Environments
 Abstract—Infacility-based agricultural environments,
 Abstract—In facility-based agricultural environments,
 Abstract—In facility-based agricultural environments,
 Abstract—In facility-based agricu **accurately identifying green tomatoes presents a significant**
 accurately identifying green tomatoes presents a significant
 Abstract—In facility-based agricultural environments, areas and production

accurately ident tation Model Based on
Igorithm Under Facility
imgyu Yan, Weikuan Jia
fingyu Yan, Weikuan Jia
nutritional content. With the continuous expansion of planted
areas and production, the case of transportation and storage
of gre tation Model Based on
Igorithm Under Facility
Singyu Yan, Weikuan Jia
nutritional content. With the continuous expansion of planted
areas and production, the case of transportation and storage
of green tomatoes further enh Engineering Letters
Green Tomato Segmentation Model Based on
Optimized Swin-Unet Algorithm Under Facility
Environments
Ru Jiang, Huichuan Duan, Jingyu Yan, Weikuan Jia Engineering Letters

Green Tomato Segmentation Model Based on

Optimized Swin-Unet Algorithm Under Facility

Environments

Ru Jiang, Huichuan Duan, Jingyu Yan, Weikuan Jia

The Lagorithm Lagorithm (Still Me Continuous expa Environments Engineering Letters

ato Segmentation Model Based on

Swin-Unet Algorithm Under Facility

Environments

Ru Jiang, Huichuan Duan, Jingyu Yan, Weikuan Jia

mutritional content. With the continuous expansion of planted

gricu

challenge for machine vision systems due to the color similarly due to the color similarly dentifying green tomatoes presents a significant particional content. We accurately identifying green tomatoes presents a signific between from the fruits and background branches and leaves as and production.
 between facility-based agricultural environments, areas and production, the ease

accurately identifying green tomatoes presents a signific **ENVITONIMENTS**
 ENVITONIMENTS
 WELD ABOUT ASSEM
 WELD ABOUT ASSEM
 WELD ABOUT AND THE MULTIME CONTINUMERT AND MENTAIN THE SECAULT AND THE SECAULT AND THE SECAULT AND HE SECAULT AND WELL AS the overlapping occlusion Problem, the study constructs and political constrants and problem from the frequency of the problem, the frequency of the Attention States and production, the accurately identifying green tomatoes presents a significant (AG) module using Swin-Unet as the baseline model, or the difference of the difference the original environments, areas and production, the execurately identifying green tomatoes presents a significant of green tomatoes Ru Jiang, Huichuan Duan, Jingyu Yan, Weikua:
 Mbstract—In facility-based agricultural environments,

areas and production,

accurately identifying green tomatoes presents a significant

of green tomatoes furt

challenge **suppress irrelevant regions in the background, and effectively ENTRACE THE SET CONSIGNATISE SET ALL ASSEM CONDUCT AND EXERCT AND A SERVIDE SERVIDENT (AG) module using Swin-Unet as the baseline model, so t** *Abstract***—In facility-based agricultural environments, areas and production, the accurately identifying green tomatoes presents a significant of green tomatoes furthe between green fruits and background branches and leav Example 1 set to the study in the study in the study in the study in the content of green tomatoes further between green fruits and background branches and leaves as inficiant between green fruits and background branche** *Abstract***—In facility-based agricultural environments,** areas and production, execurately identifying green tomatoes presents a significant of green tomatoes further challenge for machine vision systems due to the color **Expanding the set allow the set allenge for mather vision systems due to the color similarity and between green fruits and background branches and leaves as challeng** acturately userlary intervigy green tomatoes presents a signment
the challenge for machine vision systems due to the color similarity
between green fruits and background branches and leaves as
well as the overlapping occlu Experimental results on the specially constrained by the equilibration

between green fruits and background branches and leaves as

well as the overlapping occlusion between fruits. To solve this

problem, this study const **Drevively** and **Drevively** and **Drevively** and **exactly out and the model show that the model as the overlapping occlusion between fruits. To solve this face numerous challenges in the controller, this study constructs an** We as the overapping occusion between intents. To sove the search and palmanent and palmanent and the phase and the search actes of the search are the presentation of target features. Additionally, in enhance the represent **INCRET TERM**
 INCRED TO THE TRANSM
 INCRED TO THE TRANSM
 INCRED TO THE TRANSM
 INCRED TO THE TRANSMIS INTERENT THE TRANSMISE SUPPLEM IN THE TRANSMISE SUPPLEM IN THE TRANSMISE SUPPRESS irrelevant regions in the bac (AST) module using symm-there as the baskene mondels, but all the matter in the same the representation of target features. Additionally, in subpress irrelevant regions in the background, and effectively picking robots a f moute can locus on the reatures renated to green tomatoes, have a foculate the representation of target features. Additionally, in automatic picking invorder to optimize the edge smoothing of green tomato a chrous Spatial suppless irrecevant regions in the background, and encertained responses the representation of target features. Additionally, in order to optimize the edge smoothing of green tomato segmentation, this study further introdu entate the representation of range teatures. Additional and entergies and entergies and the segmentation, this study further introduces a Atrous Spatial using computer vision [4-Pyramid Pooling (ASPP) module, which signifi or

or the riginal subseque subcounting of green formation, this study further introduces a Atrous Spatial

Pyramid Pooling (ASPP) module, which significantly improves struggle to recognize green fr

the segmentation accur **Expirimation, this starty in the filtrowner into uncered as Atolus Spatial Pooling (ASPP) module, which significantly improves** struggle to recognize green frithe segmentation accuracy by expanding the feature extraction **Experimentation aroung (ASPT) module, when significantly improves

the segmentation accuracy by expanding the feature sensing Similarity with the backgroof

deld and enhancing the multi-scale feature extraction capability** Field and enhancing the multi-scale feature extraction easing
 Field and enhancing the multi-scale feature extraction capability. Occlusion among freen Experimental results on the specially constructed green tomato

for **incularing the muni-scare leading to the sparing in the sparing the muni-scare extraction capability contributed green to semantic segmentation** dataset show that the model achieves 97.5%, 92.4% and 85.9% for Pixel Accura **prospect. IDENTE ACTE ACT ACTS AND EXTENDINICTION**
 ICHOT ACT TEXEL ACT THE ACT AND THE SET AND THE STAR AND THE Final Accuracy (FA), Dice similarity coencelent (Dice)
Intersection over Union (IOU), respectively. The new moutperforms existing partial semantic segmentation model
several key metrics, proving its effectiveness in comple partial semantic segmentation models in

roving its effectiveness in complex facility

search not only addresses the technical

targ green fruits, but also provides solid

r the development and application of

lequipment. difficulties in recognizing green fruits, but also provides solid

technical support for the development and application of

intelligent agricultural equipment. The model can be applied to

intenting fertilizer waste. In

From Summaton, ASPP, AG

I. INTRODUCTION

I. INTRODU

(2021GXRC049).
R.Jiang is a postgraduate student of School of Information Science and Engineering, Shandong Normal University, Jinan (superjr1102@163.com);

hcduan@sdnu.edu.cn);
J.Y.Yan is a postgraduate student of School of Information Science and (1543670705@qq.com)
W.K. Jia is an associate professor of School of Information Science and

(180.: 2022KJ250); New Twentueth Trems of Universities in Jin

(2021GXRCO49). Response a postgraduate student of School of Information Science a

Engineering, Shandong Normal University, Jinan 250358, Chi

(superjr1102@163 (2021GXRCO49).

R.Jiang is a postgraduate student of Scl

Engineering, Shandong Normal Unive

(superjr1102@163.com);

H.C. Duan is a professor of School of Info

Shandong Normal University, Jinan 25035

heduan@sdnu.edu.cn)

Such the Facility
 Consider Facility
 Consider Facility
 Consider Facility
 Consider Facility
 Consider a must
 Consider a market appeal [1-2].
 However, the cultivation and management of green tomatoes
 f 1gorithm Under Facility

ingyu Yan, Weikuan Jia

nutritional content. With the continuous expansion of planted

areas and production, the ease of transportation and storage

of green tomatoes further enhances their market **if**
 ingyu Yan, Weikuan Jia
 Singyu Yan, Weikuan Jia
 nutritional content. With the continuous expansion of planted

areas and production, the ease of transportation and storage

of green tomatoes further enhances their m **ITTICTILS**

ingyu Yan, Weikuan Jia

nutritional content. With the continuous expansion of planted

areas and production, the ease of transportation and storage

of green tomatoes further enhances their market appeal [1-2] lingyu Yan, Weikuan Jia

nutritional content. With the continuous expansion of planted

areas and production, the ease of transportation and storage

of green tomatoes further enhances their market appeal [1-2].

However, Fingyu Yan, Weikuan Jia

nutritional content. With the continuous expansion of planted

areas and production, the ease of transportation and storage

of green tomatoes further enhances their market appeal [1-2].

However, Fingyu Yan, Weikuan Jia

nutritional content. With the continuous expansion of planted

areas and production, the ease of transportation and storage

of green tomatoes further enhances their market appeal [1-2].

However, nutritional content. With the continuous expansion of planted
areas and production, the ease of transportation and storage
of green tomatoes further enhances their market appeal [1-2].
However, the cultivation and manageme nutritional content. With the continuous expansion of planted
areas and production, the ease of transportation and storage
of green tomatoes further enhances their market appeal [1-2].
However, the cultivation and manageme nutritional content. With the continuous expansion of planted
areas and production, the ease of transportation and storage
of green tomatoes further enhances their market appeal [1-2].
However, the cultivation and manageme areas and production, the ease of transportation and storage
of green tomatoes further enhances their market appeal [1-2].
However, the cultivation and management of green tomatoes
face numerous challenges in the complex e of green tomatoes further enhances their market appeal [1-2].
However, the cultivation and management of green tomatoes
face numerous challenges in the complex environment of
facility-based agriculture [3]. Among these cha However, the cultivation and management of green tomatoes
face numerous challenges in the complex environment of
facility-based agriculture [3]. Among these challenges,
harvesting is particularly time-consuming and
labor-i face numerous challenges in the complex environment of facility-based agriculture [3]. Among these challenges, harvesting is particularly time-consuming and labor-intensive, making the development of automatic picking robo facility-based agriculture [3]. Among these challenges,
harvesting is particularly time-consuming and
labor-intensive, making the development of automatic
picking robots a focal point of interest. The primary task of
autom harvesting is particularly time-consuming and
labor-intensive, making the development of automatic
picking robots a focal point of interest. The primary task of
automatic picking involves accurately locating the fruits
usi labor-intensive, making the development of automatic
picking robots a focal point of interest. The primary task of
automatic picking involves accurately locating the fruits
using computer vision [4-6]. Traditional machine picking robots a focal point of interest. The primary task of automatic picking involves accurately locating the fruits using computer vision [4-6]. Traditional machine methods struggle to recognize green fruits accurately automatic picking involves accurately locating the fruits
using computer vision [4-6]. Traditional machine methods
struggle to recognize green fruits accurately due to their color
similarity with the background foliage and using computer vision [4-6]. Traditional machine methods struggle to recognize green fruits accurately due to their color similarity with the background foliage and the overlapping occlusion among fruits [7]. Therefore, th struggle to recognize green fruits accurately due to their color
similarity with the background foliage and the overlapping
occlusion among fruits [7]. Therefore, the use of advanced
semantic segmentation techniques to acc similarity with the background foliage and the overlapping
occlusion among fruits [7]. Therefore, the use of advanced
semantic segmentation techniques to accurately segment and
localize green tomatoes is of paramount impor occlusion among fruits [7]. Therefore, the use of advanced
semantic segmentation techniques to accurately segment and
localize green tomatoes is of paramount importance. This
technique not only contributes to efficient agr semantic segmentation techniques to accurately segment and localize green tomatoes is of paramount importance. This technique not only contributes to efficient agricultural management and planning but also optimizes resour localize green tomatoes is of paramount importance. This
technique not only contributes to efficient agricultural
management and planning but also optimizes resource
allocation. For instance, water sources can be more prec technique not only contributes to efficient agricultural
management and planning but also optimizes resource
allocation. For instance, water sources can be more precisely
targeted to tomato-growing areas, significantly red harvesters. ocation. For instance, water sources can be more precisely
geted to tomato-growing areas, significantly reducing
ter wastage. Similarly, fertilizer application can be
justed according to the distribution of tomatoes, effec targeted to tomato-growing areas, significantly reducing
water wastage. Similarly, fertilizer application can be
adjusted according to the distribution of tomatoes, effectively
minimizing fertilizer waste. In automated har water wastage. Similarly, fertilizer application can be adjusted according to the distribution of tomatoes, effectively minimizing fertilizer waste. In automated harvesting, robots equipped with semantic segmentation capab adjusted according to the distribution of tomatoes, effectively
minimizing fertilizer waste. In automated harvesting, robots
equipped with semantic segmentation capabilities can detect
and locate fruits, thereby reducing r

EXECUTE SURFACE SET AND SET A From External University

Tomatoes are highly valued in agriculture due to their rich

In recent years

as a prominent

Tomatoes are highly valued in agriculture due to their rich

This work is supported by National Valued I. INTRODUCTION

I. INTRODUCTION

In recent years, im.

as a prominent foculation of descending the efficiency of the segmentation of descending the segmentation of descending the segmentation technic

Manuscript received I. INTRODUCTION

In recent years, imag

as a prominent focus

strategradion of deep

segmentation techniqu

Manuscript recived April 17, 2024; revised September 24, 2024.

This work is supported by National Nature Science Inrecent years, im

as a prominent focus are highly valued in agriculture due to their rich

Manuscript received April 17, 2024, revised September 24, 2024.

This work is supported by National Nature Science Foundation of omatoes are highly valued in agriculture due to their rich

segmentation of

segmentation of

Manuscript received April 17, 2024; revised September 24, 2024.

This work is supported by National Nature Science Foundation of I omatoes are highly valued in agriculture due to their rich

segmentation techn

Manuscript received April 17, 2024, revised September 24, 2024.

This work is supported by National Nature Science Foundation of China (No.: Manuscript received April 17, 2024; revised September 24, 2024.

This work is supported by National Nature Science Foundation of China (No.:

27289); Young Imovation Them Program of Shandong Provincial University

0.: 2022 Manuscript received April 17, 2024, revised September 24, 2024.

This work is supported by National Nature Science Foundation of China (No.:

20072289); Young Innovation Team Program of Shandong Provincial University

(202 Ins work is supported by Natuonal Nature Science roundation of China (No.: 2022KJ250); New Twentieth Items of Universities in Jinan particularly when the D21GXRC049).

20122KJ250); New Twentieth Items of Universities in Ji overlay to dig movador ream rogram of Shandong Provincial University

(No.: 2022K1250); New Twentieth Items of Universities in Jinan particularly v

(2021GXRC049).

R.Jiang is a postgraduate student of School of Informatio minimizing fertilizer waste. In automated harvesting, robots
equipped with semantic segmentation capabilities can detect
and locate fruits, thereby reducing reliance on human labor
[8]. Thus, enhancing the visual system's equipped with semantic segmentation capabilities can detect
and locate fruits, thereby reducing reliance on human labor
[8]. Thus, enhancing the visual system's segmentation
precision is paramount not only for the effectiv and locate fruits, thereby reducing reliance on human labor [8]. Thus, enhancing the visual system's segmentation precision is paramount not only for the effective management of green tomato cultivation but also as a pivot [8]. Thus, enhancing the visual system's segmentation precision is paramount not only for the effective management of green tomato cultivation but also as a pivotal element in augmenting the efficacy of robotic fruit and v precision is paramount not only for the effective management
of green tomato cultivation but also as a pivotal element in
augmenting the efficacy of robotic fruit and vegetable
harvesters.
In recent years, image semantic s of green tomato cultivation but also as a pivotal element in
augmenting the efficacy of robotic fruit and vegetable
harvesters.
In recent years, image semantic segmentation has emerged
as a prominent focus in the field of augmenting the efficacy of robotic fruit and vegetable
harvesters.
In recent years, image semantic segmentation has emerged
as a prominent focus in the field of deep learning. The
integration of deep learning-based image s harvesters.

