of G.
Then

(i) No two vertices of V and V ′ are adjacent.
(ii) For a ∈ V , deg(a) in G = deg(a) in D(G) = deg(a′)

in D(G).
Definition 8: [11] Let A and B be matrices of order m×n

and p × q respectively. The Kronecker product of A and
B, denoted by A⊗B, is the mp× nq block matrix [aijB].

Lemma 1: [11] Let A and B be symmetric matrices
of order m and n respectively. If α1, α2, . . . , αm and
µ1, µ2, . . . , µn are the eigenvalues of A and B respectively,
then the eigenvalues of A ⊗ B are given by αiµj , i =
1, 2, . . . ,m and j = 1, 2, . . . , n.

Lemma 2: [11] Let A and B be symmetric matrices
of order m and n respectively. If α1, α2, . . . , αm and
µ1, µ2, . . . , µn are the eigenvalues of A and B respectively,
then the eigenvalues of A⊗In+Im⊗B are given by αi+µj

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Lemma 3: If α1, α2, . . . , αn are the eigenvalues of a ma-

trix A, then the eigenvalues of In + A will be 1 + α1, 1 +
α2, . . . , 1 + αn.

Remark 3: If G is a regular graph, then Alb(G) is equal
to zero matrix.

III. ALBERTSON ENERGY OF PRODUCTS OF GRAPHS

Theorem 2: If G1 is a k-regular graph of order n and G2

is a r-regular graph of order m, then Albertson energy for
corona product of graph G1 and G2 is Albϵ(G1 ⊙ G2) =
2n(k +m− r − 1)

√
m.

Proof: Let the vertex set of G1 and G2 be V (G1) =
{v1, v2, . . . , vn} and V (G2) = {u1, u2, . . . , um} respec-
tively. Let G

(i)
2 denote the ith copy of G2 attached to ith

vertex of G1 with vertex set {u(i)
1 , u

(i)
2 , . . . , u

(i)
m }.

Let the vertices in Alb(G1 ⊙ G2) be listed as
v1, v2, . . . , vn, u

(1)
1 , u

(2)
1 , . . . , u

(n)
1 , u

(1)
2 , u

(2)
2 , . . . , u

(n)
2 , . . . ,

u
(1)
m , u

(2)
m , . . . , u

(n)
m .

Albertson matrix of G1 ⊙G2 can be written as follows:

Alb(G1 ⊙G2) =


Alb(G1) tIn · · · tIn

tIn Alb(G1) · · · Alb(G1)

...
...

. . .
...

tIn Alb(G1) · · · Alb(G1)


n(m+1)

,

where In is the identity matrix and t = k +m− r − 1.

Alb(G1 ⊙ G2) =


Alb(G1) 0n · · · 0n

0n Alb(G1) · · · Alb(G1)

...
...

. . .
...

0n Alb(G1) · · · Alb(G1)

 +


0n tIn · · · tIn

tIn 0n · · · 0n
...

...
. . .

...

tIn 0n · · · 0n

.

As G1 is regular, by Remark 3 we obtain
Alb(G1 ⊙ G2) = A(K1,m) ⊗ tIn, where K1,m is a star
graph.
We know that the spectra of K1,m is(
−
√
m 0

√
m

1 m− 1 1

)
.

Using Lemma 1, we get
Albϵ(G1 ⊙ G2) = tn(|

√
m| + | −

√
m|) = 2tn

√
m =

2n(k +m− r − 1)
√
m.

Remark 4: We observe that, for the graphs G1 and G2 as
in Theorem 2, above result can also be written as
Albϵ(G1 ⊙G2) = tnE(K1,m).

Theorem 3: If G1 is a k-regular graph of order n and G2

is a r-regular graph of order m, then Albertson energy for
join of graph G1 and G2 is Albϵ(G1▽G2) = 2|k+m− r−
n|
√
mn.
Proof: Albertson matrix of G1▽G2 can be written as
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follows:

Alb(G1▽G2) =

[
0n cJn×m

cJm×n 0m

]
n+m

,

where c = |k + m − r − n|. We observe that the rank of
the above block matrix is 2. Hence it has two non-zero
eigenvalues, say ξ1 and ξ2 such that

ξ1 + ξ2 = trace(Alb(G1▽G2)) = 0. (1)

We have

(Alb(G1▽G2))
2 =

[
mc2Jn 0n×m

0m×n nc2Jm

]
n+m

.

