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Abstract—In  facility-based agricultural environments,
accurately identifying green tomatoes presents a significant
challenge for machine vision systems due to the color similarity
between green fruits and background branches and leaves as
well as the overlapping occlusion between fruits. To solve this
problem, this study constructs and optimizes the Attention Gate
(AG) module using Swin-Unet as the baseline model, so that the
model can focus on the features related to green tomatoes,
suppress irrelevant regions in the background, and effectively
enhance the representation of target features. Additionally, in
order to optimize the edge smoothing of green tomato
segmentation, this study further introduces a Atrous Spatial
Pyramid Pooling (ASPP) module, which significantly improves
the segmentation accuracy by expanding the feature sensing

field and enhancing the multi-scale feature extraction capability.

Experimental results on the specially constructed green tomato
dataset show that the model achieves 97.5%, 92.4% and 85.9%
for Pixel Accuracy (PA), Dice similarity coefficient (Dice) and
Intersection over Union (IOU), respectively. The new model
outperforms existing partial semantic segmentation models in
several key metrics, proving its effectiveness in complex facility
environments. This research not only addresses the technical
difficulties in recognizing green fruits, but also provides solid
technical support for the development and application of
intelligent agricultural equipment. The model can be applied to
segmentation and recognition of other types of fruits to meet the
accuracy and efficiency requirements of green fruit recognition
in smart agricultural equipment, which has a broad application
prospect.

Index Terms—Green
segmentation, ASPP, AG

tomatoes, Swin-Unet, Semantic

1. INTRODUCTION
Tomatoes are highly valued in agriculture due to their rich
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nutritional content. With the continuous expansion of planted
areas and production, the ease of transportation and storage
of green tomatoes further enhances their market appeal [1-2].
However, the cultivation and management of green tomatoes
face numerous challenges in the complex environment of
facility-based agriculture [3]. Among these challenges,
harvesting  is  particularly  time-consuming  and
labor-intensive, making the development of automatic
picking robots a focal point of interest. The primary task of
automatic picking involves accurately locating the fruits
using computer vision [4-6]. Traditional machine methods
struggle to recognize green fruits accurately due to their color
similarity with the background foliage and the overlapping
occlusion among fruits [7]. Therefore, the use of advanced
semantic segmentation techniques to accurately segment and
localize green tomatoes is of paramount importance. This
technique not only contributes to efficient agricultural
management and planning but also optimizes resource
allocation. For instance, water sources can be more precisely
targeted to tomato-growing areas, significantly reducing
water wastage. Similarly, fertilizer application can be
adjusted according to the distribution of tomatoes, effectively
minimizing fertilizer waste. In automated harvesting, robots
equipped with semantic segmentation capabilities can detect
and locate fruits, thereby reducing reliance on human labor
[8]. Thus, enhancing the visual system's segmentation
precision is paramount not only for the effective management
of green tomato cultivation but also as a pivotal element in
augmenting the efficacy of robotic fruit and vegetable
harvesters.