In recent years, image semantic segmentation has emerged

as a prominent focus in the field of deep learning. The

integration of deep learning-based image semantic

segmentation techniques with agricultural a In recent years, image semantic segmentation has emerged
as a prominent focus in the field of deep learning. The
integration of deep learning-based image semantic
segmentation techniques with agricultural applications has
 as a prominent focus in the field of deep learning. The
integration of deep learning-based image semantic
segmentation techniques with agricultural applications has
gradually evolved into a significant area of development integration of deep learning-based image semantic
segmentation techniques with agricultural applications has
gradually evolved into a significant area of development [9].
Studies show that image semantic segmentation offer segmentation techniques with agricultural applications has gradually evolved into a significant area of development [9]. Studies show that image semantic segmentation offers a significant advantage in accurately segmenting gradually evolved into a significant area of development [9].
Studies show that image semantic segmentation offers a
significant advantage in accurately segmenting fruit targets,
particularly when there is a pronounced col Studies show that image semantic segmentation offers a significant advantage in accurately segmenting fruit targets, particularly when there is a pronounced color difference between the fruit and the background. Häni [10]

Engineering Letters
detection accuracy under ordinary conditions, it was unable among green leaves
to completely recognize all the fruits in images taken in demonstrating the effectiver
complex environments. Barth et al. **Engineering Letters**
detection accuracy under ordinary conditions, it was unable
to completely recognize all the fruits in images taken in
demonstrating the effectiveness complex environments. Barth et al. [12] used DeepL **Engineering Letters**
detection accuracy under ordinary conditions, it was unable
to completely recognize all the fruits in images taken in
demonstrating the effectiveness complex environments. Barth et al. [12] used DeepL **Engineering Letters**
detection accuracy under ordinary conditions, it was unable
to completely recognize all the fruits in images taken in
demonstrating the effectivenes
complex environments. Barth et al. [12] used DeepLa **Engineering Letters**
detection accuracy under ordinary conditions, it was unable
architecture architecture for each of example the DaSNet-V2 network architecture for real-time
proposed the DaSNet-V2 network architecture f **Engineering Letters**
detection accuracy under ordinary conditions, it was unable among green leaves
to completely recognize all the fruits in images taken in demonstrating the effective
complex environments. Barth et al. **Engineering Letters**

detection accuracy under ordinary conditions, it was unable

to completely recognize all the fruits in images taken in demonstrating the effective

complex environments. Barth et al. [12] used DeepLa **Engineering Letters**

detection accuracy under ordinary conditions, it was unable

to completely recognize all the fruits in images taken in demonstrating the effective

complex environments. Barth et al. [12] used DeepL **Engineering Letters**
detection accuracy under ordinary conditions, it was unable among green leaves
to completely recognize all the fruits in images taken in demonstrating the effective
complex environments. Barth et al. **Experimental results demonstrate that the optimal model series are demonstrated results and the optimal model of the optimal model of** detection accuracy under ordinary conditions, it was unable among green leaves to completely recognize all the fruits in images taken in demonstrating the effectivene complex environments. Barth et al. [12] used DeepLab to detection accuracy under ordinary conditions, it was unable among green leaves
to completely recognize all the fruits in images taken in demonstrating the effective
complex environments. Barth et al. [12] used DeepLab to m detection accuracy under ordinary conditions, it was unable

among green leav

to completely recognize all the fruits in images taken in

demonstrating the effection

segment bell peoper fruits and plants. Kang et al. [13] to completely recognize all the fruits in images taken in demonstrating the effect
complex environments. Barth et al. [12] used DeepLab to more stable and less
segment bell pepper fruits and plants. Kang et al. [13] Altho complex environments. Barth et al. [12] used DeepLab to more stable and less
segment bell pepper fruits and plants. Kang et al. [13] Although deep learning
proposed the DaSNet-V2 network architecture for real-time image se segment bell pepper fruits and plants. Kang et al. [13] Although deep learning has
proposed the DaSNet-V2 network architecture for real-time image segmentation, applicatie
detection and semantic segmentation of apples and proposed the DaSNet-V2 network architecture for real-time
detection and semantic segmentation of apples and branches
in orchard environments using visual sensors. This network inherent challenges, such
enhances feature ext detection and semantic segmentation of apples and branches

in orchard environments using visual sensors. This network

inherent challenges, sue

enhances feature extraction capabilities through spatial

omission, and poor in orchard environments using visual sensors. This network inherent challenges, such
enhances feature extraction capabilities through spatial omission, and poor segmentat
experimental results demonstrate that the optimal enhances feature extraction capabilities through spatial omission, and poor segmentation pyramid pooling and a gated feature pyramid structure. these advances have facilitated is experimental results demonstrate that the pyramid pooling and a gated feature pyramid structure. these advances have facili
Experimental results demonstrate that the optimal model
segmentation of specific tare
diversa segmentation accuracy of 87.6% and an F1 score Experimental results demonstrate that the optimal model

segmentation of specific

achieves a segmentation accuracy of 87.6% and an F1 score

proposed new direction

of 77.2%. Mo et al.[14] proposed a method for the seman achieves a segmentation accuracy of 87.6% and an F1 score
of 77.2%. Mo et al.[14] proposed a method for the semantic network architectures. The encoder utilizes a lightwight MobileNet facility environents present charmelit of 77.2%. Mo et al.[14] proposed a method for the semantic network architectures.

segmentation of apples based on an improved DeepLabV3+ However, the complex

architecture. The encoder utilizes a lightweight MobileNet fac segmentation of apples based on an improved DeepLabV3+

architecture. The encoder utilizes a lightweight MobileNet

facility environments prese

module for feature extraction and employs depthwise in lighting angles, occlu architecture. The encoder utilizes a lightweight MobileNet facility environments present channol
and module for feature extraction and employs depthwise in lighting angles, occlusion or
separable convolution instead of sta module for feature extraction and employs depthwise in lighting angles, occl
separable convolution instead of standard convolution. This angles, and the similar
imodel achieves a pixel accuracy (PA) of 87.1%. Semantic fir separable convolution instead of standard convolution. This angles, and the similar model achieves a pixel accuracy (PA) of 95.3% and a mean These factors impact site
intersection over union (MIoU) of 87.1%. Semantic furth model achieves a pixel accuracy (PA) of 95.3% and a mean These factors impact seg
intersection over union (MIoU) of 87.1%. Semantic further research and imp
egementation is also commonly used to segment rotten parts semant intersection over union (MIoU) of 87.1%. Semantic further research and in
segmentation is also commonly used to segment rotten parts
fruits. For instance, Matsui [15] trained and validated a improved Swin-Unet [
U-net++ mo segmentation is also commonly used to segment rotten parts

commentic segmentation mood fruits. For instance, Matsui [15] trained and validated a

improved Swin-Unet [22]

U-net++ model on X-ray avocado images to detect in of fruits. For instance, Matsui [15] trained and validated a improved

U-net++ model on X-ray avocado images to detect internal study inc

fruit rot, achieving an accuracy of 98%. Roy [16] constructed (1) To

a semantic se net++ model on X-ray avocado images to detect internal
in tot, achieving an accuracy of 98%. Roy [16] constructed (1) To more accurate
semantic segmentation model based on En-UNet to similar in color to the b
ignment rotte fruit rot, achieving an accuracy of 98%. Roy [16] constructed (1) To more accurately
a semantic segmentation model based on En-UNet to similar in color to the back
segment rotten parts in apple RGB images, achieving traini a semantic segmentation model based on En-UNet to similar in color to the based meant rotten parts in apple RGB images, achieving training Attention Gate (AG) nand validation accuracies of 97.46% and 97.54%, Attention coef segment rotten parts in apple RGB images, achieving training Attention Gate (AG) module vand validation accuracies of 97.46% and 97.54%. Attention coefficients are expectively. These studies highlight the significance of i

and validation accuracies of 97.46% and 97.54% Attention coefficients are respectively. These studies highlight the significance of importance of each feature, a image semantic segmentation technology in the agricultural f respectively. These studies highlight the significance of importance of each feature, allowing image semantic segmentation technology in the agricultural features associated with green domain, particularly in cases where t image semantic segmentation technology in the agricultural features associated with green
domain, particularly in cases where there is a pronounced irrelevant background regions.
color difference between fruits and the bac domain, particularly in cases where there is a pronounced irrelevant background regions.

color difference between fruits and the background. Accurate image segmentation can improve agricultural automation features and opt color difference between fruits and the background. Accurate (2) To achieve multi-scale

image segmentation can improve agricultural automation

efficiency, enhance fruit quality assessment, and optimize deges, this study image segmentation can improve agricultural automation

efficiency, enhance fruit quality assessment, and optimize

edges, this study properace discussed effection and management strategies.

In complex situations where t efficiency, enhance fruit quality assessment, and optimize edges, this study proposes the A
disease detection and management strategies.

In complex situations where the target and the background keeping the parameter quan disease detection and management strategies. section, which enla

In complex situations where the target and the background keeping the parame

colors are similar, deep learning-based image semantic model's ability to ha
 In complex situations where the target and the background

colors are similar, deep learning-based image semantic model's ability to handle contex

segmentation techniques face significant challenges, scales.

primarily i colors are similar, deep learning-based image semantic model's ability to handle consentation techniques face significant challenges, scales.

primarily in distinguishing between the target and the (3) Experiments conduct segmentation techniques face significant challenges, scales.

primarily in distinguishing between the target and the (3) Experiments conductional. To address this issue, several studies have made dataset demonstrate that primarily in distinguishing between the target and the (3) Experiments conducted
background. To address this issue, several studies have made dataset demonstrate that this
ignificant progress. For example, Li [17] proposed background. To address this issue, several studies have made

significant progress. For example, Li [17] proposed an state-of-the-art techniques in

optimized U-Net model by integrating residual blocks and

gated convolut significant progress. For example, Li [17] proposed an state-of-the-art technic
optimized U-Net model by integrating residual blocks and proving to be more suita
used Artous Spatial Pyramid Pooling (ASPP) to merge Edge
fe optimized U-Net model by integrating residual blocks and

gated convolutions to develop the Edge structure. They also

facility environments.

used Atrous Spatial Pyramid Pooling (ASPP) to merge Edge

features with the hig gated convolutions to develop the Edge structure. They also

since Arrous Spatial Pyramid Pooling (ASPP) to merge Edge

features with the high-level features of U-Net, significantly

improving the segmentation accuracy fo used Atrous Spatial Pyramid Pooling (ASPP) to merge Edge

features with the high-level features of U-Net, significantly

improving the sogmentation accuracy for green apples and

FHE [18] enhanced the DeepLabV3+ model by r features with the high-level features of U-Net, significantly

improving the segmentation accuracy for green apples and

enhanced the DeepLaby3+ model by replacing its

He [18] enhanced the DeepLaby3+ model by replacing it improving the segmentation accuracy for green apples and

enhancing the model's generalization ability. Subsequently,

He [18] enhanced the DeepLabV3+ model by replacing its

databone with MobileNetV2, introducing the Suff enhancing the model' s generalization ability. Subsequently,

He [18] enhanced the DeepLabV3+ model by replacing its

backbone with MobileNetV2, introducing the Shuffle

Actention Mechanism, and replacing the activation fi He [18] enhanced the DeepLabV3+ model by replacing its

backbone with MobileNetV2, introducing the Shuffle

Attention Mechanism, and replacing the activation function

attention facility agricultu

Meta-ACONC. This enhanc backbone with MobileNetV2, introducing the Shuffle

Attention Mechanism, and replacing the activation function

with Meta-ACONC. This enhancement increased the MIoU

leaves complicates recom

metric for green banana crown Attention Mechanism, and replacing the activation function

with Meta-ACONC. This enhancement increased the MIoU

metric for green banana crown segmentation to 85.75% and

metric for green banana crown segmentation to 85.7 with Meta-ACONC. This enhancement increased the MIoU
metric for green banana crown segmentation to 85.75% and
the MPA to 91.41%. Yan [19] proposed a lightweight
the MPA to 91.41%. Yan [19] proposed a lightweight
convoluti

g Letters

among green leaves using hyperspectral inputs,

demonstrating the effectiveness of this method in generating

more stable and less noisy segmentation results [21].

Although deep learning has made significant pr g Letters
among green leaves using hyperspectral inputs,
demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant progre g Letters
among green leaves using hyperspectral inputs,
demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant progre g Letters

among green leaves using hyperspectral inputs,

demonstrating the effectiveness of this method in generating

more stable and less noisy segmentation results [21].

Although deep learning has made significant pr **g Letters**
among green leaves using hyperspectral inputs,
demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant prog **g Letters**
among green leaves using hyperspectral inputs,
demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant prog **g Letters**
among green leaves using hyperspectral inputs,
demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant prog **g Letters**
among green leaves using hyperspectral inputs,
demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant prog **g Letters**
among green leaves using hyperspectral inputs,
demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant prog **Exercise 15 Secure 15 Secure 15 Secure 15 Secure 16 Secure 16** among green leaves using hyperspectral inputs,
demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant progress in
imag among green leaves using hyperspectrem
demonstrating the effectiveness of this method
more stable and less noisy segmentation
Although deep learning has made significan
image segmentation, applications involving sim
target nong green leaves using hyperspectral inputs,
monstrating the effectiveness of this method in generating
ore stable and less noisy segmentation results [21].
though deep learning has made significant progress in
age segmen demonstrating the effectiveness of this method in generating
more stable and less noisy segmentation results [21].
Although deep learning has made significant progress in
image segmentation, applications involving similarl more stable and less noisy segmentation results [21].
Although deep learning has made significant progress in
image segmentation, applications involving similarly colored
targets and backgrounds in specific scenarios conti Although deep learning has made significant progress in
image segmentation, applications involving similarly colored
targets and backgrounds in specific scenarios continue to face
inherent challenges, such as target miscla

image segmentation, applications involving similarly colored
targets and backgrounds in specific scenarios continue to face
inherent challenges, such as target misclassification,
omission, and poor segmentation of fruit ed targets and backgrounds in specific scenarios continue to face
inherent challenges, such as target misclassification,
omission, and poor segmentation of fruit edges. Nonetheless,
these advances have facilitated research in inherent challenges, such as target misclassification,
omission, and poor segmentation of fruit edges. Nonetheless,
these advances have facilitated research into the semantic
segmentation of specific targets, such as green omission, and poor segmentation of fruit edges. Nonetheless,
these advances have facilitated research into the semantic
segmentation of specific targets, such as green tomatoes, and
proposed new directions for designing an these advances have facilitated research in
segmentation of specific targets, such as gree
proposed new directions for designing and
network architectures.
However, the complexity and unstruct
facility environments present gmentation of specific targets, such as green tomatoes, and
oposed new directions for designing and optimizing deep
twork architectures.
However, the complexity and unstructured nature of
cility environments present challe proposed new directions for designing and optimizing deep
network architectures.
However, the complexity and unstructured nature of
facility environments present challenges, including variations
in lighting angles, occlusi network architectures.

However, the complexity and unstructured nature of

facility environments present challenges, including variations

in lighting angles, occlusion or overlap of fruits, collection

angles, and the si However, the complexity and unstructured nature of facility environments present challenges, including variations in lighting angles, occlusion or overlap of fruits, collection angles, and the similarity of green fruits to facility environments present challenges, including variations
in lighting angles, occlusion or overlap of fruits, collection
angles, and the similarity of green fruits to the background.
These factors impact segmentation in lighting angles, occlusion or overlap of fruits, collection
angles, and the similarity of green fruits to the background.
These factors impact segmentation accuracy and necessitate
further research and improvements. Thi

angles, and the similarity of green fruits to the background.
These factors impact segmentation accuracy and necessitate
further research and improvements. This paper proposes a
semantic segmentation model for green tomato ese factors impact segmentation accuracy and necessitate
ther research and improvements. This paper proposes a
mantic segmentation model for green tomatoes based on an
proved Swin-Unet [22]. The main contributions of this
 further research and improvements. This paper proposes a
semantic segmentation model for green tomatoes based on an
improved Swin-Unet [22]. The main contributions of this
study include:
(1) To more accurately segment gree semantic segmentation model for green tomatoes based on an
improved Swin-Unet [22]. The main contributions of this
study include:
(1) To more accurately segment green tomatoes, which are
similar in color to the background,

improved Swin-Unet [22]. The main contributions of this
study include:
(1) To more accurately segment green tomatoes, which are
similar in color to the background, this study incorporates the
Attention Gate (AG) module wit study include:

(1) To more accurately segment green tomatoes, which are

similar in color to the background, this study incorporates the

Attention Gate (AG) module within the skip connections.

Attention coefficients are (1) To more accurately segment green tomatoes, which are similar in color to the background, this study incorporates the Attention Gate (AG) module within the skip connections. Attention coefficients are designed to evalua scales. tention Gate (AG) module within the skip connections.

tention coefficients are designed to evaluate the

portance of each feature, allowing the model to focus on

tures associated with green tomatoes while suppressing

el Attention coefficients are designed to evaluate the
importance of each feature, allowing the model to focus on
features associated with green tomatoes while suppressing
irrelevant background regions.
(2) To achieve multi-s importance of each feature, allowing the model to focus on
features associated with green tomatoes while suppressing
irrelevant background regions.
(2) To achieve multi-scale extraction of green tomato
features and optimiz features associated with green tomatoes while suppressing
irrelevant background regions.
(2) To achieve multi-scale extraction of green tomato
features and optimize the smoothness of their segmentation
edges, this study pr irrelevant background regions.

(2) To achieve multi-scale extraction of

features and optimize the smoothness of their

edges, this study proposes the ASPP module in

section, which enlarges the feature receptiv

keeping ptimize the smoothness of their segmentation
dy proposes the ASPP module in the bottleneck
in enlarges the feature receptive field while
arameter quantity unchanged, enhancing the
to handle contextual information at differ

Equality proposes the ASFF module in the bottlenck

section, which enlarges the feature receptive field while

keeping the parameter quantity unchanged, enhancing the

model's ability to handle contextual information at di From the parameter quantity unchanged, enhancing the parameter quantity unchanged, enhancing the dodel's ability to handle contextual information at different alles.

(3) Experiments conducted on a custom green tomato tase segmentation in factorization of the resulting the product of shility to handle contextual information at different scales.

(3) Experiments conducted on a custom green tomato dataset demonstrate that this method outperfor scales.

Scales.

(3) Experiments conducted on a custom green tomato

dataset demonstrate that this method outperforms other

state-of-the-art techniques in accuracy and robustness.

proving to be more suitable for segment (3) Experiments conducted on a custom green tomato
dataset demonstrate that this method outperforms other
state-of-the-art techniques in accuracy and robustness.
proving to be more suitable for segmenting green tomatoes in

dataset demonstrate that this method outperforms other
dataset demonstrate that this method outperforms other
state-of-the-art techniques in accuracy and robustness.
proving to be more suitable for segmenting green tomatoe *Image Acquisition* Experimental Exerces Compare the-of-the-art techniques in accuracy and r
 NATERIALS AND METHODS
 II. MATERIALS AND METHODS
 Green Tomato Fruit Dataset

This study aims to address the challenge of Image Theorem and Contains and Theorem and Solar Theorem and Solar University the more suitable for segmenting green tomatoes in Sility environments.