Then

trace((Alb(G1▽G2))
2) = ξ21 + ξ22 = 2c2mn. (2)

Solving Equations 1 and 2, we obtain ξ1 = c
√
mn and ξ2 =

−c
√
mn. Therefore,

Albϵ(G1▽G2) = 2c
√
mn = 2|k +m− r − n|

√
mn.

Theorem 4: Let G1 and G2 be graphs of order n and
m respectively. Then 0 ≤ Albϵ(G1□G2) ≤ mAlbϵ(G1) +
nAlbϵ(G2). Equality holds if either G1 or G2 are regular.

Proof: Let the vertex set of G1 be V (G1) =
{v1, v2, . . . , vn} and V (G2) = {u1, u2, . . . , um} respec-
tively. Let the vertices in Alb(G1□G2) be listed as
(v1, u1), (v1, u2), . . . , (v1, um), (v2, u1), (v2, u2), . . . ,
(v2, um), . . . , (vn, u1), (vn, u2), . . . , (vn, um).
Consider

Alb(G1□G2) =


X11 X12 · · · X1n

X21 X22 · · · X2n

...
...

. . .
...

Xn1 Xn2 . . . Xnn


nm

, (3)

where each Xij = [x
(ij)
kl ] is an m × m block matrix, 1 ≤

i, j ≤ n and 1 ≤ k, l ≤ m.
We claim that Alb(G1□G2) = (Alb(G1) ⊗ Im) + (In ⊗
Alb(G2)), which is equivalent to proving that

Xij =


Alb(G2), if i = j

|deg(vi)− deg(vj)|Im, if vi ∼ vj in G1

0m, otherwise.

Case 1: Consider the diagonal matrix Xii, 1 ≤ i ≤ n.
The corresponding row and column indices of Xii is
{(vi, u1), (vi, u2), . . . , (vi, um)}. For any 1 ≤ k, l ≤ m,

x
(ii)
kl =

{
|deg(vi, uk)− deg(vi, ul)|, if (vi, uk) ∼ (vi, ul)

0, otherwise.

By the definition of Cartesian product, we have (vi, uk) ∼
(vi, ul) in G1□G2 =⇒ uk ∼ ul in G2. Also from
Remark 1, x(ii)

kl = |deg(vi, uk)− deg(vi, ul)| = |deg(uk)−
deg(ul)|.
=⇒ Xii = [x

(ii)
kl ] = Alb(G2), 1 ≤ i ≤ n, 1 ≤ k, l ≤ m.

Case 2: Consider the non-diagonal matrix Xij ,
1 ≤ i, j ≤ n. The corresponding row and column
indices of Xij are {(vi, u1), (vi, u2), . . . , (vi, um)} and

{(vj , u1), (vj , u2), . . . , (vj , um)} respectively.
For any 1 ≤ k, l ≤ m,

x
(ij)
kl =

{
|deg(vi, uk)− deg(vj , ul)|, if (vi, uk) ∼ (vj , ul)

0, otherwise.

First, we shall consider the case where vi ∼ vj in G1.
By the definition of Cartesian product, we observe that
(vi, uk) ∼ (vj , ul) in G1□G2 =⇒ uk = ul in G2. By
Remark 1, x(ij)

kk = |deg(vi, uk)− deg(vj , uk)| = |deg(vi)−
deg(vj)|.
=⇒ Xij = [x

(ij)
kl ] = |deg(vi) − deg(vj)|Im, 1 ≤ i ≤

n, 1 ≤ k, l ≤ m, whenever vi ∼ vj .
Now we will consider the case where vi ≁ vj in G1.
We observe that if vi ≁ vj in G1, then (vi, uk) ≁ (vj , ul) in
G1□G2.
=⇒ Xij = [x

(ij)
kl ] = 0m, 1 ≤ i ≤ n, 1 ≤ k, l ≤ m,

whenever vi ≁ vj .
Therefore, it follows that Alb(G1□G2) = (Alb(G1)⊗Im)+
(In ⊗ Alb(G2)). Let ξi, 1 ≤ i ≤ n and ξ′j , 1 ≤ j ≤ m be
the Albertson eigenvalues of G1 and G2 respectively. Then
by Lemma 2, we obtain

Albϵ(G1□G2) =
n∑

i=1

m∑
j=1

|ξi + ξ′j |

≤
n∑

i=1

m|ξi|+
m∑
j=1

n|ξ′j |

= mAlbϵ(G1) + nAlbϵ(G2).