In recent years, image semantic segmentation has emerged
as a prominent focus in the field of deep learning. The
integration of deep learning-based image semantic
segmentation techniques with agricultural applications has
gradually evolved into a significant area of development [9].
Studies show that image semantic segmentation offers a
significant advantage in accurately segmenting fruit targets,
particularly when there is a pronounced color difference
between the fruit and the background. Héni [10] found that
apple target segmentation can be effectively achieved using
the U-Net model, especially when the color distinction of the
fruit is clear. The U-Net model demonstrates superior
segmentation performance when there is high similarity in
dataset characteristics. In images with a dense accumulation
of fruits, missing fruit detection is common. For instance,
Bargoti [11] employed a multi-scale multilayer perceptron
combined with a convolutional neural network (CNN) to
segment apple images. While this method demonstrated high
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detection accuracy under ordinary conditions, it was unable
to completely recognize all the fruits in images taken in
complex environments. Barth et al. [12] used DeepLab to
segment bell pepper fruits and plants. Kang et al. [13]
proposed the DaSNet-V2 network architecture for real-time
detection and semantic segmentation of apples and branches
in orchard environments using visual sensors. This network
enhances feature extraction capabilities through spatial
pyramid pooling and a gated feature pyramid structure.
Experimental results demonstrate that the optimal model
achieves a segmentation accuracy of 87.6% and an F1 score
of 77.2%. Mo et al.[14] proposed a method for the semantic
segmentation of apples based on an improved DeepLabV3+
architecture. The encoder utilizes a lightweight MobileNet
module for feature extraction and employs depthwise
separable convolution instead of standard convolution. This
model achieves a pixel accuracy (PA) of 95.3% and a mean
intersection over union (MIoU) of 87.1%. Semantic
segmentation is also commonly used to segment rotten parts
of fruits. For instance, Matsui [15] trained and validated a
U-net++ model on X-ray avocado images to detect internal
fruit rot, achieving an accuracy of 98%. Roy [16] constructed
a semantic segmentation model based on En-UNet to
segment rotten parts in apple RGB images, achieving training
and validation accuracies of 97.46% and 97.54%,
respectively. These studies highlight the significance of
image semantic segmentation technology in the agricultural
domain, particularly in cases where there is a pronounced
color difference between fruits and the background. Accurate
image segmentation can improve agricultural automation
efficiency, enhance fruit quality assessment, and optimize
disease detection and management strategies.

In complex situations where the target and the background
colors are similar, deep learning-based image semantic
segmentation techniques face significant challenges,
primarily in distinguishing between the target and the
background. To address this issue, several studies have made
significant progress. For example, Li [17] proposed an
optimized U-Net model by integrating residual blocks and
gated convolutions to develop the Edge structure. They also
used Atrous Spatial Pyramid Pooling (ASPP) to merge Edge
features with the high-level features of U-Net, significantly
improving the segmentation accuracy for green apples and
enhancing the model’ s generalization ability. Subsequently,
He [18] enhanced the DeepLabV3+ model by replacing its
backbone with MobileNetV2, introducing the Shuffle
Attention Mechanism, and replacing the activation function
with Meta-ACONC. This enhancement increased the MIoU
metric for green banana crown segmentation to 85.75% and
the MPA to 91.41%. Yan [19] proposed a lightweight
convolutional neural network based on an improved
DeepLabV3+ for segmenting and locating picking points of
tea leaves, achieving an MIoU of 91.85%. Additionally, Bai
[20] achieved fine pixel-level segmentation of cucumbers by
improving the U-Net model, with mIOU and mean pixel
accuracy reaching 94.24% and 97.46%, respectively, This
improvement enhanced the recognition of features such as
the shape and texture of green cucumbers in complex
agricultural environments. Liu et al. utilized a complex
number neural network (cNN) to segment bell peppers

among green leaves using hyperspectral inputs,
demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant progress in
image segmentation, applications involving similarly colored
targets and backgrounds in specific scenarios continue to face
inherent challenges, such as target misclassification,
omission, and poor segmentation of fruit edges. Nonetheless,
these advances have facilitated research into the semantic
segmentation of specific targets, such as green tomatoes, and
proposed new directions for designing and optimizing deep
network architectures.

However, the complexity and unstructured nature of
facility environments present challenges, including variations
in lighting angles, occlusion or overlap of fruits, collection
angles, and the similarity of green fruits to the background.
These factors impact segmentation accuracy and necessitate
further research and improvements. This paper proposes a
semantic segmentation model for green tomatoes based on an
improved Swin-Unet [22]. The main contributions of this
study include:

(1) To more accurately segment green tomatoes, which are
similar in color to the background, this study incorporates the
Attention Gate (AG) module within the skip connections.
Attention coefficients are designed to evaluate the
importance of each feature, allowing the model to focus on
features associated with green tomatoes while suppressing
irrelevant background regions.

(2) To achieve multi-scale extraction of green tomato
features and optimize the smoothness of their segmentation
edges, this study proposes the ASPP module in the bottleneck
section, which enlarges the feature receptive field while
keeping the parameter quantity unchanged, enhancing the
model's ability to handle contextual information at different
scales.

(3) Experiments conducted on a custom green tomato
dataset demonstrate that this method outperforms other
state-of-the-art techniques in accuracy and robustness.
proving to be more suitable for segmenting green tomatoes in
facility environments.