II. MATERIALS AND METHODS
 Green Tomato Fruit Dataset

This study aim Froving to be introducted on organisating given tends
to facility environments.
II. MATERIALS AND METHODS
A. Green Tomato Fruit Dataset
This study aims to address the challenge of green tomato
segmentation in facility agri II. MATERIALS AND METHODS
 A. Green Tomato Fruit Dataset

This study aims to address the challenge of g

segmentation in facility agricultural environment

color similarity between green tomato fruits and

leaves compli II. MATERIALS AND METHODS
 Green Tomato Fruit Dataset

This study aims to address the challenge of green tomato

gmentation in facility agricultural environments, where the

lor similarity between green tomato fruits an A. Green Tomato Fruit Dataset

This study aims to address the challenge of green tomato

segmentation in facility agricultural environments, where the

color similarity between green tomato fruits and background

leaves c A. Green Tomato Fruit Dataset
This study aims to address the challenge of green tomato
segmentation in facility agricultural environments, where the
color similarity between green tomato fruits and background
leaves compl This study aims to address the challenge of green tomato
gmentation in facility agricultural environments, where the
lor similarity between green tomato fruits and background
wes complicates recognition, often resulting in segmentation in facility agricultural environments, where the
color similarity between green tomato fruits and background
leaves complicates recognition, often resulting in fruit
omission or confusion with branches and lea

color similarity between green tomato fruits and background
leaves complicates recognition, often resulting in fruit
omission or confusion with branches and leaves.
1) Image Collection
Image Acquisition Location: Greenho leaves complicates recognition, often resulting in fruit omission or confusion with branches and leaves.
 1) Image Collection

Image Acquisition Location: Greenhouse, Hetong Village,

Shangkou Town, Shouguang City, Weifa

g Distant view green tomato image
g Distant view green tomato image
Fig.1 Images of green tomato finits in different environments
The captured images are presented in Fig. 1. Figures 1a to to 640 × 640 pixels. The
Id displ g Distant view green tomato image

g Distant view green tomato image

Fig.1 Images of green tomato fruits in different environments

The captured images are presented in Fig. 1. Figures 1a to to 640 × 640 pixels. This ad
 g Distant view green tomato image
Fig.1 Images of green tomato fruits in different environments
Fig.1. Figures 1 at to to 640 × 640 pixels. This
Id display green tomatoes under different lighting conditions, green tomatoe g Distant view green tomato image

19 Eig.1 Images of green tomato finits in different environments

The captured images are presented in Fig. 1. Figures 1a to to 640 × 640 pixels. This

1d display green tomatoes under dif provides and viewpoints, simulating perspectives typical simulation of the september of the separation of the separation of the captured images are presented in Fig. 1. Figures 1a to to 640 × 640 pixels. This is a ld displ Fig.1 Images of green tomato image

Fig.1 Images of green tomato image

Fig.1 Images of green tomato fruits in different environments

The captured images are presented in Fig. 1. Figures 1a to to 640 × 640 pixels. This

1 g Distant view green tomato image

Fig.1 Images of green tomato fruits in different environments

The captured images are presented in Fig. 1. Figures 1a to to 640 × 640 pixels. This adji

1d display green tomatoes under d g Distant view green tomato image

Fig.1 Images of green tomato fruits in different environments

The captured images are presented in Fig.1. Figures 1a to to 640 × 640 pixels. This adj

1d display green tomatoes under dif Fig.1 Images of green tomato fruits in different environments

The captured images are presented in Fig. 1. Figures 1a to to 640 × 640 pixels. This

1d display green tomatoes under different lighting conditions, green tom Fig.1 Images of green tomato fruits in different environm

The captured images are presented in Fig.

1d display green tomatoes under different light

including natural daytime illumination (both

lighting) and nighttime i The captured images are presented in Fig. 1. Figu display green tomatoes under different lighting coluding natural daytime illumination (both front a hting) and nighttime illumination by LED lights to 1g illustrate tomato The captured images are presented in Fig. 1. Figures 1a to to 640 \times 640 pixels.

display green tomatoes under different lighting conditions, green tomatoes egn

cluding natural daytime illumination (both front and back 1d display green tomatoes under different lighting conditions, green tomato segmentation

including natural daytime illumination by LED lights. Figures adaptable to the segmentation

lighting) and nighttime illumination by including natural daytime illumination (both front and back

adaptable to the seg

lighting) and nighttime illumination by LED lights. Figures Existing datasets f

le to 1g illustrate tomato images taken from various

prox lighting) and nighttime illumination by LED lights. Figures Existing datasets for green ton le to 1g illustrate tomato images taken from various primarily designed for classifice proximities and viewpoints, simulating pers

1e to 1g illustrate tomato images taken from various

primarily designed for classificat

proximities and viewpoints, simulating perspectives typical

one cassary for semantic segment

of picking equipment in a real orchar movimities and viewpoints, simulating perspectives typical
of picking equipment in a real orchard environment. Figures the LabelMe [23] software w
th and 1i show examples of significant shading and annotate the datasets in of picking equipment in a real orchard environment. Figures the LabelMe [23] softwas the and 11 show examples of significant shading and annotate the datasets in overlapping in facility-based agricultural environments, wit The and 1 is show examples of significant shading and annotate the datasets
overlapping in facility-based agricultural environments, with
fruits obscuring one another and branches and leaves causing image, thereby provi
in

Final to the segmentation of low-resolution images.

The segmentation of low-resolution images.

Existing datasets for green tomato image classification are

primarily designed for classification tasks and lack the labels
 Existing datasets for green tomato image
to 640 × 640 pixels. This adjustment aims to optimize the
green tomato segmentation network, making it more
daptable to the segmentation of low-resolution images.
Existing datasets tomato image

i Overlapping green tomato image

to 640 × 640 pixels. This adjustment aims to optimize the

green tomato segmentation network, making it more

adaptable to the segmentation of low-resolution images.

Existin necessary for semantic segmentation. To address involved and the User Captain and the segmentation of low-resolution images.
Existing datasets for green tomato image classification are primarily designed for classification tomato image

to 640 × 640 pixels. This adjustment aims to optimize the

green tomato segmentation network, making it more

adaptable to the segmentation of low-resolution images.

Existing datasets for green tomato image tomato image in Overlapping green tomato image
to 640 \times 640 pixels. This adjustment aims to optimize the
green tomato segmentation network, making it more
adaptable to the segmentation of low-resolution images.
Existin tomato image i Overlapping green tomato image
to 640 × 640 pixels. This adjustment aims to optimize the
green tomato segmentation network, making it more
adaptable to the segmentation of low-resolution images.
Existing dat image, the station minimism and the station of low-resolution in the segmentation of low-resolution images.
Existing datasets for green tomato image classification are primarily designed for classification tasks and lack t to 640 \times 640 pixels. This adjustment aims to optimize the green tomato segmentation network, making it more adaptable to the segmentation of low-resolution images. Existing datasets for green tomato image classificatio to 640 \times 640 pixels. This adjustment aims to optimize the green tomato segmentation network, making it more adaptable to the segmentation of low-resolution images. Existing datasets for green tomato image classificatio to 640 \times 640 pixels. This adjustment aims to optimize the
green tomato segmentation network, making it more
adaptable to the segmentation of low-resolution images.
Existing datasets for green tomato image classificatio green tomato segmentation network, making it more
adaptable to the segmentation of low-resolution images.
Existing datasets for green tomato image classification are
primarily designed for classification tasks and lack the adaptable to the segmentation of low-resolution images.
Existing datasets for green tomato image classification are
primarily designed for classification tasks and lack the labels
necessary for semantic segmentation. To ad xisting datasets for green tomato image classification are
imarily designed for classification tasks and lack the labels
cessary for semantic segmentation. To address this issue,
elections at a subset of the datasets in de primarily designed for classification tasks and lack the labels
necessary for semantic segmentation. To address this issue,
the LabelMe [23] software was employed to manually
annotate the datasets in detail. This process i necessary for semantic segmentation. To address this issue,
the LabelMe [23] software was employed to manually
annotate the datasets in detail. This process involved
generating category labels and annotation points for eac the LabelMe [23] software was employed to manually
annotate the datasets in detail. This process involved
generating category labels and annotation points for each
image, thereby providing the essentation ground truth
info annotate the datasets in detail. This process involved
generating category labels and annotation points for each
image, thereby providing the essentation ground truth
information for semantic segmentation. All annotation d

Dataset Class Images Instances Small Medium
 $(0 \leq \text{area} < 32^2)$ $(32^2 \leq \text{area} < 96^2)$

Train tomato 1066 4752 3 (0.06%) 232(4.88%)

Test tomato 267 1442 5 (0.35%) 187(12.97%)

Green tomato fruits were categorize $(0 \le \text{area} < 32^2)$ $(32^2 < \text{area} \le 12^2)$

Train tomato 1066 4752 3 (0.06%) 232(4.8

Test tomato 267 1442 5 (0.35%) 187(12.9

Green tomato fruits were categorized into small-scale, Swin Transformer wit

medium-scale, a $(0 \leq \text{area} < 32^2)$ $(32 \leq \text{area} < 96^2)$

Train tomato 1066 4752 3 (0.06%) 232(4.88%)

Test tomato 267 1442 5 (0.35%) 187(12.97%)

Green tomato fruits were categorized into small-scale, Swin Transformer with the

medi Train tomato 1066 4752 3 (0.06%) 232(4.88%)

Test tomato 267 1442 5 (0.35%) 187(12.97%)

Green tomato fruits were categorized into small-scale, Swin Transformer with the

medium-scale, and large-scale classes accordin Test tomato 1000 $-1/2$
Test tomato 267 144
Green tomato fruits were categorized into small
medium-scale, and large-scale classes according
criteria used in the Microsoft COCO [24] dataset. The
of each fruit instanc First tomato 267 1442 5 (0.53%) 167

Green tomato fruits were categorized into small-scale, Swin Transformer

medium-scale, and large-scale classes according to the capabilities of U-N

criteria used in the Microsoft COCO Green tomato fruits were categorized into small-scale,

dium-scale, and large-scale classes according to the capabilities of U-Net, resulteria used in the Microsoft COCO [24] dataset. The area

teria used in the Microsoft medium-scale, and large-scale classes according to the

criteria used in the Microsoft COCO [24] dataset. The area

of each fruit instance was determined by the number of

pixels in its corresponding mask to evaluate the p oriential time intervention, overlapping branches and foliage, and variable signify that the substitution of the substitution of the substitution, with the substitution, with is controlled to the algorithm. Table I provide

pixels in its corresponding mask to evaluate the performance
of the algorithm. Table I provides the relevant details. It is images with complex back
noteworthy that the number of small-scale fruits is relatively consists For the algorithm. Table I provides the relevant details. It is

images with complex back

noteworthy that the number of small-scale fruits is relatively

noteworthy that the number of small-scale fruits is relatively

con From the similar to the background, their boundaries are often information and Skip Connection and Skip Connection and Skip Connection are counting for 0.35%.

In facility-based agricultural environments, image and downsam Ion, with only three small targets in the training set,

Ion, with only three small targets in the validation set

accounting for 0.35%.

Einear Embedding technication of Swin-Unet Segmentation Model

In facility-based agr representing 0.06%, and small targets in the validation set

representing 0.06%, and small targets in the validation set

accounting for 0.35%.
 B. Optimization of Swin-Unet Segmentation Model

In facility-based agricult accounting for 0.35%.
 Examples are the interpretation Model

In facility-based agricultural environments, image

In facility-based agricultural environments, image

and downsampling the incorporates and Artous

acquisi **Examing the set of**
 B. Optimization of Swin-Unet Segmentation Model

and downsampling through

and downsampling through

accupation is challenging due to complex backgrounds

acculusion, overlapping branches and folia *B. Optimization of Swin-Unet Segmentation Model*

In facility-based agricultural environments, image

acquisition is challenging due to complex backgrounds,

ighting condusion, overlapping branches and doinge, and variab In facility-based agricultural environments, image
acquisition is challenging due to complex backgrounds,
acquisition, overlapping branches and foliage, and variable
including downlight, backlight, and foliage and expand acquisition is challenging due to complex backgrounds,

including coclusion, overlapping branches and foliage, and variable

ilghting conditions (including downlight, backlight, and

ilghting conditions (including downligh occlusion, overlapping branches and foliage, and variable

ighting conditions (including downlight, backlight, and

ighttime environments), all of which can adversely affect

image quality. Specifically, for green fruits w lighting conditions (including downlight, backlight, and

inghttime environments), all of which can adversely affect

image quality. Specifically, for green fruits with colors

similar to the background, their boundaries mighttime environments), all of which can adversely affect layers, a
image quality. Specifically, for green fruits with colors image sizual
similar to the background, their boundaries are often informal
indistinct, which image quality. Specifically, for green fruits with colors

implairs implaires. Additionally, an

imilar to the background, their boundaries are often

indistinct, which significantly complicates accurate

information part imilar to the background, their boundaries are often

indistinct, which significantly complicates accurate

information while suppress

segmentation [25]. Additionally, a notable issue in the

information while suppress

i indistinct, which significantly complicates accurate

segmentation Valie segmentation (25). Additionally, a notable issue in the

architecture information while

directively integrates

fruits. The lack of adequate labeled segmentation [25]. Additionally, a notable issue in the improved segmentation accomparison of specific types of fruits, such as green fruits. The lack of adequate labeled samples to train issues in fruits. The lack of adeq

of each fruit instance was determined by the number of
pixels in its corresponding mask to evaluate the performance
information, which is crucial
of the algorithm. Table I provides the relevant details. It is
mages with co Target Amount

Small Medium Large

area<32²) $(32^2 \le \text{area} < 96^2)$ $(96^2 \le \text{area})$
 0.06% $232(4.88\%)$ $4517(95.06\%)$
 (0.35%) $187(12.97\%)$ $1250(86.68\%)$

Swin Transformer with the high-precision segmentation

c Small Medium Large

area<32²) $(32^2 \le \text{area} \le 96^2)$ $(96^2 \le \text{area})$
 0.06% $232(4.88\%)$ $4517(95.06\%)$
 (0.35%) $187(12.97\%)$ $1250(86.68\%)$

Swin Transformer with the high-precision segmentation

capabilities of U consists of four main components: Encoder, and Skip Consists of four main components: Encoder, and Skip Consists of the main compon area<32²) $(32\textdegree\textdegree\cdot486\textdegree\textdegree)$ $(96\textdegree\textdegree\cdot486\textdegree\textdegree)$
 0.06% $232(4.88\%)$ $4517(95.06\%)$
 (0.35%) $187(12.97\%)$ $1250(86.68\%)$

Swin Transformer with the high-precision segmentation

capabilities of U-Net, resu 0.06%) $232(4.88\%)$ $4517(95.06\%)$
 (0.35%) $187(12.97\%)$ $1250(86.68\%)$

Swin Transformer with the high-precision segmentation

capabilities of U-Net, resulting in an imovative framework.

Through its unique design, th (0.35%) 187(12.97%) 1250(86.68%)

Swin Transformer with the high-precision segmentation

capabilities of U-Net, resulting in an imovative framework.

Through its unique design, the model effectively addresses

long-range (0.35%) 187(12.97%) 1250(86.68%)

Swin Transformer with the high-precision segmentation

capabilities of U-Net, resulting in an innovative framework.