Albϵ(G1□G2) =
n∑

i=1

m∑
j=1

|ξi + ξ′j |

≥
∣∣∣ n∑
i=1

m∑
j=1

(ξi + ξ′j)
∣∣∣

=
∣∣∣m n∑

i=1

ξi + n
m∑
j=1

ξ′j

∣∣∣
= 0.

Therefore, 0 ≤ Albϵ(G1□G2) ≤ mAlbϵ(G1) + nAlbϵ(G2).
Equality follows from Remark 3 and Theorem 4.

Theorem 5: Let G be a graph of order n. Then
2Albϵ(G) ≤ Albϵ(G□G) ≤ 2nAlbϵ(G). Equality holds if
G is regular.

Proof: The proof is similar to that in Theorem 4. We
obtain Alb(G□G) = (Alb(G) ⊗ In) + (In ⊗ Alb(G)). Let
ξi, 1 ≤ i ≤ n be Albertson eigenvalues of G. Then by
Lemma 2, we obtain

Albϵ(G□G) =
n∑

i,j=1

|ξi + ξj |

≤ 2
n∑

i=1

|ξi|+
n∑

i,j=1
i̸=j

|ξi|+ |ξj |

= 2Albϵ(G) + 2(n− 1)Albϵ(G)

= 2nAlbϵ(G).

Albϵ(G□G) ≥ 2Albϵ(G) +
∣∣∣ n∑
i,j=1

(ξi + ξj)
∣∣∣

= 2Albϵ(G) + 2(n− 1)trace(Alb(G))

= 2Albϵ(G).

Engineering Letters

Volume 32, Issue 11, November 2024, Pages 2138-2144

 
______________________________________________________________________________________ 



Therefore, 2Albϵ(G) ≤ Albϵ(G□G) ≤ 2nAlbϵ(G).
Theorem 6: 4 Let G1 be r-regular graph of order n

and G2 be any graph of order m. Then Albertson energy
for Cartesian product of G1 and G2 is Albϵ(G1□G2) =
nAlbϵ(G2).

Proof: Let the vertex set of G1 and G2 be V (G1) =
{v1, v2, . . . , vn} and V (G2) = {u1, u2, . . . , um} respec-
tively. Let the vertices in Alb(G1□G2) be listed as
(v1, u1), (v1, u2), . . . , (v1, um), (v2, u1), (v2, u2), . . . ,
(v2, um), . . . , (vn, u1), (vn, u2), . . . , (vn, um).
Let Alb(G1□G2) be the matrix as in Equation 3.
Case 1: Consider the diagonal matrix Xii, 1 ≤ i ≤ n.
As in Theorem 4, we obtain Xii = [x

(ii)
kl ] = Alb(G2), 1 ≤

i ≤ n, 1 ≤ k, l ≤ m.
Case 2: Consider the non-diagonal matrix Xij , 1 ≤ i, j ≤ n.
The corresponding row and column indices of Xij are
{(vi, u1), (vi, u2), . . . , (vi, um)} and {(vj , u1), (vj , u2), . . . ,
(vj , um)} respectively.
For any 1 ≤ k, l ≤ m,

x
(ij)
kl =

{
|deg(vi, uk)− deg(vj , ul)|, if (vi, uk) ∼ (vj , ul)

0, otherwise.

By the definition of Cartesian product, we observe that
(vi, uk) ∼ (vj , ul) in G1□G2 =⇒ uk = ul in G2. This
implies x

(ij)
kl = |deg(vi, uk)− deg(vj , ul)| = 0.

Hence, Xij = [x
(ij)
kl ] = 0m×m, 1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m.