II. MATERIALS AND METHODS

A. Green Tomato Fruit Dataset

This study aims to address the challenge of green tomato
segmentation in facility agricultural environments, where the
color similarity between green tomato fruits and background
leaves complicates recognition, often resulting in fruit
omission or confusion with branches and leaves.

1) Image Collection

Image Acquisition Location: Greenhouse, Hetong Village,
Shangkou Town, Shouguang City, Weifang, Shandong
Province, China.

Image Acquisition Equipment: The images were captured
using a Canon EOS 80D DSLR camera and subsequently
resized to a resolution of 640 x 640 pixels.

Image Acquisition Environment: To enhance the model's
robustness during training, green tomato images were
collected from diverse environments, varying in time of day,
lighting conditions, and occlusion scenarios.
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a Daytime green tomato images

g Distant view green tomato image

Fig.1 Images of green tomato fruits in different environments

The captured images are presented in Fig. 1. Figures la to
1d display green tomatoes under different lighting conditions,
including natural daytime illumination (both front and back
lighting) and nighttime illumination by LED lights. Figures
le to lg illustrate tomato images taken from various
proximities and viewpoints, simulating perspectives typical
of picking equipment in a real orchard environment. Figures
lh and 1i show examples of significant shading and
overlapping in facility-based agricultural environments, with
fruits obscuring one another and branches and leaves causing
visual obstructions.

2) Dataset Creation

To accurately reflect the complexity of the facility-based
agricultural environments, the images captured in this study
were designed to emphasize randomness and expressiveness.
This approach ensures that the images closely align with the
visual processing requirements of mechanical equipment in
real-world operations. Considering the efficiency of
mechanical equipment in handling low-resolution images,
the captured images were uniformly scaled and compressed

h Block the green tomato image

f Close-up image of green tomato
ima

i Overlapping green tomato image

to 640 x 640 pixels. This adjustment aims to optimize the
green tomato segmentation network, making it more
adaptable to the segmentation of low-resolution images.
Existing datasets for green tomato image classification are
primarily designed for classification tasks and lack the labels
necessary for semantic segmentation. To address this issue,
the LabelMe [23] software was employed to manually
annotate the datasets in detail. This process involved
generating category labels and annotation points for each
image, thereby providing the essentation ground truth
information for semantic segmentation. All annotation data
were meticulously recorded and saved in JSON files.
Additionally, corresponding labeled images were generated
based on these JSON files to ensure that each original image
had a matching labeled version, as illustrated in Fig. 2.

The dataset was divided into two subsets at an 8:2 ratio, the
training set, which includes 1066 images for model training,
and the validation set, comprising 267 images for evaluating
the model's performance. This careful partitioning enables a
more accurate assessment of the model's efficacy.
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Fig. 2. Original image and annotated image

TABLE I

THE QUANTITY DISTRIBUTION OF DIFFERENT MASK SIZES IN THE GREEN TOMATO DATASET.

Target Amount

Dataset Class Images Instances Small Medium Large
(O<area<32?) (32%<area<96?) (96°<area)
Train tomato 1066 4752 3 (0.06%) 232(4.88%) 4517(95.06%)
Test tomato 267 1442 5(0.35%) 187(12.97%) 1250(86.68%)

Green tomato fruits were categorized into small-scale,
medium-scale, and large-scale classes according to the
criteria used in the Microsoft COCO [24] dataset. The area
of each fruit instance was determined by the number of
pixels in its corresponding mask to evaluate the performance
of the algorithm. Table I provides the relevant details. It is
noteworthy that the number of small-scale fruits is relatively
low, with only three small targets in the training set,
representing 0.06%, and small targets in the validation set
accounting for 0.35%.