Through its unique design, the model effectively addresses

long-range Swin Transformer with the high-precision segmentation
capabilities of U-Net, resulting in an innovative framework.
Through its unique design, the model effectively addresses
long-range dependency issues while preserving sp Swin Transformer with the high-precision segmentation capabilities of U-Net, resulting in an innovative framework.
Through its unique design, the model effectively addresses long-range dependency issues while preserving sp capabilities of U-Net, resulting in an innovative framework.
Through its unique design, the model effectively addresses
long-range dependency issues while preserving spatial
information, which is crucial for segmenting gre Through its unique design, the model effectively addresses
long-range dependency issues while preserving spatial
information, which is crucial for segmenting green tomato
images with complex backgrounds. The optimized mode long-range dependency issues while preserving spatial
information, which is crucial for segmenting green tomato
images with complex backgrounds. The optimized model
consists of four main components: Encoder, Bottleneck,
De information, which is crucial for segmenting green tomato images with complex backgrounds. The optimized model
consists of four main components: Encoder, Bottleneck,
Decoder, and Skip Connection (Fig. 3). In the Encoder st images with complex backgrounds. The optimized model
consists of four main components: Encoder, Bottleneck,
Decoder, and Skip Connection (Fig. 3). In the Encoder stage,
the model adjusts channel numbers using Patch Partiti consists of four main components: Encoder, Bottleneck,
Decoder, and Skip Connection (Fig. 3). In the Encoder stage,
the model adjusts channel numbers using Patch Partition and
Linear Embedding techniques to achieve feature Decoder, and Skip Connection (Fig. 3). In the Encoder stage,
the model adjusts channel numbers using Patch Partition and
Linear Embedding techniques to achieve feature extraction
and downsampling through multiple Swin Tran the model adjusts channel numbers using Patch Partition and
Linear Embedding techniques to achieve feature extraction
and downsampling through multiple Swin Transformer
Blocks and Patch Merging layers. The Bottleneck stage Linear Embedding techniques to achieve feature extraction
and downsampling through multiple Swin Transformer
Blocks and Patch Merging layers. The Bottleneck stage
incorporates an Atrous Spatial Pyramid Pooling (ASPP)
modul and downsampling through multiple Swin Transformer
Blocks and Patch Merging layers. The Bottleneck stage
incorporates an Atrous Spatial Pyramid Pooling (ASPP)
module [26] to capture image information at various scales
and ocks and Patch Merging layers. The Bottleneck stage
corporates an Atrous Spatial Pyramid Pooling (ASPP)
Jodule [26] to capture image information at various scales
d expand receptive fields. In the Decoder stage, multiple
v corporates an Atrous Spatial Pyramid Pooling (ASPP)

odule [26] to capture image information at various scales

d expand receptive fields. In the Decoder stage, multiple

vin Transformer modules, along with Patch Expanding module [26] to capture image information at various scales
and expand receptive fields. In the Decoder stage, multiple
Swin Transformer modules, along with Patch Expanding
layers, are employed for upsampling and restoring and expand receptive fields. In the Decoder stage, multiple
Swin Transformer modules, along with Patch Expanding
layers, are employed for upsampling and restoring feature
map sizes. Additionally, an Attention Gate (AG) mod Swin Transformer modules, along with Patch Expanding
layers, are employed for upsampling and restoring feature
map sizes. Additionally, an Attention Gate (AG) module [27]
is introduced in skip connections to enhance target

layers, are employed for upsampling and restoring feature
map sizes. Additionally, an Attention Gate (AG) module [27]
is introduced in skip connections to enhance target feature
information while suppressing irrelevant det map sizes. Additionally, an Attention Gate (AG) module [27]
is introduced in skip connections to enhance target feature
information while suppressing irrelevant details for
improved segmentation accuracy. This entire proce is introduced in skip connections to enhance target feature
information while suppressing irrelevant details for
improved segmentation accuracy. This entire process
effectively integrates multi-scale information, enhancing information while suppressing irrelevant details for
improved segmentation accuracy. This entire process
effectively integrates multi-scale information, enhancing the
segmentation results of green tomato images.
I) Target improved segmentation accuracy. This entire process
effectively integrates multi-scale information, enhancing the
segmentation results of green tomato images.
I) Target Feature Enhancement Module
In complex scenarios whe

My32xHy32x8C

My32xHy32x8C

Eig. 3. Structure of the green tomato segmentation model optimized based on Swin-Unet

suppressing less important areas. By calculating attention

coefficients for each feature, the model adjus W/32xH/32x8C

Fig. 3. Structure of the green tomato segmentation model optimized based on Swin-Unet

suppressing less important areas. By calculating attention These parts are then we

coefficients for each feature, the m W/32xH/32x8C

Fig. 3. Structure of the green tomato segmentation model optimized based on Swin-Unet

suppressing less important areas. By calculating attention

coefficients for each feature, the model adjusts the weights $W/32xH/32x8C$
Fig. 3. Structure of the green tomato segmentation model opt
suppressing less important areas. By calculating
coefficients for each feature, the model adjusts tl
of the feature maps, directing the network's Skip connections merge features from the encoder and

Skip continuous experimentation model optimized based on Swin-Unet

ppressing less important areas. By calculating attention These parts are then we

efficients for ea Fig. 3. Structure of the green tomato segmentation model optimized based on Swin-Unet
suppressing less important areas. By calculating attention These parts are then vecefficients for each feature, the model adjusts the w suppressing less important areas. By calculating attention
coefficients for each feature, the model adjusts the weights
of the feature maps, directing the network's focus towards
the target area rather than the background suppressing less important areas. By calculating attention
coefficients for each feature, the model adjusts the weights
of the feature maps, directing the network's focus towards
the target are are then the background. Th

coefficients for each feature, the model adjusts the weights
of the feature maps, directing the network's focus towards
the target area rather than the background. This optimization
the Sigmoid activation func
not only im of the feature maps, directing the network's focus towards
the target area rather than the background. This optimization
not only improves the model's learning process, making it
more efficient in extracting key features, the target area rather than the background. This optimization

not only improves the model's learning process, making it

significantly enhances overall accuracy. Specifically, in the segmentation of green tomatoes, it no not only improves the model's learning process, making it

more efficient in extracting key features, but also weight in the fusion, wh

significantly enhances overall accuracy. Specifically, in the

significantly enhance more efficient in extracting key features, but also weight in the fusion, we
significantly enhances overall accuracy. Specifically, in the feature's weight is low
segmentation of green tomatoes, it notably increases alloc significantly enhances overall accuracy. Specifically, in the feature's weight is low
degeneration of green tomatoes, it notably increases allocation enables the m
diagnostic accuracy.
features based on the cord
decoder, segmentation of green tomatoes, it notably increases

diagnostic accuracy.

diagnostic accuracy.

decoder, reserving the spatial integrity of the image while

enhancing the model's ability to recognize details, such as

e diagnostic accuracy.

Skip connections merge features from the encoder and

decoder, preserving the model's ability to recognize details, such as

endancing the model's ability to recognize details, such as

endages, whic Skip connections merge features from the encoder and

decoder, preserving the spatial integrity of the image while

enhancing the model's ability to recognize details, such as

edges, which are crucial for the segmentatio decoder, preserving the spatial integrity of the image while

enhancing the model's ability to recognize details, such as

edges, which are crucial for the segmentation of green

tomatoes. The incorporation of the Attenti enhancing the model's ability to recognize details, such as

edges, which are crucial for the segmentation of green

subsequently, through another

tomatoes. The incorporation of the Attention Gate (AG)

and the attention edges, which are crucial for the segmentation of green

tomatoes. The incorporation of the Attention Gate (AG)

module into skip connections further amplifies this

are attention coefficier

are transformed into skip come tomatoes. The incorporation of the Attention Gate (AG)

module into skip connections further amplifies this

advantage by enabling dynamic feature weight allocation.

This allows the model to flexibly adjust its focus on transformations.

Swin Transformer

Block x1

Club and method and merged, and an

antention coefficient ζ , ranging from 0 to 1, is obtained via
 Swin Transformer
Block x1
in-Unet
These parts are then weighted and merged, and an
attention coefficient ζ , ranging from 0 to 1, is obtained via
the Sigmoid activation function by adding g_1 and x_1 . When
 ζ is **For all of the COLOGET**
 FEATURE SET IS SET ASSESS TO THE SET AND A THE SET AND WEIGHT WEIGHT IN SURVEY IT IS CONSERVED WEIGHT WEIGHT WEIGHT WEIGHT I EXECUTE:
 EXECUTE:
 EXEC Finction
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet
fin-Unet on the content of the image, and x₁. When
 ζ is close to 1, the correspo These parts are then weighted and merged, and an
attention coefficient ζ , ranging from 0 to 1, is obtained via
the Sigmoid activation function by adding g_1 and x_1 . When
 ζ is close to 1, the corresponding fea These parts are then weighted and merged, and an attention coefficient ζ , ranging from 0 to 1, is obtained via the Sigmoid activation function by adding g₁ and x₁. When ζ is close to 1, the corresponding featu the Sigmoid activation function by adding g_1 and x_1 . When ζ is close to 1, the corresponding feature has a higher weight in the fusion, whereas when ζ is close to 0, the feature's weight is lower. This dynam ζ is close to 1, the corresponding feature has a higher
weight in the fusion, whereas when ζ is close to 0, the
feature's weight is lower. This dynamic feature weight
allocation enables the model to flexibly adjus

$$
\zeta = Sigmoid(g_1 + x_1) \tag{1}
$$

weight in the fusion, whereas when ζ is close to 0, the
feature's weight is lower. This dynamic feature weight
allocation enables the model to flexibly adjust its focus on
features based on the content of the image, t there is a close to 0, the

ther. This dynamic feature weight

del to flexibly adjust its focus on

ent of the image, thus determining

ture.
 $l(g_1 + x_1)$ (1)

another linear transformation φ ,

s are adjusted to match weight in the tusion, whereas when ζ is close to
feature's weight is lower. This dynamic feature
allocation enables the model to flexibly adjust its f
features based on the content of the image, thus dete
the importan features based on the content of the image, thus determining
the importance of each feature.
 $\zeta = Sigmoid(g_1 + x_1)$ (1)
Subsequently, through another linear transformation φ ,
the attention coefficients are adjusted to match the importance of each feature.
 $\zeta = Sigmoid(g_1 + x_1)$ (1)

Subsequently, through another linear transformation φ ,

the attention coefficients are adjusted to match the

dimensions of the feature map x. These coefficients

$$
x^{\sim} = \varphi(\zeta) \odot x \tag{2}
$$

 ζ = *Sigmoid* ($g_1 + x_1$) (1)

Subsequently, through another linear transformation φ ,

the attention coefficients are adjusted to match the

dimensions of the feature map x. These coefficients are then

multiplied Subsequently, through another linear transformation φ ,
the attention coefficients are adjusted to match the
dimensions of the feature map x. These coefficients are then
multiplied by the encoder feature map x to obtai Subsequently, through another linear transformation φ ,
the attention coefficients are adjusted to match the
dimensions of the feature map x. These coefficients are then
multiplied by the encoder feature map x to obtai the attention coefficients are adjusted to match the
dimensions of the feature map x. These coefficients are then
multiplied by the encoder feature map x to obtain the
weighted feature map x⁻, thereby accomplishing feat dimensions of the feature map x. These coefficients are then
multiplied by the encoder feature map x to obtain the
weighted feature map x⁻, thereby accomplishing feature
selection and enhancement.
 $x^{\sim} = \varphi(\zeta) \odot x$ (2

Fig.5. Atrous spatial pyramid pooling Module

Prom 1x1 meanuple

Prince Edge Restoration Module

2) Multiscale Edge Restoration Module

In the encoder-decoder architecture used for green tomato (ASPP) module is illustrate Fig.5. Atrous spatial pyramid pooling Module

2) Multiscale Edge Restoration Module

11 the encoder-decoder architecture used for green tomato (ASPP) module is empimage segmentation, the encoder expands the receptive fiel Aspect of the mechanism for the product of the mechanism of the mechanism and the mechanism for the encoder architecture used for green tomato (ASPP) module is employed are segmentation, the encoder expands the receptive Fig.5. Atrous spatial pyramid pooling Module

2) Multiscale Edge Restoration Module

In the encoder-decoder architecture used for green tomato (ASPP) module is employed.

image segmentation, the encoder expands the recepti Fig.5. Atrous spatial pyramid pooling Module

2) Multiscale Edge Restoration Module

In the encoder-decoder architecture used for green tomato (ASPP) module is employed

image segmentation, the encoder expands the recepti

2) Multiscale Edge Restoration Module

In the encoder architecture used for green tomato (ASPP) module is image segmentation, the encoder expands the receptive field module is illustrated in image segmentation, the neoder 2) Multiscale Edge Restoration Module

In the encoder-decoder architecture used for green tomato (ASPP) module is employ

image segmentation, the encoder expands the receptive field

incolume is illustrated in Fi

through In the encoder-decoder architecture used for green tomato (ASPP) module is employed

image segmentation, the encoder expands the receptive field module is illustrated in Fig.

through downsampling, while the decoder resto image segmentation, the encoder expands the receptive field

incough downsampling, while the decoder restores the

incough incourse can result in the loss of semantic features at the handling the detail

edges of green to through downsampling, while the decoder restores the

image to its original size via upsampling. However, this

different scales, enhancing

process can result in the loss of semantic features at the

dedges of green toma image to its original size via upsampling. However, this

different scales, enhancing t

process can result in the loss of semantic features at the

indimig the details of green to

edges of green tomatoes and the neglect process can result in the loss of semantic features at the

information, which adversely affects segmentation accuracy.

ASPP is a spatial attention mechanism for image

ASPP is a spatial attention mechanism for image

AS edges of green tomatoes and the neglect of contextual
information, which adversely affects segmentation accuracy.
ASPP is a spatial attention mechanism for image
segmentation accuracy.
ASPP is a spatial attention mechanism information, which adversely affects segmentation accuracy.

ASPP is a spatial attention mechanism for image $\frac{3}{2}$ *Loss Function*

segmentation modeling designed to improve the capture of The goal of green tomato

co ASPP is a spatial attention mechanism for image 3) Loss Function segmentation modeling designed to improve the capture of The goal of green contextual information. This module effectively captures the accurately recognize segmentation modeling designed to improve the capture of
contextual information. This module effectively captures the
corvolutions at different scales, thereby integrating these
corrollation, ensuring
convolutions at diffe contextual information. This module effectively captures the
features of green tomato images through dilated classification, ensuring a
convolutions at different scales, thereby integrating these
features to strengthen the features of green tomato images through dilated classification, ensuring
convolutions at different scales, thereby integrating these
the beat promotos and
semantic content of the images. The ASPP module consists imbalance convolutions at different scales, thereby integrating these

features to strengthen the model's understanding of the the green tomatoes and

semantic content of the images. The ASPP module consists

imbalance in the number features to strengthen the model's understanding of the the green tomatoes and the sexuatoric content of the images. The ASPP module consists imbalance in the numbest content of the images. One 1x1 convolution primarily fo semantic content of the images. The ASPP module consists

of five parallel branches: one 1x1 convolution primarily for

extracting local information and reducing the number of

extracting local information and reducing the of five parallel branches: one 1x1 convolution primarily for
extracting local information and reducing the number of
parameters; three 3x3 dilated convolutions with different
leading to an increasing dilation rates (6, 12, extracting local information and reducing the number of adequately learn the featur parameters; three 3x3 dilated convolutions with different leading to an increase dilation rates (6, 12, 18), allowing the convolution kern parameters; three 3x3 dilated convolutions with different

dilation rates (6, 12, 18), allowing the convolution kernels to

consequently, this issue seric

cover a broader input area without increasing the number of

the s dilation rates (6, 12, 18), allowing the convolution kernels to
consequently, this isse
cover a broader input area without increasing the number of
information. ASPP enlarges the receptive field through
convolutions with v cover a broader input area without increasing the number of
parameters, thereby aiding in capturing wider contextual
information. ASPP enlarges the receptive field through
convolutions with varying dilation rates, better c

To address this issue, the Atrous Spatial Pyramid Pooling
(ASPP) module is employed. The structure of the ASPP
module is illustrated in Fig. 5. This module effectively
captures detailed features through atrous convolution
 To address this issue, the Atrous Spatial Pyramid Pooling
(ASPP) module is employed. The structure of the ASPP
module is illustrated in Fig. 5. This module effectively
captures detailed features through atrous convolution To address this issue, the Atrous Spatial Pyramid Pooling
(ASPP) module is employed. The structure of the ASPP
module is illustrated in Fig. 5. This module effectively
captures detailed features through atrous convolution
 preserving the Atrons Spatial Pyramid Pooling

(ASPP) module is employed. The structure of the ASPP

module is illustrated in Fig. 5. This module effectively

captures detailed features through atrous convolution

differen J

To address this issue, the Atrous Spatial Pyramid I

(ASPP) module is employed. The structure of the

module is illustrated in Fig. 5. This module effe

captures detailed features through atrous conve

different scales, *3* A address this issue, the Atrous Spatial Pyram
 SPP) module is employed. The structure of
 3 Devices *a* illustrated in Fig. 5. This module
 8 ptures detailed features through atrous cofferent scales, enhancing t ondent and is issue, the Atrous Spatial Pyramid Pooling
SPP) module is employed. The structure of the ASPP
podule is illustrated in Fig. 5. This module effectively
ptures detailed features through atrous convolution
fferen To address this issue, the Atrous Spatial Pyramid Pooling
(ASPP) module is employed. The structure of the ASPP
module is illustrated in Fig. 5. This module effectively
captures detailed features through atrous convolution
 To address this issue, the Atrous Spatial Pyramid Pooling
(ASPP) module is employed. The structure of the ASPP
module is illustrated in Fig. 5. This module effectively
captures detailed features through atrous convolution
 To address this issue, the Atrous Spatial Pyramid Pooling
(ASPP) module is employed. The structure of the ASPP
module is illustrated in Fig. 5. This module effectively
captures detailed features through atrous convolution

(ASPP) module is employed. The structure of the ASPP
module is illustrated in Fig. 5. This module effectively
captures detailed features through atrous convolution
different scales, enhancing the model's performance in
ha module is illustrated in Fig. 5. This module effectively
captures detailed features through atrous convolution
different scales, enhancing the model's performance in
handling the details of green tomato edges, and signific captures detailed features through atrous convolution
different scales, enhancing the model's performance in
handling the details of green tomato edges, and significantly
preserving edge details and significantly improving different scales, enhancing the model's performance in
handling the details of green tomato edges, and significantly
preserving edge details and significantly improving
segmentation accuracy.
3) Loss Function
The goal of g handling the details of green tomato edges, and significantly
preserving edge details and significantly improving
segmentation accuracy.
3) Loss Function
The goal of green tomato image segmentation is to
accurately recogni preserving edge details and significantly improving
segmentation accuracy.
3) Loss Function
The goal of green tomato image segmentation is to
accurately recognize green tomatoes through pixel-level
classification, ensuring segmentation accuracy.
3) Loss Function
The goal of green tomato image segmentation is to
accurately recognize green tomatoes through pixel-level
classification, ensuring a clear distinction from the
background. However, a 3) Loss Function
The goal of green tomato image segmentation is to
curately recognize green tomatoes through pixel-level
assification, ensuring a clear distinction from the
ekground. However, a significant size difference The goal of green tomato image segmentation is to
accurately recognize green tomatoes through pixel-level
classification, ensuring a clear distinction from the
background. However, a significant size difference between
the accurately recognize green tomatoes through pixel-level
classification, ensuring a clear distinction from the
background. However, a significant size difference between
the green tomatoes and the background, resulting in a classification, ensuring a clear distinction from the background. However, a significant size difference between the green tomatoes and the background, resulting in an imbalance in the number of pixels between the two cate

background. However, a significant size difference between
the green tomatoes and the background, resulting in an
imbalance in the number of pixels between the two
categories. This imbalance makes it difficult for the mode the green tomatoes and the background, resulting in an
imbalance in the number of pixels between the two
categories. This imbalance makes it difficult for the model to
adequately learn the features of the green tomatoes, o imbalance in the number of pixels between the two
categories. This imbalance makes it difficult for the model to
adequately learn the features of the green tomatoes, often
leading to an increase in false-negative predictio categories. This imbalance makes it difficult for the model to
adequately learn the features of the green tomatoes, often
leading to an increase in false-negative predictions.
Consequently, this issue seriously impacts the adequately learn the features of the green tomatoes, often leading to an increase in false-negative predictions.
Consequently, this issue seriously impacts the accuracy of the semantic segmentation of green tomatoes [29]. leading to an increase in false-negative predictions.
Consequently, this issue seriously impacts the accuracy of
the semantic segmentation of green tomatoes [29].
The Cross Entropy Loss (CE Loss) function is employed
to ca Consequently, this issue seriously impacts the accuracy of the semantic segmentation of green tomatoes [29]. The Cross Entropy Loss (CE Loss) function is employed to calculate the prediction accuracy for each pixel and the follows:

	TABLE II COMPARATIVE RESULTS OF THE IMPACT OF ASPP AND AG MODULES ON SWIN-UNET							
	Base Model	ASPP	AG	$PA(\%)$	$Dice(\%)$	$IoU(\%)$		
		\times	\times	93.0	86.5	76.3		
	Swin-Unet	\times		96.0	87.6	77.9		
			\times	96.8	90.2	82.2		
	Swin-Unet			97.5	92.4	85.9		
$Loss_{ce} = -\frac{1}{N} \sum_{i=1}^{N} [y_i log(y_i') + (1 - y_i) log(1 - y_i')]$			(3)		balance between Cross Entropy Loss and Dice Loss.	III. RESULTS AND ANALYSIS		
To effectively address the imbalance problem, Dice Loss is adopted. This loss function calculates the loss by comparing the similarity between the predicted probabilities and the true labels, making it particularly suitable for addressing category imbalance. Dice Loss ensures that the model optimizes the prediction of frequent categories while also noving ettention to infragment estageries. Consequently				To better validate the effectiveness of the model for green tomato segmentation, a series of experiments were conducted in this study. The experimental details were meticulously described, and the results were compared and analyzed. During the training process, the optimal model was selected and applied to the validation set to facilitate a				

$$
Loss_{ce} = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(y_i') + (1 - y_i) \log(1 - y_i')] \qquad (3)
$$
 balance b

Swin-Unet

^x 96.0 87.6

Swin-Unet

⁷ 97.5 92.4

Loss_{ce} = $-\frac{1}{N}\sum_{i=1}^{N} [y_i \log(y'_i)+(1-y_i) \log(1-y'_i)]$ (3)

To effectively address the imbalance problem, Dice Loss

is adopted. This loss function calculates the loss b Swin-Unet
 \angle 50.0 8/.6 96.0 8/.6

Swin-Unet
 \angle 7 × 96.8 90.2

Swin-Unet
 \angle 7 × 96.8 90.2

Swin-Unet
 \angle 7 × 96.8 90.2

Sum-Unet
 \angle 7 × 96.8 90.2

Sum-Unet
 \angle 7 × 96.8 90.2

Sum-Unet
 \angle 97.5 92.4

Sum-U Swin-Unet v × 96.8 90.2

Swin-Unet v 97.5 92.4
 $Loss_{ce} = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(y'_i)+(1-y_i) \log(1-y'_i)]$ (3)

To effectively address the imbalance problem, Dice Loss

is adopted. This loss function calculates the loss by

comparing Swin-Unet **V** 97.5
 $Loss_{ce} = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(y_i') + (1-y_i) \log(1-y_i')]$ (3)

To effectively address the imbalance problem, Dice Loss

is adopted. This loss function calculates the loss by

comparing the similarity between the Swin-Unet
 $Loss_{ce} = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(y'_i) + (1-y_i) \log(1-y'_i)]$ (3)

To effectively address the imbalance problem, Dice Loss

is adopted. This loss function calculates the loss by

to better validate the effect

comparing the Loss_{ce} = $-\frac{1}{N}\sum_{i=1}^{N} [y_i \log(y'_i)+(1-y_i)\log(1-y'_i)]$ (3)

To effectively address the imbalance problem, Dice Loss

is adopted. This loss function calculates the loss by

comparing the similarity between the predicted probabi To encertrely attention and protectively attention content the protection calculates the loss by To better validate the effection aparamig the similarity between the predicted probabilities conducted in this study. The di is adopted. This loss function calculates the loss by
comparing the similarity between the predicted probabilities
and the true labels, making it particularly suitable for
addressing category imbalance. Dice Loss ensures

L oss
$$
{\text{dice}} = 1 - \frac{2 \sum{i=1}^{N} y_i^T y_i}{\sum_{i=1}^{N} y_i^T + \sum_{i=1}^{N} y_i}
$$
 (4) proposed model in this s
\n*A. Experimental Environ* The experimental set

$$
\frac{\partial Loss_{dice}}{\partial y'_i} = -\frac{2 y_i^2}{(y'_i + y_i)^2}
$$
 (5) NVIDIA

model optimizes the prediction of frequent categories while

use selected and applied

it effectively mitigates the model's bias toward the

decorative experiment

background in green tomato segmentation.

Loss $\lim_{\delta x \to$ also paying attention to infrequent categories. Consequently,

it effectively mitigates the model's bias toward the

background in green tomato segmentation.

Loss $\lim_{dx} = 1 - \frac{2 \sum_{i=1}^{x} y_i^2 y_i}{\sum_{i=1}^{x} y_i^2 + \sum_{i=1}^{y} y$ t effectively mitigates the model's bias toward the

anackground in green tomato segmentation.

Loss $\frac{1}{\omega_{\text{new}}} = 1 - \frac{2 \sum_{i=1}^{N} y_i^* y_i}{\sum_{i=1}^{N} y_i^* + \sum_{i=1}^{N} y_i}$ (4) proposed model in this study

The gradient form background in green tomato segmentation.

Loss $\omega_c = 1 - \frac{2 \sum_{i=1}^{8} y_i^2 y_i}{\sum_{i=1}^{8} y_i^2 + \sum_{i=1}^{8} y_i}$ (4) proposed model in this stu-

The gradient form of the Dice Loss is complex, and its

The experimental Environ T *L* oss $\frac{z}{4\alpha} = 1 - \frac{2 \sum_{i=1}^{x} y_i' y_i}{\sum_{i=1}^{x} y_i' + \sum_{i=1}^{x} y_i}$ (4) proposed model in t

The gradient form of the Dice Loss is complex, and its

formula is as follows:
 $\frac{\partial Loss_{\text{dec}}}{\partial y_i'} = - \frac{2 y_i^2}{(y_i' + y_i)^2}$ (5) *L* oss $\frac{d}{dx} = 1 - \frac{2}{\sum_{i=1}^{n} y_i} + \sum_{i=1}^{n} y_i$

The gradient form of the Dice Loss is complex, and its

formula is as follows:
 $\frac{\partial Loss_{dice}}{\partial y'_i} = -\frac{2y_i^2}{(y'_i + y_i)^2}$

(5) NVIDIA A30, with C

Based on (5), it can be **Example 1** $\sum_{i=1}^{n} y_i + \sum_{i=1}^{n} y_i$

The gradient form of the Dice Loss is complex, and its

formula is as follows:

formula is as follows:
 $\frac{\partial Loss_{dice}}{\partial y'_i} = -\frac{2y_i^2}{(y'_i + y_i)^2}$

(5) NVIDIA A30, with CUDA

run using The gradient form of the Dice Loss is complex, and its
formula is as follows:
 $\frac{\partial Loss_{dice}}{\partial y'_i} = -\frac{2 y_i^2}{(y'_i + y_i)^2}$ (5) NVI
Based on (5), it can be inferred that, in extreme scenario B. 1
when the values of andare very s $\frac{\partial Loss_{\text{dec}}}{\partial y_i^r} = -\frac{2y_i^2}{(y_i^r + y_i)^2}$ (5) NVIDIA A30, with CUDA v

Based on (5), it can be inferred that, in extreme scenario B. Parameter Settings

when the values of andare very small, the gradient values of the i $\frac{\partial y_i}{\partial y_i} = -\frac{y_i}{(y_i + y_i)^2}$ run using Python version
Based on (5), it can be inferred that, in extreme scenario B. Parameter Settings
when the values of andare very small, the gradient values Prior to inputting int
ma Based on (5), it can be inferred that, in extreme scenario B. Parameter Settings
when the values of andare very small, the gradient values Their coefficient to may become very large, potentially leading to more
may become Bessou on (5), it can be interested and the values of andare very small, the gradient values of ensure with the values may become very large, potentially leading to more were uniformly fixed at unstable training. To comp

$$
Loss = \alpha Loss_{ce} + (1 - \alpha) Loss_{dice}
$$
 (6)

2 $\sum_{i=1}^{n} y_i' y_i$ (4) proposed model in this study. $f(A(9) = B(16))$
 $96.0 = 86.5$ 76.3
 $96.0 = 87.6$ 77.9
 $96.8 = 90.2$ 82.2
 $97.5 = 92.4$ 85.9

balance between Cross Entropy Loss and Dice Loss.

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the 93.0 86.5 76.3

96.0 87.6 77.9

96.8 90.2 82.2

97.5 92.4 85.9

balance between Cross Entropy Loss and Dice Loss.

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the model for green

tomato segmentatio 96.0 87.6 77.9

96.8 90.2 82.2

97.5 92.4 85.9

balance between Cross Entropy Loss and Dice Loss.

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the model for green

tomato segmentation, a series of e 96.8 90.2 82.2

97.5 92.4 85.9

balance between Cross Entropy Loss and Dice Loss.

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the model for green

tomato segmentation, a series of experiments were
 96.8 90.2 82.2

97.5 92.4 85.9

balance between Cross Entropy Loss and Dice Loss.

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the model for green

tomato segmentation, a series of experiments were
 97.5 92.4 85.9

balance between Cross Entropy Loss and Dice Loss.

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the model for green

tomato segmentation, a series of experiments were

conducted in thi 97.5 92.4 85.9

balance between Cross Entropy Loss and Dice Loss.

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the model for green

tomato segmentation, a series of experiments were

conducted in t **Experimental configurations of the system of the performance of the model for green**

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the model for green

tomato segmentation, a series of experimental d balance between Cross Entropy Loss and Dice Loss.

III. RESULTS AND ANALYSIS

To better validate the effectiveness of the model for green

tomato segmentation, a series of experiments were

conducted in this study. The exp III. RESULTS AND ANALYSIS
To better validate the effectiveness of the model for gr
tomato segmentation, a series of experiments w
conducted in this study. The experimental details w
meticulously described, and the results The effectiveness of the model for green

To better validate the effectiveness of the model for green

mato segmentation, a series of experiments were

reticulously described, and the results were compared and

alyzed. Dur To better validate the effectiveness of the model for green
tomato segmentation, a series of experiments were
conducted in this study. The experimental details were
meticulously described, and the results were compared and tomato segmentation, a series of experiments were
conducted in this study. The experimental details were
meticulously described, and the results were compared and
analyzed. During the training process, the optimal model
wa conducted in this study. The experimental details were
meticulously described, and the results were compared and
analyzed. During the training process, the optimal model
was selected and applied to the validation set to fa meticulously described, and the results were compared and
analyzed. During the training process, the optimal model
was selected and applied to the validation set to facilitate a
comparative evaluation of the experimental o **Example 12**

Was selected and applied to the validation set to facil

comparative evaluation of the experimental out

Comparative experiments were conducted under ide

experimental configurations to assess the performance

The experimental setup is based on the Ubuntu 18.04 run using Python version 3.7 and PyTorch version 1.12. mparative evaluation of the experimental outcomes.

mparative experiments were conducted under identical

perimental configurations to assess the performance of the

poposed model in this study.

Experimental Environment

batch size of 2, window size of 7, and patch size of 4x4. The learning rate curve variation is shown in Figure 6. Using the Comparative experiments were conducted under identical
experimental configurations to assess the performance of the
proposed model in this study.
A. Experimental Environment
The experimental setup is based on the Ubuntu 18 experimental configurations to assess the performance of the
proposed model in this study.
A. Experimental Environment
The experimental setup is based on the Ubuntu 18.04
64-bit system, utilizing the deep learning framewor proposed model in this study.

A. Experimental Environment

The experimental setup is based on the Ubuntu 18.04

64-bit system, utilizing the deep learning framework

PyTorch. The GPU used for the experiments is a 24GB

NV A. Experimental Environment
The experimental setup is based on the Ubuntu 18.04
64-bit system, utilizing the deep learning framework
PyTorch. The GPU used for the experiments is a 24GB
NVIDIA A30, with CUDA version 11.4. A The experimental entwolutions

The experimental setup is based on the Ubuntu 18.04

64-bit system, utilizing the deep learning framework

64-bit system, utilizing the deep learning framework

PyTorch. The GPU used for the The experimental setup is based on the countal 18.04

64-bit system, utilizing the deep learning framework

64-bit system, utilizing the deep learning framework

PyTorch. The GPU used for the experiments is a 24GB

NVIDIA beyond system, universign the decept canning manitowite
PyTorch. The GPU used for the experiments is a 24GB
NVIDIA A30, with CUDA version 11.4. All models were
run using Python version 3.7 and PyTorch version 1.12.
B. Par Level the GF of side for the experiments is a 2-volume of the experimental is a 2-volume variant physion 1.14. All models were run using Python version 3.7 and PyTorch version 1.12.
B. Parameter Settings
Prior to inputtin France training parameters, which curve training parameter Settings

From using Python version 3.7 and PyTorch version 1.12.

B. Parameter Settings

Prior to inputting into the training network, image sizes

were uniforml B. Parameter Settings
B. Parameter Settings
Prior to inputting into the training network, image sizes
were uniformly fixed at (640,640). Pre-trained weights from
the ImageNet dataset, specifically swin_tiny_patch4
_window *B. Parameter Settings*
Prior to inputting into the training netword
were uniformly fixed at $(640,640)$. Pre-traine
the ImageNet dataset, specifically sweed with an initial
of 0.01, momentum of 0.9, weight decay of
stoch

e)+AG+ASPP

Fig.7. Comparative Visualization of Ablation Study Results.

C. Evaluation Metrics

To evaluate the segmentation accuracy of the optimized

Swin-Unet algorithm for green tomatoes, metrics such as

Precision, Recall, Pixel

$$
Precision = \frac{TP}{TP + FP} \times 100\%
$$
 (8) The Dice coeffi-
between two sets,

$$
Recall = \frac{TP}{TP + FN} \times 100\%
$$
 (9)

SPP

\n
$$
Recall = \frac{TP}{TP + FN} \times 100\%
$$
 (9)

\nPA denotes the ratio of the number of correct predictions for all pixel classes to the total number of pixels.

\n
$$
PA = \frac{TP + TN}{TP + FP + TN + FN}
$$
 (10)

\nThe Dice coefficient is used to calculate the similarity between two sets, as shown in equation (11):

The Dice coefficient is used to calculate the similarity

Volume 32, Issue 11, November 2024, Pages 2114-2126

$$
Dice = \frac{2TP}{FP + 2TP + FN}
$$
 (11) without adding extra pa
reflected in the model's im

Engineering Letters

Dice = $\frac{2TP}{FP + 2TP + FN}$ (11) without adding extra param

The Intersection over Union (IoU) represents the ratio of the edge details and overall semaintersection to the union of two sets, as illustra **Engineering Letters**

Dice $= \frac{2TP}{FP + 2TP + FN}$ (11) without adding extra parameters

The Intersection over Union (IoU) represents the ratio of the dege details and overall semant

intersection to the union of two sets, as Dice $=$ $\frac{2TP}{FP + 2TP + FN}$
The Intersection over Union (IoU) represents the
intersection to the union of two sets, as il
equation (12):
 $IoU = \frac{TP}{FP + TP + FN}$
This paper defines the metric using a confu-

$$
IoU = \frac{TP}{FP + TP + FN}
$$
 the base model, compa
PA, Dice, and IoU nor

Engineering Letters

Dice $= \frac{2TP}{FP + 2TP + FN}$ (11) without adding extra proposed in the model's in

intersection over Union (IoU) represents the ratio of the edge details and overall sintersection to the union of two sets **Engineering Letters**
 Dice = $\frac{2TP}{FP + 2TP + FN}$ (11) without adding extraction over Union (IoU) represents the ratio of the dge details and over intersection to the union of two sets, as illustrated in the mode relations Dice $=$ $\frac{2TP}{FP + 2TP + FN}$

The Intersection over Union (IoU) represents the ratio of the edge details and overall semi-

intersection to the union of two sets, as illustrated in the model's improducing both

edge details *Dice* = $\frac{2TP}{FP + 2TP + FN}$ (11) without adding extra para

The Intersection over Union (IoU) represents the ratio of the edge details and overall sem

intersection to the union of two sets, as illustrated in the model's im *Dice* = $\frac{2TP}{FP + 2TP}$ (11) without adding extra par

The Intersection over Union (IoU) represents the ratio of the

intersection to the union of two sets, as illustrated in the model's implement

equation (12):
 $IoU = \frac{$ *Dice* = $\frac{2IP}{FP + 2TP + FN}$ (11) without adding extra in the model's intersection over Union (IoU) represents the ratio of the edge details and overall intersection to the union of two sets, as illustrated in more precise e samples. *D. Ablation Study*
D. Ablation Study
To verify the effectiveness of these two equation (12):
 F_{10} F_{11} F_{12} F_{13} F_{14} F_{15} F_{16} F_{17} F_{18} F_{19} F_{18} F_{19} F_{18} F_{19} F_{19} F_{18} F_{19} F_{19} F_{19} F_{19} F_{19} F_{19} F_{19} F_{19} F_{19} F_{19 $IoU = \frac{TP}{FP + TP + FN}$ (12) the base model, comp

This paper defines the metric using a confusion matrix, points, respectively.

categorizing green tomato samples based on the relationship

between predicted values and actual v $I = \frac{I_0}{F + TP + FN}$ PA, Dice, and IoU increased b
This paper defines the metric using a confusion matrix,
categorizing green tomato samples based on the relationship
between predicted values and actual values into four
the This paper defines the metric using a confusion matrix,

categorizing green tomato samples based on the relationship

between predicted values and actual values into four

tomato image segmentation results mo

positive (F categorizing green tomato samples based on the relationship
between predicted values and actual values into four
detections of the setting of the compare
categories: true positive (TP): actual positive samples; false the

between predicted values and actual values into four

between predicted values and actual positive samples; false $\frac{1}{2}$ and order to

positive (FP): false positive samples; true negative (TN):

actual negative samples Examples: the positive (TP): actual positive samples; false

actual negative (TP): false positive samples; the negative (TN):

actual negative samples; false negative (TN): False negative ablation results meant

actual ne

Fraction experiment

actual negative samples; false negative (FN): False negative

samples.