Therefore, we obtain

Alb(G1□G2) =


Alb(G2) 0m · · · 0m

0m Alb(G2) · · · 0m
...

...
. . .

...

0m 0m . . . Alb(G2)


nm

,

is a block diagonal matrix.
Hence, Albertson eigenvalues of the above matrix is

equal to the eigenvalues of each diagonal matrices. Suppose
ξ1 ≤ ξ2 ≤ . . . ≤ ξm are Albertson eigenvalues of G2. Then
Albertson energy of G1□G2 is

Albϵ(G1□G2) = n
m∑
i=1

|ξi| = nAlbϵ(G2).

Theorem 7: Let G1 be r-regular graph of order n and G2

be any graph of order m. Then Albertson energy for strong
product of G1 and G2 is

Albϵ(G1 ⊠ G2) = (r + 1)Albϵ(G2)
n∑

j=1

|(1 + λj)|, where

λ1, λ2, . . . , λn are eigenvalues of A(G1).
Proof: Let the vertex set of G1 and G2 be V (G1) =

{v1, v2, . . . , vn} and V (G2) = {u1, u2, . . . , um} respec-
tively. Let the vertices in Alb(G1 ⊠ G2) be listed as
(v1, u1), (v1, u2), . . . , (v1, um), (v2, u1), (v2, u2), . . . ,
(v2, um), . . . , (vn, u1), (vn, u2), . . . , (vn, um).
Let Alb(G1⊠G2) be the matrix as in Equation 3. We claim
that the Alb(G1 ⊠G2) = (In + A(G1))⊗ (r + 1)Alb(G2),
which is equivalent to proving that for any 1 ≤ i, j ≤ n,

Xij =


(r + 1)Alb(G2), if i = j

(r + 1)Alb(G2), if vi ∼ vj in G1

0m, otherwise.

Case 1: Consider the diagonal matrix Xii, 1 ≤ i ≤ n.
The corresponding row and column indices of Xii is
{(vi, u1), (vi, u2), . . . , (vi, um)}. For any 1 ≤ k, l ≤ m,

x
(ii)
kl =

{
|deg(vi, uk)− deg(vi, ul)|, if (vi, uk) ∼ (vi, ul)

0, otherwise.

By the definition of strong product, we observe that
(vi, uk) ∼ (vi, ul) in G1 ⊠ G2 implies that uk ∼ ul in G2.
Also by Remark 1,
x
(ii)
kl = |deg(vi, uk) − deg(vi, ul)| = (r + 1)|deg(uk) −

deg(ul)|.
=⇒ Xii = [x

(ii)
kl ] = (r + 1)Alb(G2), 1 ≤ i ≤ n, 1 ≤

k, l ≤ m.
Case 2: Consider the non-diagonal matrix Xij ,
1 ≤ i, j ≤ n. The corresponding row and column
indices of Xij are {(vi, u1), (vi, u2), . . . , (vi, um)} and
{(vj , u1), (vj , u2), . . . , (vj , um)} respectively.
For any 1 ≤ k, l ≤ m,

x
(ij)
kl =

{
|deg(vi, uk)− deg(vj , ul)|, if (vi, uk) ∼ (vj , ul)

0, otherwise.

First, we shall consider the case where vi ∼ vj in G1.
By the definition of strong product, we observe that
(vi, uk) ∼ (vj , ul) in G1 ⊠ G2 and vi ∼ vj in G1 =⇒
uk ∼ ul or uk = ul in G2. Hence, x(ij)

kl = |deg(vi, uk) −
deg(vj , ul)| = (r+1)|deg(uk)−deg(ul)| whenever uk ∼ ul

and x
(ij)
kk = 0.

=⇒ Xij = [x
(ij)
kl ] = (r + 1)Alb(G2), 1 ≤ i, j ≤ n,

1 ≤ k, l ≤ m, whenever vi ∼ vj .
Now we will consider the case where vi ≁ vj in G1.
We observe that if vi ≁ vj in G1, then (vi, uk) ≁ (vj , ul) in
G1 ⊠G2.
Hence, Xij = [x

(ij)
kl ] = 0m, 1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m,

whenever vi ≁ vj . Therefore, it follows that

Alb(G1 ⊠G2) = (In +A(G1))⊗ (r + 1)Alb(G2).