B. Optimization of Swin-Unet Segmentation Model

In facility-based agricultural environments, image
acquisition is challenging due to complex backgrounds,
occlusion, overlapping branches and foliage, and variable
lighting conditions (including downlight, backlight, and
nighttime environments), all of which can adversely affect
image quality. Specifically, for green fruits with colors
similar to the background, their boundaries are often
indistinct, which significantly complicates accurate
segmentation [25]. Additionally, a notable issue in the
agricultural field is the insufficiency of samples, especially
for the segmentation of specific types of fruits, such as green
fruits. The lack of adequate labeled samples to train
high-performance segmentation models not only limits the
effectiveness of model training but also increases the risk of
overfitting. Consequently, this can diminish detection
accuracy and present challenges in meeting the operational
requirements of actual mechanical equipment.

To address the challenge of accurately segmenting green
tomatoes, this paper presents an optimized model based on
the Swin-Unet architecture. The Swin-Unet architecture
integrates the robust feature extraction capabilities of the

Swin Transformer with the high-precision segmentation
capabilities of U-Net, resulting in an innovative framework.
Through its unique design, the model effectively addresses
long-range dependency issues while preserving spatial
information, which is crucial for segmenting green tomato
images with complex backgrounds. The optimized model
consists of four main components: Encoder, Bottleneck,
Decoder, and Skip Connection (Fig. 3). In the Encoder stage,
the model adjusts channel numbers using Patch Partition and
Linear Embedding techniques to achieve feature extraction
and downsampling through multiple Swin Transformer
Blocks and Patch Merging layers. The Bottleneck stage
incorporates an Atrous Spatial Pyramid Pooling (ASPP)
module [26] to capture image information at various scales
and expand receptive fields. In the Decoder stage, multiple
Swin Transformer modules, along with Patch Expanding
layers, are employed for upsampling and restoring feature
map sizes. Additionally, an Attention Gate (AG) module [27]
is introduced in skip connections to enhance target feature
information while suppressing irrelevant details for
improved segmentation accuracy. This entire process
effectively integrates multi-scale information, enhancing the
segmentation results of green tomato images.

1) Target Feature Enhancement Module

In complex scenarios where green tomatoes closely
resemble the background color, model performance is often
compromised by interference from non-target areas, leading
to reduced segmentation accuracy. To address this issue, the
Attention Gate (AG) was introduced to better identify and
emphasize image regions relevant to the task. The overall
structure of the Attention Gate module is illustrated in Fig. 4.
The AG utilizes attention mechanisms to automatically
focus on the image regions most pertinent to the task while
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Fig. 3. Structure of the green tomato segmentation model optimized based on Swin-Unet

suppressing less important areas. By calculating attention
coefficients for each feature, the model adjusts the weights
of the feature maps, directing the network's focus towards
the target area rather than the background. This optimization
not only improves the model's learning process, making it
more efficient in extracting key features, but also
significantly enhances overall accuracy. Specifically, in the
segmentation of green tomatoes, it notably increases
diagnostic accuracy.

Skip connections merge features from the encoder and
decoder, preserving the spatial integrity of the image while
enhancing the model's ability to recognize details, such as
edges, which are crucial for the segmentation of green
tomatoes. The incorporation of the Attention Gate (AG)
module into skip connections further amplifies this
advantage by enabling dynamic feature weight allocation.
This allows the model to flexibly adjust its focus on features
based on image content, concentrating on the most relevant
image regions through attention mechanisms. By focusing
on these relevant image regions, sensitivity to important
features is heightened, significantly improving the model's
overall accuracy and enabling more precise differentiation
between green tomatoes and similarly colored backgrounds.
Specifically, two input features, x (from the encoder) and g
(from the decoder) are transformed into new features
x1=W,x and gl=W,g, through their respective linear
transformations.

These parts are then weighted and merged, and an
attention coefficient ¢ , ranging from 0 to 1, is obtained via
the Sigmoid activation function by adding g; and x1.When
¢ is close to 1, the corresponding feature has a higher

weight in the fusion, whereas when ¢ is close to 0, the

feature's weight is lower.This dynamic feature weight
allocation enables the model to flexibly adjust its focus on
features based on the content of the image, thus determining
the importance of each feature.

¢ = Sigmoid (g, + x,) ()

Subsequently, through another linear transformation ¢

the attention coefficients are adjusted to match the
dimensions of the feature map x. These coefficients are then
multiplied by the encoder feature map x to obtain the
weighted feature map x~, thereby accomplishing feature
selection and enhancement.