D. Ablation Study

To verify the effectiveness of these two structures, the

poptimized Swin-UNet algorithm and the original Swi samples.

Samples.

Contriguent of the comparison of the subset of the subset of the original Swin

To verify the effectiveness of these two structures, the

process and comparability the criginal Swin-UNet

algorithm wer entiative the Higher Contention accuracy for green tomators and more optimized Swin-UNet algorithm and the original Swin-UNet algorithm and the original Swin-UNet algorithm were evaluated in the Green Tomato dataset. To an *D. Ablation Study*

To verify the effectiveness of these two structures, the

algorithm and the original Swin-UNe

algorithm and the original Swin-UNE

algorithm were valuated in the Green Tomato dataset. To

algorithms e To verify the effectiveness of these two structures, the

optimized Swin-UNet algorithm and the original Swin-UNet

algorithm were evaluated in the Green Tomato dataset. To

ended and clearer, and the sum-

ended in the G optimized Swin-UNet algorithm and the original Swin-UNet
algorithm were evaluated in the Green Tomato dataset. To
and clearer, and the segn
ensure fairness and comparability the experimental settings
much closer to that of algorithm were evaluated in the Green Tomato dataset. To and clearer, and the segmensure fairness and comparability the experimental settings much closer to that of the read algorithms, as detailed in Table II. the introdu ensure fairness and comparability the experimental settings

much closer to that of t

aros all algorithms, as detailed in Table II. which fully proves

As shown in Table II, the introduction of the AG module

into the bas and hyperparameter configurations were kept consistent

are segmentation edges of

across all algorithms, as detailed in Table II.

As shown in Table II, the introduction of the AG module

into the base model by 3.0, 1.1, across all algorithms, as detailed in Table II. which fully proves that the AS shown in Table II, the introduction of the AG module of the effectively improves green tom

into the base model improves the PA, Dice, and IoU As shown in Table II, the introduction of the AG module

into the base model improves the PA, Dice, and IoU of the

model by 3.0, 1.1, and 1.6 percentage points, respectively,

compared to the original model. This is gini

Example 19 Letters
without adding extra parameters. This enhancement is
reflected in the model's improved performance in capturing
edge details and overall semantic understanding, leading to
more precise edge segmentation Figures
is the model of the model's improved performance in capturing
reflected in the model's improved performance in capturing
edge details and overall semantic understanding, leading to
more precise edge segmentation of Example 1. **Letters**

without adding extra parameters. This enhancement is

reflected in the model's improved performance in capturing

edge details and overall semantic understanding, leading to

more precise edge segmen **Example 18 Example 15 Example 15 Example 10**
The preflected in the model's improved performance in capturing
edge details and overall semantic understanding, leading to
more precise edge segmentation of green tomatoes.
Fi

points, respectively. This further validates that both Finally, by introducing both ASPP and AG modules into **Example 18**

is the base model of the model's improved performance in capturing

edge details and overall semantic understanding, leading to

more precise edge segmentation of green tomatoes.

Finally, by introducing both Figure 1. **Letters**

without adding extra parameters. This enhancement is

reflected in the model's improved performance in capturing

edge details and overall semantic understanding, leading to

more precise edge segmenta **Figure 12**
 Exercise 12
 Exerce in the model's improved performance in capturing

edge details and overall semantic understanding, leading to

more precise edge segmentation of green tomatoes.

Finally, by introducing **Exert Exercise 15**
 Exert Exercise 15
 Exerce model and overall simproved performance in capturing

edge details and overall semantic understanding, leading to

more precise edge segmentation of green tomatoes.

Final without adding extra parameters. This enhancement
reflected in the model's improved performance in ca
edge details and overall semantic understanding, lea
more precise edge segmentation of green tomatoes.
Finally, by intr In thout adding extra parameters. This enhancement is

elected in the model's improved performance in capturing

ge details and overall semantic understanding, leading to

ore precise edge segmentation of green tomatoes.
 without adding extra parameters. This enhancement is
reflected in the model's improved performance in capturing
edge details and overall semantic understanding, leading to
more precise edge segmentation of green tomatoes.

Examples:
 Examples: The present to the base model in the base model in the base model in the present of the present of the base model in the present of the present of the properties and the original Swin-UNet algorit without adding extra parameters. This enhancement is
reflected in the model's improved performance in capturing
edge details and overall semantic understanding, leading to
more precise edge segmentation of green tomatoes.
 reflected in the model's improved performance in capturing
edge details and overall semantic understanding, leading to
more precise edge segmentation of green tomatoes.
Finally, by introducing both ASPP and AG modules into edge details and overall semantic understanding, leading to
more precise edge segmentation of green tomatoes.
Finally, by introducing both ASPP and AG modules into
the base model, compared to the original model, the model' more precise edge segmentation of green tomatoes.

Finally, by introducing both ASPP and AG modules into

the base model, compared to the original model, the model's

PA, Dice, and IoU increased by 4.5, 5.9, and 9.6 percen Finally, by introducing both ASPP and AG modules into
the base model, compared to the original model, the model's
PA, Dice, and IoU increased by 4.5, 5.9, and 9.6 percentage
points, respectively. This further validates tha the base model, compared to the original model, the model's

PA, Dice, and IoU increased by 4.5, 5.9, and 9.6 percentage

points, respectively. This further validates that both

proposed modules effectively enhance accurac PA, Dice, and IoU increased by 4.5, 5.9, and 9.6 percentage
points, respectively. This further validates that both
proposed modules effectively enhance accuracy in green
tomato image segmentation.
In order to compare the e points, respectively. This further validates that both proposed modules effectively enhance accuracy in green tomato image segmentation.
In order to compare the effect of each module on the segmentation results more intuit proposed modules effectively enhance accuracy in green
tomato image segmentation.
In order to compare the effect of each module on the
segmentation results more intuitively, the results of the
ablation experiments are visu tomato image segmentation.

In order to compare the effect of each module on the

segmentation results more intuitively, the results of the

ablation experiments are visualized in this paper, and the

visualization results In order to compare the effect of each module on the segmentation results more intuitively, the results of the ablation experiments are visualized in this paper, and the visualization results are shown in Fig. 7. As can be **E.** Segmentation results and the model in this paper, and in this paper and introduction results are shown in Fig. 7. As can be seem Fig. 7, the original Swin-Unet model exhibits issue as unclear segmentation edges and ta Example 12 and the serve the performance of the algorithms using the Green Species as unclear segmentation edges and target leakage, etc.

Specifical swin-Unet model exhibits issues the as unclear segmentation edges and ta from Fig 7, the original Swin-Unet model exhibits issues
such as unclear segmentation edges and target leakage, etc.
However, with the gradual introduction of modules such as
ASPP and AG, the target contour becomes more a such as unclear segmentation edges and target leakage, etc.
However, with the gradual introduction of modules such as
ASPP and AG, the target contour becomes more accurate
and clearer, and the segmentation effect of the mo

However, with the gradual introduction of modules such as
ASPP and AG, the target contour becomes more accurate
and clearer, and the segmentation effect of the model is
much closer to that of the real labels, and the pheno ASPP and AG, the target contour becomes more accurate
and clearer, and the segmentation effect of the model is
much closer to that of the real labels, and the phenomenon of
unclear segmentation edges of the target leakage and clearer, and the segmentation effect of the model is
much closer to that of the real labels, and the phenomenon of
unclear segmentation edges of the target leakage is reduced,
which fully proves that the model proposed much closer to that of the real labels, and the phenomenon of
unclear segmentation edges of the target leakage is reduced,
which fully proves that the model proposed model
effectively improves green tomato image segmentati unclear segmentation edges of the target leakage is reduced,
which fully proves that the model proposed model
effectively improves that the model proposed model
effectively improves green tomato image segmentation.
E. Segm which fully proves that the model proposed model
effectively improves that the model proposed model
effectively improves green tomato image segmentation.
E. Segmentation Results
To further analyze the performance of the criteria. optimized Swin-Unet is compared contemporary and advanced sem

algorithms using the Green Tor

algorithms include

DeepLabv3 [32], PSPNet [33], DAN

E ISA-Net [36], DPT [37], OCRNet [38]

e experiments were conducted under

Engineering Letters Engineering Eccuers

Engineering Letters													
	TABLE IV COMPARISON OF THE NUMBER OF PARAMETERS AND FLOPS COMPUTATIONAL COMPLEXITY OF MODELS. INPUT SIZE: (640,640).												
Method	Deeplabv3+	Deeplabv3	Pspnet	Danet	Knet	Isanet	Dpt	Ocrnet	Beit	Ours			
Params/M	41.216	65.74	46.602	47.485	60.412	35.344	110	12.067	72.137	27.55			
GFLOPs/G	276	422	279	338	320	235	360	82.902	437	116.15			
	I Overlapping II Block the tomato tomato image image		III Overhead shot of tomato image (a) Original images of Tomato		IV Distant view tomato image		V Backlighting tomato image		VI Nighttime tomato image				

VBacklighting VI Nighttime tomato image

Engineering Letters Engineering Eccuers

Fig.8. Comparative Visualization of Experimental Result

(1) Ours

Fig.8. Comparative Visualization of Experimental Result

(1) Ours

Evaluation metrics compared to the comparison experiments were balance betwe

conducted All comparation of Experimental Result
All comparison algorithms were trained and tested on the demonstrates strong overall p
the pen tomato dataset, and the comparison experiments were balance between model can
ducted usi Fig.8. Comparative Visualization of Experimental Result
(1) Ours

Fig.8. Comparative Visualization of Experimental Result

All comparison algorithms were trained and tested on the

demonstrates strong or

conducted using Fig.8. Comparative Visualization of Experimental Result

All comparison algorithms were trained and tested on the

demonstrates strong overall per

green tomato dataset, and the comparison experiments were balance between

Fig.8. Comparative Visualization of Experimental Result

II courses

and the comparison agent and tested on the demonstrates strong overall g

green tomato dataset, and the comparison experiments were balance between mode All comparison algorithms were trained and tested on the demonstrates strong overall p
green tomato dataset, and the comparison experiments were balance between model ca
conducted using MMsegmentation version 1.2.2. The e All comparison algorithms were trained and tested on the demonstrates strong overa
green tomato dataset, and the comparison experiments were balance between model
conducted using MMsegmentation version 1.2.2. The efficien green tomato dataset, and the comparison experiments were balance between model ca
conducted using MMsegmentation version 1.2.2. The efficiency.
segmentation results of each model are presented in Table III. From this anal conducted using MMsegmentation version 1.2.2. The efficiency.

segmentation results of each model are presented in Table III. From this analysis, it is

It is observed that the optimized Swin-Unet algorithm Swin-Unet algor segmentation results of each model are presented in Table III. From this analysis, it it is observed that the optimized Swin-Unet algorithm Swin-Unet algorithm demonstrates strong competitiveness across various across all

efficiency.

demonstrates strong overall performance, maintaining a balance between model capacity and computational efficiency.
From this analysis, it is evident that the optimized Swin-Unet algorithm demonstrates significant improvem demonstrates strong overall performance, maintaining a balance between model capacity and computational efficiency.
From this analysis, it is evident that the optimized Swin-Unct algorithm demonstrates significant improvem demonstrates strong overall performance, maintaining a balance between model capacity and computational efficiency.
From this analysis, it is evident that the optimized Swin-Unet algorithm demonstrates significant improvem demonstrates strong overall performance, maintaining a balance between model capacity and computational efficiency.
From this analysis, it is evident that the optimized Swin-Unet algorithm demonstrates significant improvem demonstrates strong overall performance, maintaining a balance between model capacity and computational efficiency.
From this analysis, it is evident that the optimized Swin-Unet algorithm demonstrates significant improvem demonstrates strong overall performance, maintaining a balance between model capacity and computational efficiency.
From this analysis, it is evident that the optimized Swin-Unet algorithm demonstrates significant improvem demonstrates strong overall performance, maintaining a
balance between model capacity and computational
efficiency.
From this analysis, it is evident that the optimized
Swin-Unet algorithm demonstrates significant improvem demonstrates strong overall performance, maintaining a balance between model capacity and computational efficiency.
From this analysis, it is evident that the optimized Swin-Unet algorithm demonstrates significant improvem balance between model capacity and computational efficiency.

From this analysis, it is evident that the optimized

Swin-Unet algorithm demonstrates significant improvements

across all assessment metrics. Although issues efficiency.
From this analysis, it is evident that the optimized
Swin-Unet algorithm demonstrates significant improvements
across all assessment metrics. Although issues such as target
miss-detection and unclear segmentati From this analysis, it is evident that the optimized
Swin-Unet algorithm demonstrates significant improvements
across all assessment metrics. Although issues such as target
miss-detection and unclear segmentation edges are

Engineering Letters
While other algorithms face challenges such as target edge segmentation of gree
ssing and misclassification when dealing with fruit parts improving the success rate
der occlusion and overlapping scena **Engineering Letters**
While other algorithms face challenges such as target edge segmentation of gree
missing and misclassification when dealing with fruit parts improving the success rate
under occlusion and overlapping s Engineering Letters

While other algorithms face challenges such as target

missing and misclassification when dealing with fruit parts

under occlusion and overlapping scenarios, the improved

Swin-Unet algorithm effectiv **Engineering Letters**

While other algorithms face challenges such as target edge segmentation of green

missing and misclassification when dealing with fruit parts improving the success rate o

under occlusion and overlap **Engineering Letters**

While other algorithms face challenges such as target

edge segmentation of green

missing and misclassification when dealing with fruit parts

improving the success rate c

under occlusion and overl **Engineering Letters**

While other algorithms face challenges such as target edge segmentation of green

missing and misclassification when dealing with fruit parts improved Deverall, the optimized Swin-Un

Swin-Unet algor **Engineering Letters**

While other algorithms face challenges such as target edge segmentation of

missing and misclassification when dealing with fruit parts improving the success in

under occlusion and overlaping scenar **Engineering Letters**

While other algorithms face challenges such as target edge segmentation of gree

missing and misclassification when dealing with fruit parts improving the success rate

under occlusion and overlappin **Engineering Letters**

While other algorithms face challenges such as target edge segmentation of green

missing and misclassification when dealing with fruit parts

improving the success rate of

under occlusion and overl **Engineering Letters**

While other algorithms face challenges such as target edge segmentation of

missing and misclassification when dealing with fruit parts improving the success

under occlusion and overlapping scenario While other algorithms face challenges such as target edge segmentation of green
missing and misclassification when dealing with fruit parts improving the success rate of
under occlusion and overlapping scenarios, the impr While other algorithms face challenges such as target edge segmentation
missing and misclassification when dealing with fruit parts improving the succe
under occlusion and overlapping scenarios, the improved Overall, the o While other algorithms face challenges such as target edge segmentation of missing and misclassification when dealing with fruit parts improving the success
sum-Unret algorithm effectively addresses these issues and segmen missing and misclassification when dealing with fruit parts

improving the success rate of

under occlusion and overlapping scenarios, the improved Overall, the optimized Swin-Une

Swin-Unet algorithm effectively addresses under occlusion and overlapping scenarios, the improved Overall, the optimized Swin-Swin-Unet algorithm effectively addresses these issues and segmentation performance a
surpasses them in delineating fruit edge details. Th Swin-Unet algorithm effectively addresses these issues and
surpasses them in delineating fruit edge details. The
offering a theoretical referent
visualization of comparative experiments shows that the
green fruits. However surpasses them in delineating fruit edge details. The offering a theoretical reference fivisualization of comparative experiments shows that the green fruits. However, despite the improved algorithm excels in achieving cle visualization of comparative experiments shows that the green fruits. However, despite timproved algorithm excels in achieving clear boundary by the optimized Swin-Unet a
segmentation and maintaining the integrity of targe improved algorithm excels in achieving clear boundary by the optimized Swin-Uned
gementation and maintaining the integrity of target fruits semantic segmentation all,
when capturing green tomatoes from various angles, such segmentation and maintaining the integrity of target fruits semantic seguhen capturing green tomatoes from various angles, such as complexity r aerial and long-distance views. Compared to other algorithms, particularly p i en capturing green tomatoes from various angles, such as

irial and long-distance views. Compared to other algorithms, particularly prominent in

more accurately resolves these issues. Additionally, in processing or limite aerial and long-distance views. Compared to other algorithms, particularly prominent in
t more accurately resolves these issues. Additionally, in processing or limited
backlighting scenarios, the improved algorithm demonst it more accurately resolves these issues. Additionally, in processing or limited consequently the distributions over other models. The optimized Swin-Unet networks and exergential and swin-Unet algorithm provides remarkabl backlighting scenarios, the improved algorithm demonstrates

secarch should focus on furthe

significant advantages over other models. The optimized Swin-Unet networks and explor

Swin-Unet algorithm provides remarkable im

significant advantages over other models. The optimized Swin-Unet networks and exportantions by designs. Such efforts aim to delivering more precise edge segmentation, reducing errors, on computational resource and greatl Swin-Unet algorithm provides remarkable improvements by

designs. Such efforts aim to m

delivering more precise edge segmentation, reducing errors, on computational resource

experimental results validate the effectivene delivering more precise edge segmentation, reducing errors, on computational resources

and greatly enhancing overall performance. These segmentation accuracy, thereb

experimental results validate the effectiveness of Swi and greatly enhancing overall performance. These segmentation accuracy, the experimental results validate the effectiveness of Swin-Unet model to bette incorporating ASPP and AG structures to optimize the requirements, esp experimental results validate the effectiveness of Swin-Unet model to bet

incorporating ASPP and AG structures to optimize the

requirements, especially

Swin-Unet algorithm specifically for green tomato performance and r incorporating ASPP and AG structures to optimize the requirements, especially

Swin-Unet algorithm specifically for green tomato performance and resource

Segmentation in controlled agricultural environments.