Let ξi, 1 ≤ i ≤ m and λj , 1 ≤ j ≤ n be the eigenvalues
of Alb(G2) and A(G1) respectively. By applying Lemma 1
and 3, we obtain

Albϵ(G1 ⊠G2) =
n∑

j=1

m∑
i=1

|(r + 1)ξi(1 + λj)|

= (r + 1)
n∑

j=1

m∑
i=1

|ξi||(1 + λj)|

= (r + 1)Albϵ(G2)
n∑

j=1

|(1 + λj)|.

Theorem 8: Let G1 be r-regular graph of order n and G2

be any graph of order m. Then Albertson energy for tensor
product of G1 and G2 is Albϵ(G1×G2) = rE(G1)Albϵ(G2).

Proof: Let the vertex set of G1 and G2 be V (G1) =
{v1, v2, . . . , vn} and V (G2) = {u1, u2, . . . , um} respec-
tively. Let the vertices in Alb(G1 × G2) be listed as
(v1, u1), (v1, u2), . . . , (v1, um), (v2, u1), (v2, u2), . . . ,
(v2, um), . . . , (vn, u1), (vn, u2), . . . , (vn, um).
Let Alb(G1×G2) be the matrix as in Equation 3. We claim
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that the Alb(G1 × G2) = rA(G1) ⊗ Alb(G2), which is
equivalent to proving that for any 1 ≤ i, j ≤ n,

Xij =


0m, if i = j

rAlb(G2), if vi ∼ vj in G1

0m, otherwise.

Case 1: Consider the diagonal matrix Xii, 1 ≤ i ≤ n.
The corresponding row and column indices of Xii is
{(vi, u1), (vi, u2), . . . , (vi, um)}.
We note that in G1×G2 (vi, uk) ≁ (vi, ul), for 1 ≤ k, l ≤ m,
since we are dealing with simple graphs.
=⇒ Xii = [x

(ii)
kl ] = 0m×m, 1 ≤ i ≤ n, 1 ≤ k, l ≤ m.

Case 2: Consider the non-diagonal matrix Xij , 1 ≤ i, j ≤ n.
The corresponding row and column indices of Xij are
{(vi, u1), (vi, u2), . . . , (vi, um)} and {(vj , u1), (vj , u2), . . . ,
(vj , um)} respectively.
For any 1 ≤ k, l ≤ m,

x
(ij)
kl =

{
|deg(vi, uk)− deg(vj , ul)|, if (vi, uk) ∼ (vj , ul)

0, otherwise.

Consider the case where vi ∼ vj in G1.
By the definition of tensor product, we observe that
(vi, uk) ∼ (vi, ul) in G1×G2 and vi ∼ vj in G1 =⇒ uk ∼
ul in G2. By Remark 1, x(ij)

kl = |deg(vi, uk)−deg(vj , ul)| =
r|deg(uk)− deg(ul)|.
=⇒ Xij = [x

(ij)
kl ] = rAlb(G2), 1 ≤ i, j ≤ n, 1 ≤ k, l ≤

m, whenever vi ∼ vj .
Now, consider the case where vi ≁ vj in G1.
This implies that (vi, uk) ≁ (vj , ul) in G1 ×G2.
=⇒ Xij = [x

(ij)
kl ] = 0m×m, 1 ≤ i, j ≤ n, 1 ≤ k, l ≤

m, whenever vi ≁ vj .
Let ξi, 1 ≤ i ≤ m and λj , 1 ≤ j ≤ n be the eigenvalues of
Alb(G2) and A(G1) respectively. From Lemma 1, Albertson
energy of G1 ×G2 is

Albϵ(G1 ×G2) =
n∑

j=1

m∑
i=1

|rξiλj |

= r
n∑

j=1

|λj |
m∑
i=1

|ξi|

= rE(G1)Albϵ(G2).

Theorem 9: Albertson energy of hierarchical product of a
r-regular graph G of order n and a path Pm with a pendent
vertex as the root is

Albϵ(G ⊓ Pm)

2n
√
r2 − 2r + 2, if m = 3

2nr, if m > 3.