X" = () O x @)

Where Wx and Wg serve as the weight matrices for the
linear transformations applied to x and g, respectively.
¢ signifies the attention coefficients post-Sigmoid function

processing, denotes another linear transformation, and O
represents  element-wise =~ multiplication  (hadamard
multiplication), leading to the generation of the final
weighted output feature map.
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2) Multiscale Edge Restoration Module
In the encoder-decoder architecture used for green tomato
image segmentation, the encoder expands the receptive field
through downsampling, while the decoder restores the
image to its original size via upsampling. However, this
process can result in the loss of semantic features at the
edges of green tomatoes and the neglect of contextual

information, which adversely affects segmentation accuracy.

ASPP is a spatial attention mechanism for image
segmentation modeling designed to improve the capture of
contextual information. This module effectively captures the
features of green tomato images through dilated
convolutions at different scales, thereby integrating these
features to strengthen the model's understanding of the
semantic content of the images. The ASPP module consists
of five parallel branches: one 1x1 convolution primarily for
extracting local information and reducing the number of
parameters; three 3x3 dilated convolutions with different
dilation rates (6, 12, 18), allowing the convolution kernels to
cover a broader input area without increasing the number of
parameters, thereby aiding in capturing wider contextual
information. ASPP enlarges the receptive field through
convolutions with varying dilation rates, better capturing the
detail features of green tomatoes, especially at different
scales. Additionally, a global average pooling branch
generates a global feature descriptor by applying global
average pooling to the feature map, aiding the model in
grasping image-level contextual information. This structure
allows the model to extract multi-scale features while
maintaining the same number of parameters, enlarging the
receptive field, and thereby enhancing the expressive
capability of feature maps [28].

To address this issue, the Atrous Spatial Pyramid Pooling
(ASPP) module is employed. The structure of the ASPP
module is illustrated in Fig. 5. This module effectively
captures detailed features through atrous convolution
different scales, enhancing the model's performance in
handling the details of green tomato edges, and significantly
preserving edge details and significantly improving
segmentation accuracy.

3) Loss Function

The goal of green tomato image segmentation is to
accurately recognize green tomatoes through pixel-level
classification, ensuring a clear distinction from the
background. However, a significant size difference between
the green tomatoes and the background, resulting in an
imbalance in the number of pixels between the two
categories. This imbalance makes it difficult for the model to
adequately learn the features of the green tomatoes, often
leading to an increase in false-negative predictions.
Consequently, this issue seriously impacts the accuracy of
the semantic segmentation of green tomatoes [29].

The Cross Entropy Loss (CE Loss) function is employed
to calculate the prediction accuracy for each pixel and then
averages these calculations to obtain an overall loss value.
This approach treats the prediction of each pixel as
independent and equally important. However, in the context
of green tomato segmentation, where the target and
background pixel categories are imbalanced, the loss
function becomes dominated by the background pixels. This
dominance biases the model heavily toward the background,
leading to poor training outcomes and inaccurate predictions
for the green tomatoes. The cross-entropy loss formula is as
follows:
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TABLE II
COMPARATIVE RESULTS OF THE IMPACT OF ASPP AND AG MODULES ON SWIN-UNET

Base Model ASPP AG PA(%) Dice(%) IoU(%)
x x 93.0 86.5 76.3
Swin-Unet X v 96.0 87.6 77.9
v X 96.8 90.2 82.2
Swin-Unet v v 97.5 92.4 85.9
1 N balance between Cross Entropy Loss and Dice Loss.
Loss,, = == El[yi log(y;)+(1-y;)log(1-y})] 3)

To effectively address the imbalance problem, Dice Loss
is adopted. This loss function calculates the loss by
comparing the similarity between the predicted probabilities
and the true labels, making it particularly suitable for
addressing category imbalance. Dice Loss ensures that the
model optimizes the prediction of frequent categories while
also paying attention to infrequent categories. Consequently,
it effectively mitigates the model's bias toward the
background in green tomato segmentation.