This study d Swin-Unet algorithm specifically for green tomato performance and resource
segmentation in controlled agricultural environments.
This study demonstrates the refinement of the optimized
images win-Unet algorithm, which add segmentation in controlled agricultural environments.

This study demonstrates the refinement of the optimized

Swin-Unet algorithm, which addresses complex challenges include

in facility agriculture applications. These c This study demonstrates the refinement of the optimized

Swin-Unet algorithm, which addresses complex challenges

in facility agriculture applications. These challenges include

transitions between day and inglit environm Swin-Unet algorithm, which addresses complex challenges

in facility agriculture applications. These challenges include

variable lighting conditions, diverse shooting angles, and

transitions between day and night enviro in facility agriculture applications. These challenges include
variable lighting conditions, diverse shooting angles, and
transitions between day and night environments. Green
tomato images were capabre capabre capabre ca variable lighting conditions, diverse shooting angles, and

transitions between day and night environments. Green

tomato images were captured under various conditions, such

as occlusions, overlaps, and different lightin transitions between day and night environments. Green

tomato images were captured under various conditions, such

seview. Critical Reviews in

eview. Critical Reviews in

eview. Critical Reviews in

eview. The step excel tomato images were captured under various conditions, such

segmentation, overlaps, and different lighting scenarios, to

evaluate the algorithm's adaptability to these practical issues.

Seience, 2023, 14: 1121209.

Seie as occlusions, overlaps, and different lighting scenarios, to [2] Tiwari J K, Singh A K, Behera

evaluate the algorithm's adaptability to these practical issues. Some the experimental results indicate that the algorithm a evaluate the algorithm's daptability to these practical issues.

The experimental results indicate that the algorithm achieves

Econe, 2023, 14: 1121209.

excellent segmentation accuracy across different scenarios,

excerc The experimental results indicate that the algorithm achieves

excellent segmentation accuracy across different scenarios,

effectively managing images with varying lighting conditions

and backgrounds while accurately id agriculture. while accurately identifying and ^[4]
d or overlapping fruits. These tests
rm the algorithm's robustness,
iility, and theoretical sophistication,
fectiveness in real-world applications. [6]
sive performance in green tomat menting occluded or overlapping truits. These tests

lengrithm's robustness, [5] Xiong Y, Ge Y, Grimstad L,

lengrithm's robustness, harvesting robust design, d

menstating its effectiveness in real-world applications,

wo collectively confirm the algorithm's robustness, havesting robot: design, deen
enconstrained signal-word applications, evaluation. Jounal of Field Robot
Beyond its impressive performance in green tomato the expendent of th generalization capability, and theoretical sophistication,

demonstrating its effectiveness in real-world applications. [6] Jia W, Zhang Y, Lian J, et al. App

Beyond its impressive performance in green tomato

systems, 20

demonstrating its effectiveness in real-world applications.

Beyond its impressive performance in green tomato systems, 2020, 17(3)

segmentation, the optimized Swin-Unet algorithm shows [7] Saranya N, Srinivass

potentia Beyond its impressive performance in green tomato

segmentation, the optimized Swin-Unet algorithm shows

segmentation for broader applications, including fruit

segmentation in similar environments, thus upporting the

s segmentation, the optimized Swin-Unet algorithm shows [1] saing raditional machine learning the potential for broader applications, including fruit computational vision and Bio-Insequentation in similar environments, thus potential for broader applications, including fruit $\frac{1}{2}$ computational Vision and Exegenentation in similar environments, thus supporting the $\frac{1}{2}$ Computational Vision and Exegenentation of automation techniques Examentation in similar environments, thus supporting the

wider adoption of automation techniques in facility-based [8] Fujinga T, Nakanishi T

agriculture.

IV. CONCLUSION [9] Marizuan Mat Dault by

Exercise of green fr wider adoption of automation techniques in facility-based [8] Fujing DeplabV3+ for
agriculture.

The agricultures are at the Dallenges posed by the similar color

Features of green fruits and the background of branches an agriculture.

IV. CONCLUSION

Features of green fruits and the background of branches and

features of green fruits and the ba For CONCLUSION

Marizuana Mat Daud, Zulai

Matersing the challenges posed by the similar color

ready-to-harvest prediction of original

features of green fruits and the background of branches and

leaves, as well as issu For CONCLUSION

Addressing the challenges posed by the similar color

features of green fruits and the background of branches and

leaves, as well as issues of occulusom, overlapping, and

leaves, as well as issues of occ Addressing the challenges posed by the similar color

features of green fruits and the background of branches and

leaves, as well as issues of occlusion, overlapping, and

leaves, as well as issues of occlusion, overlapp features of green fruits and the background of branches and

leavers, as well as issues of occlusion, overlapping, and

varying lighting conditions that complicate segmentation,

where the counting methods for yield may
 leaves, as well as issues of occlusion, overlapping, and [10] Häni N, Roy P, Isler V. A contring lighting conditions that complicate segmentation,

this thesis utilizes a custom dataset of green tomatoes. The

semantic se varying lighting conditions that complicate segmentation,

this thesis utilizes a custom dataset of green tomatoes. The

interational Robotics, 2020, 37(2): 26;

interational Configure alternational Configure alternationa this thesis utilizes a custom dataset of green tomatoes. The [11] Bargoti S, Underwood J. Desemantic segmentation algorithm Swin-Unet is optimized by

integrating the Atrous Spatial Pyramid Pooling (ASPP) $2017:3626-3633$

g Letters

edge segmentation of green fruits, thereby effectively

improving the success rate of picking in real scenarios.

Overall, the optimized Swin-Unet algorithm exhibits superior

segmentation performance and strong g Letters

edge segmentation of green fruits, thereby effectively

improving the success rate of picking in real scenarios.

Overall, the optimized Swin-Unet algorithm exhibits superior

segmentation performance and strong **g Letters**

edge segmentation of green fruits, thereby effectively

improving the success rate of picking in real scenarios.

Overall, the optimized Swin-Unet algorithm exhibits superior

segmentation performance and stro g Letters

edge segmentation of green fruits, thereby effectively

improving the success rate of picking in real scenarios.

Overall, the optimized Swin-Unet algorithm exhibits superior

segmentation performance and strong **g Letters**

edge segmentation of green fruits, thereby effectively

improving the success rate of picking in real scenarios.

Overall, the optimized Swin-Unet algorithm exhibits superior

segmentation performance and stro g Letters

edge segmentation of green fruits, thereby effectively

improving the success rate of picking in real scenarios.

Overall, the optimized Swin-Unet algorithm exhibits superior

segmentation performance and strong **g Letters**

edge segmentation of green fruits, thereby effectively

improving the success rate of picking in real scenarios.

Overall, the optimized Swin-Unet algorithm exhibits superior

segmentation performance and stro **g Letters**

edge segmentation of green fruits, thereby effectively

improving the success rate of picking in real scenarios.

Overall, the optimized Swin-Unet algorithm exhibits superior

segmentation performance and stro **g Letters**
edge segmentation of green fruits, thereby effectively
improving the success rate of picking in real scenarios.
Overall, the optimized Swin-Unet algorithm exhibits superior
segmentation performance and stronger **Example 12 Symmultipum**

edge segmentation of green fruits, thereby effectively

improving the success rate of picking in real scenarios.

Overall, the optimized Swin-Unet algorithm exhibits superior

segmentation perform edge segmentation of green fruits, thereby effectively improving the success rate of picking in real scenarios.
Overall, the optimized Swin-Unet algorithm exhibits superior segmentation performance and stronger generalizat edge segmentation of green fruits, thereby effectively improving the success rate of picking in real scenarios.
Overall, the optimized Swin-Unet algorithm exhibits superior segmentation performance and stronger generalizat edge segmentation of green fruits, thereby effectively
improving the success rate of picking in real scenarios.
Overall, the optimized Swin-Unet algorithm exhibits superior
segmentation performance and stronger generalizat improving the success rate of picking in real scenarios.
Overall, the optimized Swin-Unet algorithm exhibits superior
segmentation performance and stronger generalization ability,
offering a theoretical reference for the s Overall, the optimized Swin-Unet algorithm exhibits superior segmentation performance and stronger generalization ability, offering a theoretical reference for the segmentation of other green fruits. However, despite the s segmentation performance and stronger generalization ability,
offering a theoretical reference for the segmentation of other
green fruits. However, despite the significant progress made
by the optimized Swin-Unet algorithm offering a theoretical reference for the segmentation of other green fruits. However, despite the significant progress made by the optimized Swin-Unet algorithm compared to other semantic segmentation algorithms, its incre green fruits. However, despite the significant progress made
by the optimized Swin-Unet algorithm compared to other
semantic segmentation algorithms, its increased model
complexity remains a notable issue. This complexity by the optimized Swin-Unet algorithm compared to other
semantic segmentation algorithms, its increased model
complexity remains a notable issue. This complexity is
particularly prominent in application scenarios requiring Swin-Onet networks and exploring inote ingrived given designs. Such efforts aim to mitigate the model's dependence

on computational resources without compromising

segmentation accuracy, thereby enabling the optimized

Sw gns. Such efforts aim to mitigate the model's dependence

computational resources without compromising

nentation accuracy, thereby enabling the optimized

n-Unet model to better adapt to various application

irements, esp computational resources without compromising

aentation accuracy, thereby enabling the optimized

n-Unet model to better adapt to various application

irements, especially those demanding high real-time

ormance and resour nentation accuracy, thereby enabling the optimized

n-Unet model to better adapt to various application

irements, especially those demanding high real-time

ormance and resource efficiency.

REFERENCES

Perveen R, Suleria

REFERENCES

- 919-929.
Tiwari J K, Singh A K, Behera T K. CRISPR/Cas genome editing in SWIN-Onet moder to better adapt to various approach
requirements, especially those demanding high real-time
performance and resource efficiency.

 $REFERENCES$
[1] Perveen R, Suleria H A R, Anjum F M, et al. Tomato (Solanum
Lycop irements, especially those demanding high real-time
ormance and resource efficiency.

REFERENCES

Perveen R, Suleria H A R, Anjum F M, et al. Tomato (Solanum

Lycopersicum) carotenoids and lycopenes chemistry; metabolism,
 STEP STEER ENCES

SCIENCES

REFERENCES

Perveen R, Suleria H A R, Anjum F M, et al. Tomat

Lycopersicum) carotenoids and lycopenes chemistry;

absorption, nutrition, and allied health claims — a cor

review. Critical Revie REFERENCES

[1] Perveen R, Suleria H A R, Anjum F M, et al. Tomato (Solanum

Lycopersicum) cartenoids and lycopenes chemistry; metabolism,

absorption, nutrition, and allied health claims — a comprehensive

review. Critica REFERENCES

Reveen R, Suleria H A R, Anjum F M, et al. Tomato (Solanum

Lycopersicum) carotenoids and lycopenes chemistry; metabolism,

absorption, nutrition, and allied health claims — a comprehensive

riverview. Critical REFERENCES

Reven R, Suleria H A R, Anjum F M, et al. Tomato (Solanum

Lycopersicum) carotenoids and lycopenes chemistry; metabolism,

absorption, nutrition, and allied health claims — a comprehensive

review. Critical Rev REFERENCES

[1] Perveen R, Suleria H A R, Anjum F M, et al. Tomato (Solanum

Lycopersicum) carotenoids and lycopenes chemistry; metabolism,

absorption, nutrition, and allied health claims — a comprehensive

review. Critic Perveen R, Suleria H A R, Anjum F M, et al. Tomato (Solanum
Lycopersicum) carotenoids and lycopenes chemistry; metabolism,
absorption, nutrition, and allied health claims — a comprehensive
review. Critical Reviews in Food [1] Cycopersicum) carotecoids and lycopenes chemistry; metabolism,

Lycopersicum) carotenoids and lycopenes chemistry; metabolism,

absorption, nutrition, and allied health claims — a comprehensive

review. Critical Review Experistion in cunclentics and rivelopments cleanisms, included
absorption, nutrition, and allied health claims - a comprehensive
review. Critical Reviews in Food Science and Nutrition, 2015, 55(7):
919-929.
Tiwari J K, Si
-
-
-
- absorption, indition, and alted ideal tradition and complements and complements of review. Critical Reviews in Food Science and Nutrition, 2015, 55(7): 919-929.
Tiwari J K, Singh A K, Behera T K. CRISPR/Cas genome editing From Summan Keylews in Food Science and Nutriuon, 2015, 35(7).

919-929.

Tiwari J K, Singh A K, Behera T K. CRISPR/Cas genome editing in

tomato improvement: advances and applications. Frontiers in Plant

Science, 2023, **FIST-727.**
Tiwari J K, Singh A K, Behera T K. CRISPR/Cas genome editing in Tiwari J K, Singh A K, Behera T K. CRISPR/Cas genome editing in Sotience, 2023, 14: 1121209.
Ugonna C U, Jolaoso M A, Onwualu A P. Tomato value c
-
- Tiwari 3 K, Singit A K, Beliera 1 K. CKISFNCas genome et

tomato improvement: advances and applications. Frontiers

Science, 2023, 14: 1121209.

Ugonna C U, Jolaoso M A, Onwualu A P. Tomato value

nigeria: issues, challeng Givente, 2023, 14: 1121209.

Science, 2023, 14: 1121209.

13) Ugonna C U, Jolaoso M A, Onwualu A P. Tomato value chain in

nigeria: issues, challenges and strategies. Journal of Scientific

Research and Reports, 2015, 7(7) Suence, 2025, 14. 11-12109
Ugonna C U, Jolaoso M A, Onwualu A P. Tomato value chain in
nigeria: issues, challenges and strategies. Journal of Scientific
Research and Reports, 2015, 7(7): 501-515.
Arad B, Balendonck J, Bart Ogonial Co., Jolaso M A, Chinwalan A F. Tolliato Vatie Chain in
nigeria: issues, challenges and strategies. Journal of Scientific
nigratic issues, challenges and strategies. Journal of Scientific
Research and Reports, 2015 79-89.
Fujinaga T, Nakanishi T. Semantic segmentation of strawberry plants Fassaria and Neptons, 2015, 1, 01: 301-311.

Farad B, Balendonck J, Barth R, et al. Development of a sweet pepper

harvesting robot. Journal of Field Robotics, 2020, 37, 1027 - 1039.

[5] Xiong Y, Ge Y, Grimstad L, et al. Arlad B, Batendonck 3, Battil R, et al. Development of a sweet pepper

harvesting robot. Journal of Field Robotics, 2020, 37, 1027 – 1039.

Xiong Y, Ge Y, Grimstad L, et al. An autonomous strawberry

harvesting robot: desi narvesung root. Journal of Field Robotics, 2020, 57, 1027 = 1059.

Xiong Y, Ge Y, Grimstad L, et al. An autonomous strawberry -

harvesting robot: design, development, integration, and field

evaluation. Journal of Field R
-
- [5] Xiong Y, Ge Y, Grimstad L, et al. An autonomous strawberry -
harvesting robot: design, development, integration, and field
evaluation. Journal of Field Robotics, 2020, 37(2): 202-224.
[6] Jia W, Zhang Y, Lian J, et al. harvesting robot: design, development, integration, and field evaluation. Journal of Field Robotics, 2020, 37(2): 202-224.
Jia W, Zhang Y, Lian J, et al. Apple harvesting robot under information dichnology: A review. Inter evaluation. Journal of Field Robotics, 2020, 37(2): 202-224.
Jia W, Zhang Y, Lian J, et al. Apple harvesting robot under information
technology: A review. International Journal of Advanced Robotic
Eystems, 2020, 17(3): 253 Jia W, Zhang Y, Lian J, et al. Apple harvesting robot under information
technology: A review. International Journal of Advanced Robotic
Systems, 2020, 17(3): 25310.
Saranya N, Srinivasan K, Pravin Kumar S K, et al. Fruit c 2023.

[10] Häni N, Roy P, Isler V. A comparative study of fruit detection and Systems, 2020, 17(3): 25310.

[7] Saranya N, Srinivasan K, Pravin Kumar S K, et al. Fruit classification

using traditional machine learning and deep learning approach.

Computational Vision and Bio-Inspired Computing: ICC Saranya N, Srinivasan K, Pravin Kumar S K, et al. Fruit classification

using traditional machine learning and deep learning approach.

Computational Vision and Bio-Inspired Computing: ICCVBIC, 2020:

79-89.