Proof: Let the vertex set of G and Pm be
V (G) = {v1, v2, . . . , vn} and V (Pm) = {u1, u2, . . . , um}
respectively, where u1 and um are pendent vertices
and ui ∼ ui+1 for 1 ≤ i ≤ m − 1. Without loss
of generality, assume that u1 is the root vertex.
Let the vertices in Alb(G ⊓ Pm) be listed as
(v1, u1), (v2, u1), . . . , (vn, u1), (v1, u2), (v2, u2), . . . ,
(vn, u2), . . . , (v1, um), (v2, um), . . . , (vn, um).
Albertson matrix of G ⊓ Pm can be written as follows:

Alb(G⊓Pm) =



N (r − 1)In N · · · N N
(r − 1)In N N · · · N N

N N N · · · N N
...

...
...

. . .
...

...

N N N · · · N In

N N N · · · In N


nm

,

where N = Alb(G). As G is a regular graph, from Remark
3, we obtain Alb(G ⊓ Pm) = C ⊗ In, where

C =



0 (r − 1) 0 · · · 0 0

(r − 1) 0 0 · · · 0 0

0 0 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 1 0


m

.

For m > 3, the characteristic polynomial of C is det(αI −
C) = αm−4(α2 − 1)(α2 − (r − 1)2) and Spec(C) =(
−r + 1 −1 0 1 r − 1

1 1 m− 4 1 1

)
.

By using Lemma 1, we get

Albϵ(G ⊓ Pm) = |n(−r + 1)|+ | − n|+ |n|+ |n(r − 1)|
= 2nr.

For m = 3, we have C =

 0 r − 1 0

r − 1 0 1

0 1 0

.

Then the characteristic polynomial of C is
det(αI − C) = α(α2 − (r2 − 2r + 2)) and

Spec(C) =

(
−
√
r2 − 2r + 2 0

√
r2 − 2r + 2

1 1 1

)
.

From Lemma 1, we get

Albϵ(G ⊓ Pm) = |n
√
r2 − 2r + 2|+ | − n

√
r2 − 2r + 2|

= 2n
√

r2 − 2r + 2.

Remark 5: In the above theorem, for m = 2, we get

Alb(G⊓P2) = r

[
0n In

In 0n

]
. Therefore Albϵ(G⊓P2) = 2nr.

Theorem 10: Albertson energy of the hierarchical product
of a r-regular graph G of order n and a path Pm with an
odd value of m and the central vertex as the root is

Albϵ(G ⊓ Pm) =


2n

√
2(r + 1), if m = 3

2n(1 +
√
2r2 + 1), if m = 5.

2n(2 +
√
2r), if m > 5

Proof: Let the vertex set of G and Pm be
V (G) = {v1, v2, . . . , vn} and V (Pm) = {u1, u2, . . . , um}
respectively, where u1 and um are pendent vertices and
ui ∼ ui+1 for 1 ≤ i ≤ m− 1. Let um+1

2
be the root vertex

of Pm. Let the vertices in Alb(G⊓Pm) be listed as follows:
(v1, u1), (v2, u1), . . . , (vn, u1), (v1, u2), (v2, u2), . . . ,
(vn, u2), . . . , (v1, um), (v2, um), . . . , (vn, um).
Albertson matrix of G ⊓ Pm can be written as follows:
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Alb(G⊓Pm) =



N In N · · · N N N · · · N N

In N N · · · N N N · · · N N

N N N · · · N N N · · · N N

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

N N N · · · N rIn N · · · N N

N N N · · · rIn N rIn · · · N N

N N N · · · N rIn N · · · N N

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

N N N · · · N N N · · · N In

N N N · · · N N N · · · In N


nm

,

where N = Alb(G). As G is a regular graph, from Remark
3, we obtain Alb(G ⊓ Pm) = E ⊗ In, where

E =



0 1 0 · · · 0 0 0 · · · 0 0

1 0 0 · · · 0 0 0 · · · 0 0

0 0 0 · · · 0 0 0 · · · 0 0

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 · · · 0 r 0 · · · 0 0

0 0 0 · · · r 0 r · · · 0 0

0 0 0 · · · 0 r 0 · · · 0 0

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 · · · 0 0 0 · · · 0 1

0 0 0 · · · 0 0 0 · · · 1 0


m

.