2y iy, “4)
Z Vit Z Vi
The gradient form of the Dice Loss is complex, and its
formula is as follows:

Loss 4. =1

OLoss dice  _ 2y[2 (5)
oy; i+

Based on (5), it can be inferred that, in extreme scenario
when the values of andare very small, the gradient values
may become very large, potentially leading to more
unstable training. To comprehensively consider the effects
of class imbalance and training instability on segmentation
edge accuracy, this study employs a weighted composite
loss function, combining cross entropy loss and dice loss.
The specific loss function is as follows:

., +(1-a)Loss ,, (6)
Herein, represents the true label of the ith pixel, denotes the
probability of predicting the ith pixel as the target category,

and o is the weight coefficient to balance the two loss terms.
In the experiments, o is set to 0.4 to ensure an effective

= aLoss

C

Loss

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the model for green
tomato segmentation, a series of experiments were
conducted in this study. The experimental details were
meticulously described, and the results were compared and
analyzed. During the training process, the optimal model
was selected and applied to the validation set to facilitate a
comparative evaluation of the experimental outcomes.
Comparative experiments were conducted under identical
experimental configurations to assess the performance of the
proposed model in this study.

A. Experimental Environment

The experimental setup is based on the Ubuntu 18.04
64-bit system, utilizing the deep learning framework
PyTorch. The GPU used for the experiments is a 24GB
NVIDIA A30, with CUDA version 11.4. All models were
run using Python version 3.7 and PyTorch version 1.12.

B. Parameter Settings

Prior to inputting into the training network, image sizes
were uniformly fixed at (640,640). Pre-trained weights from
the ImageNet dataset, specifically swin_tiny patch4
_window7_224.pth, were used, with an initial learning rate
of 0.01, momentum of 0.9, weight decay of 0.0001, and
stochastic gradient descent (SGD) as the optimization
algorithm. The model was trained for 50 epochs, with a
batch size of 2, window size of 7, and patch size of 4x4.The
learning rate curve variation is shown in Figure 6. Using the
above training parameters, the training loss variation curve
of the model is based on the Green Tomato dataset as shown
in Fig 6.
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Fig.7. Comparative Visualization of Ablation Study Results.

C. Evaluation Metrics

To evaluate the segmentation accuracy of the optimized
Swin-Unet algorithm for green tomatoes, metrics such as
Precision, Recall, Pixel Accuracy (PA), Dice coefficient,
and Intersection over Union (IoU) are commonly used in
semantic segmentation methods [30].

Precision = x100% )

TP+ FP

¢)+AG+ASPP

P 100% ©)
TP + FN

PA denotes the ratio of the number of correct predictions
for all pixel classes to the total number of pixels.
TP + TN (10)

Recall =

P4 =
TP + FP + TN + FN

The Dice coefficient is used to calculate the similarity
between two sets, as shown in equation (11):
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2TP

FP +2TP + FN
The Intersection over Union (IoU) represents the ratio of the
intersection to the union of two sets, as illustrated in
equation (12):

U =

Dice (11)

. wr (12)
FP +TP + FN

This paper defines the metric using a confusion matrix,
categorizing green tomato samples based on the relationship
between predicted values and actual values into four
categories: true positive (TP): actual positive samples; false
positive (FP): false positive samples; true negative (TN):
actual negative samples; false negative (FN): False negative
samples.

D. Ablation Study

To verify the effectiveness of these two structures, the
optimized Swin-UNet algorithm and the original Swin-UNet
algorithm were evaluated in the Green Tomato dataset. To
ensure fairness and comparability the experimental settings
and hyperparameter configurations were kept consistent
across all algorithms, as detailed in Table II.

As shown in Table II, the introduction of the AG module
into the base model improves the PA, Dice, and IoU of the
model by 3.0, 1.1, and 1.6 percentage points, respectively,
compared to the original model. This significant
enhancement in segmentation accuracy for green tomato
images confirms the AG module's effectiveness in focusing
more on relevant regions while suppressing irrelevant
areas.Furthermore, the incorporation of the Atrous Spatial
Pyramid Pooling (ASPP) module into the base model
increases PA, Dice, and IoU by 3.8, 3.7, and 5.9 percentage
points, respectively. These results demonstrate that the
ASPP module substantially improves the model's ability to
process contextual information across different scales

without adding extra parameters. This enhancement is
reflected in the model's improved performance in capturing
edge details and overall semantic understanding, leading to
more precise edge segmentation of green tomatoes.