Fujinaga T, N using traditional machine learning and deep learning a
Computational Vision and Bio-Inspired Computing: ICCVBI
79-89.
Fujinaga T, Nakanishi T. Semantic segmentation of strawber
using DeepLabV3+ for small agricultural robot Computational Vision and Bio-Inspired Computing: ICCVBIC, 2020:

79-89.

[8] Fujinaga T, Nakanishi T. Semantic segmentation of strawberry plants

using DeepLabV3+ for small agricultural robot. International

Symposium on S 79-89.

Fujinga T, Nakanishi T. Semantic segmentation of strawberry plants

using DeepLabV3+ for small agricultural robot. International

Symposium on System Integration. IEEE, 2023: 1-6.

Marizuana Mat Daud, Zulaikha Kadi Fujinaga T, Nakanishi T. Semantic segmenta

using DeepLabV3+ for small agricultiu

Symposium on System Integration. IEEE, 20

Marizuana Mat Daud, Zulaikha Kadim,

Detection of oil palm tree and loose fruitle

ready-to-harv using DeepLabV3+ for small agricultural robot. International

Symposium on System Integration. IEEE, 2023: 1-6.

IPM Marizuana Mat Daud, Zulaikha Kadim, and Hon Hock Woon,

Detection of oil palm tree and loose fruitlets fo Symposium on System Integration. IEEE, 2023: 1-6.

Marizuana Mat Daud, Zulaikha Kadim, and Hon Hock Woon,

Detection of oil palm tree and loose fruites for fresh fruit bunch's

ready-to-harvest prediction via deep learning Marizuana Mat Daud, Zulaikha Kadım, and Hon Hock Woon,
Detection of oil palm tree and loose fruitlets for fresh fruit bunch's
ready-to-harvest prediction via deep learning approach. IAENG
International Journal of Computer Detection of oil palm tree and loose fruitlets for fresh fruit bunch's

ready-to-harvest prediction via deep learning approach. IAENG

International Journal of Computer Science, vol. 50, no.4, pp1183-1193,

2023.

[10] Hän
- ready-to-harvest prediction via deep learning approach. IAENG
International Journal of Computer Science, vol. 50, no.4, pp1183-1193,
2023.
Häni N, Roy P, Isler V. A comparative study of fruit detection and
counting methods International Journal of Computer Science, vol. 50, no.4, pp112
2023.
Häni N, Roy P, Isler V. A comparative study of fruit detect
counting methods for yield mapping in apple orchards. Journal
Robotics, 2020, 37(2): 263-282 2023.

[10] Häni N, Roy P, Isler V. A comparative study of fruit detection and

counting methods for yield mapping in apple orchards. Journal of Field

Robotics, 2020, 37(2): 263-282.

[11] Bargoti S, Underwood J. Deep fru
- Häni N, Roy P, Isler V. A comparative study of fruit detection and
counting methods for yield mapping in apple orchards. Journal of Field
Robotics, 2020, 37(2): 263-282.
Bargoti S, Underwood J. Deep fruit detection in orch
-
-
-
- counting methods for yield mapping in applie orchards

Robotics, 2020, 37(2): 263-282.

Bargoti S, Underwood J. Deep fruit detection in orcl

International Conference on Robotics and Automatic

International Conference on Robotics, 2020, 37(2): 263-282.

[11] Bargoti S, Underwood J. Deep fruit detection in orchards. 2017 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,

2017: 3626-3633.

[12] Barth R, IJsselmuiden J, Bargoti S, Underwood J. Deep fruit detection in orchards. 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2017: 3626-3633.
Barth R, IJsselmuiden J, Hemming J, et al. Synthetic bootstrapping of
c International Conference on Robotics and Automation (ICRA). IEEE,
2017: 3626-3633.
Barth R, IJsselmuiden J, Hemming J, et al. Synthetic bootstrapping of
Barth R, IJsselmuiden J, Hemming J, et al. Synthetic bootstrapping of 2017: 3626-3633.
Barth R, IJsselmuiden J, Hemming J, et al. Synth
convolutional neural networks for semantic plan
Computers and Electronics in Agriculture, 2019, 1
Kang H, Chen C. Fruit Detection, Segmentation and
of envir
- **Engineering Letters**

[16] Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

segmentation. Microsystem Technologies, 2021, 27: 3365-
- **Engineering Letters**

Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

segmentation. Microsystem Technologies, 2021, 27: 3365-3375. **Engineering Letters**
Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time
industrial framework for rotten and fresh fruit detection using semantic
segmentation. Microsystem Technologies, 2021, 27: 3365-3375.
Li **Engineering Letters**

[16] Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

segmentation. Microsystem Technologies, 2021, 27: 3365-**Engineering Letters**

Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

segmentation. Microsystem Technologies, 2021, 27: 3365-3375. **Engineering Letters**

Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

segmentation. Microsystem Technologies, 2021, 27: 3365-3375. **Engineering Letters**

[16] Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

segmentation. Microsystem Technologies, 2021, 27: 3365-**Engineering Letters**

Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

segmentation. Microsystem Technologies, 2021, 27: 3365-3375. **Engineering Letters**

[16] Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

segmentation. Microsystem Technologies, 2021, 27: 3365
-
-
- Engineer ing Ecclesis

Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

esgementation. Microsystem Technologies, 2021, 27: 3365-3375 [16] Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time

industrial framework for rotten and fresh fruit detection using semantic

segmentation. Microsystem Technologies, 2021, 27: 3365-3375.

[17] Li Q, Jia Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time
industrial framework for rotten and fresh fruit detection using semantic
segmentation. Microsystem Technologies, 2021, 27: 3365-3375.
Li Q, Jia W, Sun M, et a Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time
industrial framework for rotten and fresh fruit detection using semantic
segmentation. Microsystem Technologies, 2021, 27: 3365-3375.
Li Q, Jia W, Sun M, et a Roy K, Chaudhuri S S, Pramanik S. Deep learning based reindustrial framework for rotten and fresh fruit detection using segmentation. Microsystem Technologies, 2021, 27: 3365-337: Li Q, Jia W, Sun M, et al. A novel green a molustrial framework for rotten and fresh fruit detection using sementiation. Microsystem Technologies, 2021, 27: 3365-3375.

[17] Li Q, Jia W, Sun M, et al. A novel green apple segmentation algorithm

based on ensemble Usegmentation. Microsystem Technologies, 2021, 27: 3365-3375.

Li Q, Jia W, Sun M, et al. A novel green apple segmentation algorithm

based on ensemble U-Net under complex orchard environment.

Computers and Electronics in Li Q, Jia W, Sun M, et al. A novel green app
based on ensemble U-Net under compl
Computers and Electronics in Agriculture, 2
He J, Duan J, Yang Z, et al. Method for segn
based on improved DeepLabv3+. Agronomy
Yan C, Chen Z based on ensemble U-Net under complex orchard environment.

Computers and Electronics in Agriculture, 2021, 180: 105900.

[18] He J, Duan J, Yang Z, et al. Method for segmentation of banana crown

based on improved DeepLa Computers and Electronics in Agriculture, 2021, 180: 105900.
He J, Duan J, Yang Z, et al. Methof for segmentation of banana crown
based on improved DeepLabv3+. Agronomy, 2023, 13(7): 1838.
Yan C, Chen Z, Li Z, et al. Tea s He J, Duan J, Yang Z, et al. Method for segmentation
based on improved DeepLabv3+. Agronomy, 2023,
Yan C, Chen Z, Li Z, et al. Tea sprout picking po
based on improved DeepLabV3+. Agriculture, 2022,
Bai Y, Guo Y, Zhang Q, e based on improved DeepLabv3+. Agronomy, 2023, 13(7): 1838.

[19] Yan C, Chen Z, Li Z, et al. Tea sprout picking point identification

based on improved DeepLabV3+. Agriculture, 2022, 12(10): 1594.

[20] Bai Y, Guo Y, Zhang Yan C, Chen Z, Li Z, et al. Tea sprout picking point identification
based on improved DeepLabV3+. Agriculture, 2022, 12(10): 1594.
Bai Y, Guo Y, Zhang Q, et al. Multi-network fusion algorithm with
transfer learning for gr based on mproved DeepLabV3+. Agriculture, 2022, 12(10): 1594.
Bai Y, Guo Y, Zhang Q, et al. Multi-network fusion algorithm w
transfer learning for green cucumber segmentation and recognit
under complex natural environment. [20] Ban Y, Giuo Y, Zhang Q, et al. Multi-network fusion algorithm with
transfer learning for green cucumber segmentation and recognition
under complex natural environment. Computers and Electronics in
Agriculture, 2022, 1
- under complex natural environment. Computers and I
Agriculture, 2022, 194: 106789.
Liu X, Yu J, Kurihara T, et al. Hyperspectral imaging for
segmentation using a complex-valued neural network.
265: 169527.
Cao H, Wang Y, C
-
-
- transter learning for green cucumber segmentation and recognition

ander complex natural environment. Computers and Electronics in

Agriculture, 2022, 194: 106789.

Liu X, Yu J, Kurihara T, et al. Hyperspectral imaging for Agriculture, 2022, 194: 106789.

[21] Liu X, Yu J, Kurihara T, et al. Hyperspectral imaging for green pepper

segmentation using a complex-valued neural network. Optik, 2022,

265: 169527.

[22] Cao H, Wang Y, Chen J, et Liu X, Yu J, Kurihara T, et al. Hyperspectral imaging for green pepper
segmentation using a complex-valued neural network. Optik, 2022,
265: 169527.
Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure transformer
for m
-
- segmentation using a complex-valued neural netw
265: 169527.
Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-lik
for medical image segmentation. European confer
vision, 2022: 205-218.
Russell B C, Torralba A, Murphy K P, et 265: 169527.

221 Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure transformer

for medical image segmentation. European conference on computer

vision, 2022: 205-218.

23] Russell B C, Torralba A, Murphy K P, et al Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure transformer
for medical image segmentation. European conference on computer
vision, 2022: 205-218.
Russell B C, Torralba A, Murphy K P, et al. LabelMe: a database and for medical image segmentation. European conference on computer

Nussell B C, Torralba A, Murphy K P, et al. LabelMe: a database and

web-based tool for image annotation. International Journal of

Computer Vision, 2008, 77 vision, 2022: 205-218.

Russell B C, Torralba A, Murphy K P, et al. LabelMe: a database and

web-based tool for image annotation. International Journal of

Computer Vision, 2008, 77: 157-173.

Lin T Y, Maire M, Belongie S, [23] Russell B C, Iorralba A, Murphy K P, et al. LabelMe: a database and

web-based tool for image annotation. International Journal of

Computer Vision, 2008, 77: 157-173.

[24] Lin T Y, Maire M, Belongie S, et al. Micros web-based tool for image annotation. International Journal of
Computer Vision, 2008, 77: 157-173.
Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common
objects in context[C]. European Conference on Computer Vision
Zu Computer Vision, 2008, 77: 157-173.

[24] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common

objects in context(C]. European Conference on Computer Vision

Zurich: Springer, 2014.

[25] Zhang W, Zhao Y, Guan Y, e Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common
objects in context[C]. European Conference on Computer Vision
Zurich: Springer, 2014.
Zhang W, Zhao Y, Guan Y, et al. Green apple detection method based
on optimi blyects in context[C]. European Conference on Computer Vision

Zinang W, Zhan Y, Guan Y, et al. Green apple detection method based

2023, 31(3): 1104-1113.

Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic ima Zurich: Springer, 2014.

[25] Zhang W, Zhao Y, Guan Y, et al. Green apple detection method based

on optimized yolov5 under orchard environment. Engineering Letters,

2023, 31(3): 1104-1113.

[26] Chen L C, Papandreou G, Zhang W, Zhao Y, Guan Y, et al. Green apple detection method based

2023, 31(3): 1104-1113.

2023, 31(3): 1104-1113.

Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image

segmentation with deep convolutional on optimized yolov5 under orchard environment. Engineering Letters,
2023, 31(3): 1104-1113.
Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image
esgmentation with deep convolutional nets, atrous convolution, 2023, 31(3): 1104-1113.

[26] Chen L C, Papandrou G, Kokkinos I, et al. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolution, and

fully connected crfs. IEEE Transactions on Pattern Analy
-
-
-
- segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017, 40(4): 834-848.
Oktay O, Schlemper J, Folgoc L L, et al. Attent 1-16.

[31] Chen L C. Zhu Y. Papandreou G. et al. Encoder-decoder with atrous Machine Intelligence, 2017, 40(4): 834-848.

[27] Oktay O, Schlemper J, Folgoc L L, et al. Attention u-net: Learning

where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

[28] Liu R, Tao F, Liu X, et al. Oktay O, Schlemper J, Folgoc L L, et al. Attention u-net: Learning
where to look for the pancreas. arXiv preprint arXiv: 1804.03999, 2018.
Liu R, Tao F, Liu X, et al. RAANet: a residual ASPP with attention
framework for se where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

Liu R, Tao F, Liu X, et al. RAANet: a residual ASPP with attention

framework for semantic segmentation of high-resolution remote

sensing images. Rem framework for semantic segmentation of high-resolution remote

29) Zhang J, Qin Q, Ye Q, et al. ST-unet: Swin transformer boosted U-net

with cross-layer feature enhancement for medical image segmentation.

Computers in Bi sensing images. Remote Sensing, 2022, 14(13): 3109.

Zhang J, Qin Q, Ye Q, et al. ST-unet: Swin transformer boosted U-net

with cross-layer feature enhancement for medical image segmentation.

Computers in Biology and Medi Zhang J, Qm Q, Ye Q, et al. ST-unet: Swin transformer both cross-layer feature enhancement for medical image se
Computers in Biology and Medicine, 2023, 153: 106516.
Zheng Z, Liang E, Zhang Y, et al. A segmentation-based a with cross-layer feature enhancement for medical image segmentation.

Computers in Biology and Medicine, 2023, 153: 106516.

[30] Zheng Z, Liang E, Zhang Y, et al. A segmentation-based algorithm for

classification of beni Computers in Biology and Medicine, 2023, 153: 106516.

Zheng Z, Liang E, Zhang Y, et al. A segmentation-based algorithm for

classification of benign and malignancy thyroid nodules with

multi-feature information. Biomedic
- 801-818. Zheng Z, Liang E, Zhang Y, et al. A segmentation-based al
classification of benign and malignancy thyroid no
multi-feature information. Biomedical Engineering Let
1-16.
1-16.
1-16.
1-16.
1-16.
1-16.
1-16.
1-16.
1-16.
1-16. classification of benign and malignancy thyroid nodules with
multi-feature information. Biomedical Engineering Letters, 2024:
1-16.
131] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous
separable convoluti multi-feature information. Biomedical Engineering Letters, 2024:
1-16.
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous
separable convolution for semantic image segmentation. Proceedings
601-818.
Chen L C, 1-16.
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous
separable convolution for semantic image segmentation. Proceedings
of the European Conference on Computer Vision (ECCV). 2018:
801-818.
Chen L C, Papa [31] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous
separable convolution for semantic image segmentation. Proceedings
of the European Conference on Computer Vision (ECCV). 2018:
801-818.
801-818.
601-8
- of the European Conference on Computer Vi

801-818.

Chen L C, Papandreou G, Schroff F, et al

convolution for semantic image segmentat

arXiv:1706.05587, 2017.

Zhao H, Shi J, Qi X, et al. Pyramid Scen

Proceedings of the
-
- separable convolution for semantic image segmentation. Proceedings
801-818.
801-818.
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 801-818.

[32] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous

convolution for semantic image segmentation. arXiv preprint

arXiv:1706.05587, 2017.

[33] Zhao H, Shi J, Qi X, et al. Pyramid Scene Parsing Netwo Zhao H, Shi J, Qi X, et al. Pyramid Scene Parsin
Proceedings of the IEEE Conference on Computer Vision
Recognition. 2017: 2881-2890.
Fu J, Liu J, Tian H, et al. Dual attention network
Segmentation. Proceedings of the IEEE/
- Fu J, Liu J, Tian H, et al. Dual attention
segmentation. Proceedings of the IEEE/CVF Cc
Vision and Pattern Recognition. 2019: 3146-31:
Zhang W, Pang J, Chen K, et al. K-net: To
segmentation. Advances in Neural Information

-
- Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.
Zhao H, Shi J, Qi X, et al. Pyramid Scene Parsing Network.
Proceedings of the convolution for semantic image segmentation. arXiv preprint

arXiv: 1706.05587, 2017.

[33] Zhao H, Shi J, Qi X, et al. Pyramid Scene Parsing Network.

Proceedings of the IEEE Conference on Computer Vision and Pattern

Rec arXiv:1706.05587, 2017.

Zhao H, Shi J, Qi X, et al. Pyramid Scene Parsing Network.

Zhao H, Shi J, Qi X, et al. Dual attention network for scene

Recognition. 2017: 2881-2890.

Fu J, Liu J, Tian H, et al. Dual attention n Proceedings of the IEEE Contrence on Computer Vision and Pattern

Recognition. 2017: 2881-2890.

[34] Fu J, Liu J, Tian H, et al. Dual attention network for scene

segmentation. Proceedings of the IEEE/CVF Conference on Co Recognition. 2017: 2881-2890.
Fu J, Liu J, Tian H, et al. Dual attention network for scene
segmentation. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019: 3146-3154.
Zhang W, Pang J, segmentation. Proceedings of the IEEE/CVF Conference on Computer

1951 Zhang W, Pang J, Chen K, et al. K-net: Towards unified image

segmentation. Advances in Neural Information Processing Systems,

2021, 34: 10326-10338.
 Vision and Pattern Recognition. 2019: 3146-3154.

Zhang W, Pang J, Chen K, et al. K-net: Towards unified image

segmentation. Advances in Neural Information Processing Systems,

2021, 34: 10326-10338.

Huang L, Yuan Y, Guo
-
-