For m > 5, the characteristic polynomial of E is
det(αI − E) = αm−6(α2 − 1)2(α2 − 2r2) and

Spec(E) =

(
−
√
2r −1 0 1

√
2r

1 2 m− 6 2 1

)
.

By using Lemma 1, we get

Albϵ(G ⊓ Pm) = |n
√
2r|+ 2| − n|+ 2|n|+ | − n

√
2r|

= 2n(2 +
√
2r).

For m = 3, we have E =

 0 r + 1 0

r + 1 0 r + 1

0 r + 1 0

.

The characteristic polynomial of E is
det(αI − E) = α(α2 − 2(r + 1)2) and

Spec(E) =

(
−
√
2(r + 1) 0

√
2(r + 1)

1 1 1

)
.

By using Lemma 1, we get

Albϵ(G ⊓ Pm) = |n
√
2(r + 1)|+ | − n

√
2(r + 1)|

= 2n
√
2(r + 1).

For m = 5, we have E =



0 1 0 0 0

1 0 r 0 0

0 r 0 r 0

0 0 r 0 1

0 0 r 1 0

 .

The characteristic polynomial of E is
det(αI − E) = α(α2 − 1)(α2 − 2r2 − 1) and

Spec(E) =

(
−
√
2r2 + 1 −1 0 1

√
2r2 + 1

1 1 1 1 1

)
.

By using Lemma 1, we get

Albϵ(G ⊓ Pm) = 2n(1 +
√

2r2 + 1).

Theorem 11: Albertson energy of hierarchical product of
a r-regular graph G of order n and a star graph K1,m−1 with

central vertex as the root is Albϵ(G⊓K1,m−1) = n(r+m−
2)E(K1,m−1).

Proof: Let the vertex set of G and K1,m−1 be V (G) =
{v1, v2, . . . , vn} and V (K1,m−1) = {u1, u2, . . . , um} re-
spectively, with u1 as the central vertex and hence the root
vertex. Let the vertices in Alb(G ⊓ K1,m−1) be listed as
(v1, u1), (v2, u1), . . . , (vn, u1), (v1, u2), (v2, u2), . . . ,
(vn, u2), . . . , (v1, um), (v2, um), . . . , (vn, um).
Albertson matrix of G ⊓ Pm can be written as follows:

Alb(G ⊓K1,m−1) =



N M M · · · M
M N N · · · N
M N N · · · N
...

...
...

. . .
...

M N N · · · N


nm

,

where N = Alb(G) and M = (r + m − 2)In. As G is a
regular graph, from Remark 3, we obtain
Alb(G ⊓K1,m−1) = A(K1,m−1)⊗ (r +m− 2)In.
The graph K1,m−1 has eigenvalues

√
m− 1, −

√
m− 1 and

0 with multiplicity 1, 1 and m−2 respectively. From Lemma
1, Albertson energy of G ⊓K1,m−1 is

Albϵ(G ⊓K1,m−1) = (r +m− 2)

m∑
i=1

2n
√
m− 1

= n(r +m− 2)E(K1,m−1).

Theorem 12: Albertson energy of the hierarchical product
of a r-regular graph G of order n and a star graph K1,m−1

with any pendent vertex as the root is Albϵ(G⊓K1,m−1) =
2n
√
(m− r − 2)2 + (m− 2)3.
Proof: Let the vertex set of G and K1,m−1 be V (G) =

{v1, v2, . . . , vn} and V (K1,m−1) = {u1, u2, . . . , um}
respectively, with u1 as the central vertex. Without
loss of generality, assume that u2 is the root vertex.
Let the vertices in Alb(G ⊓ K1,m−1) be listed as
(v1, u1), (v2, u1), . . . , (vn, u1), (v1, u2), (v2, u2), . . . ,
(vn, u2), . . . , (v1, um), (v2, um), . . . , (vn, um).
Albertson matrix of G ⊓K1,m−1 can be written as follows:
Albϵ(G ⊓K1,m−1) =

Alb(G) |m − r − 2|In (m − 2)In · · · (m − 2)In

|m − r − 2|In Alb(G) Alb(G) · · · Alb(G)

(m − 2)In Alb(G) Alb(G) · · · Alb(G)

(m − 2)In Alb(G) Alb(G) · · · Alb(G)

...
...