Finally, by introducing both ASPP and AG modules into
the base model, compared to the original model, the model's
PA, Dice, and IoU increased by 4.5, 5.9, and 9.6 percentage
points, respectively. This further validates that both
proposed modules effectively enhance accuracy in green
tomato image segmentation.

In order to compare the effect of each module on the
segmentation results more intuitively, the results of the
ablation experiments are visualized in this paper, and the
visualization results are shown in Fig. 7. As can be seen
from Fig 7, the original Swin-Unet model exhibits issues
such as unclear segmentation edges and target leakage, etc.
However, with the gradual introduction of modules such as
ASPP and AG, the target contour becomes more accurate
and clearer, and the segmentation effect of the model is
much closer to that of the real labels, and the phenomenon of
unclear segmentation edges of the target leakage is reduced,
which fully proves that the model proposed model
effectively improves green tomato image segmentation.

E.  Segmentation Results

To further analyze the performance of the algorithm, the
optimized Swin-Unet is compared with several
contemporary and advanced semantic segmentation
algorithms using the Green Tomato dataset. The
comparative  algorithms include DeepLabv3+ [31],
DeepLabv3 [32], PSPNet [33], DANet [34], KNet [35],
ISA-Net [36], DPT [37], OCRNet [38], and BEiT [39]. All
experiments were conducted under identical conditions,
with consistent parameter settings, datasets, and evaluation
criteria.

TABLE III
EXPERIMENTAL RESULTS COMPARING DIFFERENT ALGORITHMS

Segﬁz‘(‘gﬁo“ Precision(%)  Recall%)  Accuracy(%) Dice(%)  ToU(%)
Deeplaby3+ 97.88 85.23 85.23 91.12 83.68
Deeplabv3 975 84.13 84.13 90.32 82.35
Pspnet 96.67 89.83 86.83 91.48 84.3
Danet 97.73 86.65 86.65 92.46 84.94
Knet 98.27 87.15 87.15 9238 85.84
Isanet 97.01 87.15 87.15 91.82 84.87
Dpt 93.14 88.8 88.8 90.92 83.35
Ocrnet 97.66 87.74 87.74 9234 85.84
Beit 93.62 83.74 83.74 88.4 79.22
Ours 98.0 89.9 975 92.4 85.9
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TABLE IV
COMPARISON OF THE NUMBER OF PARAMETERS AND FLOPS COMPUTATIONAL COMPLEXITY OF MODELS. INPUT SIZE: (640,640).

Method Deeplabv3+  Deeplabv3  Pspnet Danet Knet Isanet Dpt Ocrnet Beit Ours
Params/M 41.216 65.74 46.602 47485  60.412 35.344 110 12.067 72.137 27.55
GFLOPs/G 276 422 279 338 320 235 360 82.902 437 116.15

VI Nighttime tomato

IIBlock the tomato I Overhead shot of IV Distant view V Backlighting

I Overlapping

tomato image image tomato image tomato image image

tomato image
(a) Original images of Tomato

u

(e) pspnet
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(J) Orcnet

(k) Beit

(1) Ours

Fig.8. Comparative Visualization of Experimental Result

All comparison algorithms were trained and tested on the
green tomato dataset, and the comparison experiments were
conducted using MMsegmentation version 1.2.2.  The
segmentation results of each model are presented in Table III.
It is observed that the optimized Swin-Unet algorithm
demonstrates strong competitiveness across  various
evaluation metrics compared to the other algorithms.

Although segmentation accuracy is a key factor, the
number of model parameters and computational complexity
are also crucial for the overall quality of the model. For an
input image size of 640 x 640, the number of parameters and
computational complexity of each segmentation model are
presented in Table IV. While the Precision and Dice metrics
are slightly inferior to those of KNet and DANet, and the
number of parameters and complexity are slightly higher than
those of OCRNet, the optimized Swin-Unet model

demonstrates strong overall performance , maintaining a
balance between model capacity and computational
efficiency.