...
. . .

...

(m − 2)In Alb(G) Alb(G) · · · Alb(G)


nm

.

As G is a regular graph, from Remark 3, we obtain
Albϵ(G ⊓K1,m−1) = F ⊗ In, where

F =



0 |m − r − 2| (m − 2) · · · (m − 2)

|m − r − 2| 0 0 · · · 0

(m − 2) 0 0 · · · 0

(m − 2) 0 0 · · · 0

...
...

...
. . .

...

(m − 2) 0 0 · · · 0


m

.

We note that rank of F is 2. Thus F has two nonzero
eigenvalues say α1 and α2. Hence

α1 + α2 = trace(F ) = 0. (4)

F 2 =
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[
[(m − r − 2)2 + (m − 2)3]J1 01 01×m−2

01 (m − r − 2)2J1 cJ1×m−2

0m−2×1 cJm−2×1 (m − 2)2Jm−2

]
,

where c = (m− 2)|m− r − 2|.

trace(F 2) = α2
1 + α2

2 = 2|m− r − 2|2 + 2(m− 2)3 (5)

Solving Equations 4 and 5, we obtain
α1 =

√
|m− r − 2|2 + (m− 2)3

and α2 = −
√
|m− r − 2|2 + (m− 2)3.

By applying Lemma 1, we obtain
Albϵ(G ⊓K1,m−1) = 2n

√
(m− r − 2)2 + (m− 2)3.

IV. ALBERTSON ENERGY OF p-SHADOW AND
p-DUPLICATE GRAPHS

In this section, we consider graph G of order n.
Theorem 13: Albertson energy of the p-shadow graph

Dp(G) of G is Albϵ(Dp(G)) = p2Albϵ(G).
Proof: Albertson matrix of Dp(G) can be written as

Alb(Dp(G)) =


pAlb(G) pAlb(G) · · · pAlb(G)

pAlb(G) pAlb(G) · · · pAlb(G)

...
...

. . .
...

pAlb(G) pAlb(G) · · · pAlb(G)


pn

= Jp ⊗ pAlb(G).

Rank of the matrix Jp is 1. Hence Jp has exactly one non-
zero eigenvalue, which is equal to trace(Jp) = p.
Suppose ξ1 ≤ ξ2 ≤ . . . ≤ ξn are Albertson eigenvalues of
G. Then by using Lemma 1, we obtain

Albϵ(Dp(G)) =

n∑
i=1

|p2ξi| = p2
n∑

i=1

|ξi| = p2Albϵ(G).

Remark 6: By the Theorem 1, we observe that for a graph
G with n vertices, Albertson matrix of D(G) is

Alb(D(G)) =

[
0n Alb(G)

Alb(G) 0n

]
2n

Theorem 14: Albertson energy of the p-duplicate graph
Dp(G) of G is Albϵ(G) = 2pAlbϵ(G).

Proof: Albertson matrix of Dp(G) can be written as

Alb(Dp(G)) =


0n 0n · · · 0n Alb(G)

0n 0n · · · Alb(G) 0n

...
... . .

. ...
...

0n Alb(G) · · · 0n 0n

Alb(G) 0n · · · 0n 0n


2pn

= K ⊗Alb(G),

where K =



0 0 · · · 0 1

0 0 · · · 1 0

...
... . .

. ...
...

0 1 · · · 0 0

1 0 · · · 0 0


2p

.

The eigenvalues of K are 1 and -1, each with multiplicity
2p−1. Suppose ξ1 ≤ ξ2 ≤ . . . ≤ ξn are the Albertson
eigenvalues of G. Then by using Lemma 1, we obtain

Albϵ(Dp(G)) =
n∑

i=1

(2p−1|ξi|+ 2p−1| − ξi|) = 2pAlbϵ(G).
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