From this analysis, it is evident that the optimized
Swin-Unet algorithm demonstrates significant improvements
across all assessment metrics. Although issues such as target
miss-detection and unclear segmentation edges are
encountered, this method effectively achieves precise
segmentation of green tomato images compared to other
semantic segmentation algorithms, thereby enhancing overall
segmentation accuracy. To provide an intuitive comparison
of the impact of different algorithms on segmentation results,
this study conducted comparative experiments on green
tomatoes under various conditions, including overlapping,
occlusion, low-angle, long-shot, and backlighting scenarios.
The specific visualization results are shown in Fig. §.
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While other algorithms face challenges such as target
missing and misclassification when dealing with fruit parts
under occlusion and overlapping scenarios, the improved
Swin-Unet algorithm effectively addresses these issues and
surpasses them in delineating fruit edge details. The
visualization of comparative experiments shows that the
improved algorithm excels in achieving clear boundary
segmentation and maintaining the integrity of target fruits
when capturing green tomatoes from various angles, such as
aerial and long-distance views. Compared to other algorithms,
it more accurately resolves these issues. Additionally, in
backlighting scenarios, the improved algorithm demonstrates
significant advantages over other models. The optimized
Swin-Unet algorithm provides remarkable improvements by
delivering more precise edge segmentation, reducing errors,
and greatly enhancing overall performance. These
experimental results validate the effectiveness of
incorporating ASPP and AG structures to optimize the
Swin-Unet algorithm specifically for green tomato
segmentation in controlled agricultural environments.

This study demonstrates the refinement of the optimized
Swin-Unet algorithm, which addresses complex challenges
in facility agriculture applications. These challenges include
variable lighting conditions, diverse shooting angles, and
transitions between day and night environments. Green
tomato images were captured under various conditions, such
as occlusions, overlaps, and different lighting scenarios, to
evaluate the algorithm's adaptability to these practical issues.
The experimental results indicate that the algorithm achieves
excellent segmentation accuracy across different scenarios,
effectively managing images with varying lighting conditions
and backgrounds while accurately identifying and
segmenting occluded or overlapping fruits. These tests
collectively ~ confirm  the  algorithm's  robustness,
generalization capability, and theoretical sophistication,
demonstrating its effectiveness in real-world applications.
Beyond its impressive performance in green tomato
segmentation, the optimized Swin-Unet algorithm shows
potential for broader applications, including fruit
segmentation in similar environments, thus supporting the
wider adoption of automation techniques in facility-based
agriculture.

IV. CONCLUSION

Addressing the challenges posed by the similar color
features of green fruits and the background of branches and
leaves, as well as issues of occlusion, overlapping, and
varying lighting conditions that complicate segmentation,
this thesis utilizes a custom dataset of green tomatoes. The
semantic segmentation algorithm Swin-Unet is optimized by
integrating the Atrous Spatial Pyramid Pooling (ASPP)
module into the Bottleneck, which allows for the integration
of features at different scales from the green tomato images,
increases the receptive field, and significantly enhances the
model's performance in processing edge details of green
tomatoes. Additionally, the Attention Gate (AG) module is
introduced at the Skip connection, enabling the model to
focus on regions relevant to green tomatoes while
suppressing  irrelevant areas.  Experimental results
demonstrate that the optimized algorithm achieves relatively
high accuracy in facility environments, with notably clearer

edge segmentation of green fruits, thereby -effectively
improving the success rate of picking in real scenarios.
Overall, the optimized Swin-Unet algorithm exhibits superior
segmentation performance and stronger generalization ability,
offering a theoretical reference for the segmentation of other
green fruits. However, despite the significant progress made
by the optimized Swin-Unet algorithm compared to other
semantic segmentation algorithms, its increased model
complexity remains a notable issue. This complexity is
particularly prominent in application scenarios requiring fast
processing or limited computational resources. Future
research should focus on further reducing the complexity of
Swin-Unet networks and exploring more lightweight network
designs. Such efforts aim to mitigate the model's dependence
on computational resources without compromising
segmentation accuracy, thereby enabling the optimized
Swin-Unet model to better adapt to various application
requirements, especially those demanding high real-time
performance and resource efficiency.
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