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Abstract—In this paper, the adaptive control problem of
pneumatic muscle (PM) joint systems with external disturbance,
reconstruction error, and actuator dead-zone is researched.
Compared with the existing results, the tracking performance
of the PM joint system has been enhanced, and the system
now guarantees the boundedness of the actuator output. First,
an adaptive neural network is used to estimate the unknown
dynamical behavior and the external disturbance of the system
online, enabling real-time estimation of systematic errors. A
static neural network is constructed to compensate for the
unknown asymmetric dead-zone nonlinearity of the actuator.
Second, an online robust update term is introduced to coun-
teract reconstruction errors of the neural network and the
external disturbance. Third, the Lyapunov theory is used to
derive a smooth control law, ensuring the stability of the system
and rigorously proving the uniform ultimate boundedness
of the weight parameters of each neural network. Finally,
the feasibility and effectiveness of the proposed scheme are
demonstrated through simulations.

Index Terms—adaptive control, dead-zone, neural network,
pneumatic muscle joint system, nonlinear control.

I. INTRODUCTION

PNEUMATIC muscles (PMs) represent an innovative
addition to the array of pneumatic components utilized

in sophisticated and adaptable control systems [1]. These
muscles offer distinct advantages such as operational safety,
economic efficiency, and hygiene. Their constructs mimic the
functionality of human skeletal muscles [2]. As pneumatic
technology evolves, PMs have found widespread application
in lower limb exoskeleton frameworks and robotic gait
rehabilitation systems [3]. Furthermore, they hold consid-
erable promise for use in realms such as rehabilitative
medicine, virtual reality, and biomimetic robotics [4]. It is
widely acknowledged that real-world systems are rife with
uncertainties, including unpredictable parameters, extrinsic
disturbances, and modeling inaccuracies, all of which can
compromise system efficacy. Achieving precise control in
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the face of these challenges is a formidable task that has
captivated the attention of the research community.

To mitigate potential detrimental impacts, several research
findings have surfaced [5–8]. In [9–11], a methodology
for ensuring tracking performance subject to user-specified
output constraints has been advanced. However, should this
approach be adopted, the system parameters fail to au-
tonomously adapt in the event of abrupt parameter fluctu-
ations.

Consequently, certain tracking methodologies have em-
ployed adaptive neural networks (NNs) or fuzzy logic control
to address the system’s inherent uncertainty[12–15]. In [12],
NNs were utilized to approximate nonlinear functions and
surmount the system’s uncertainty. In [13], a Gaussian radial
basis function (GRBF) neural network was amalgamated
with a piecewise constant adaptive law to approximate the
system’s uncertainty. In [14], an adaptive neural velocity ref-
erence trajectory tracking control method for high-powered
three-phase induction motors was introduced, based on an
84-pulse voltage source converter. In [15], the influence of
unknown function is solved by using radial basis function
neural network (RBFNN).

And significant interference can attenuate the efficacy
of the system’s control. To surmount this predicament, a
terminal sliding mode control strategy has been promulgated
in [16]. In [17], the amalgamation of sliding mode variable
structure control, backward control, and adaptive control has
culminated in the presentation of a novel methodology. In
[18], the sensitivity of the controller to disturbances is be
reduced by using sigmoid basis functions for disturbance
compensation.

To address the aforementioned issues, in [4], auxiliary sig-
nals and functions have been introduced as an approximation
to the sign(·) function, aimed at addressing the unknown
saturation and uncertainties arising from modeling errors.
Nevertheless, it is indubitable that the controller falls short of
enabling real-time trajectory tracking and eliminating errors
online.

It is universally understood that the precipitous variations
in system parameters typically originate from the failures
of unknown actuators during the operational phase of the
system [19–23]. Hence, in addition to the aforementioned
uncertainties, the common nonlinear characteristics of actu-
ators represent a critical issue. Within the realm of adaptive
control for the PM joint system, the impact of the nonlinear
characteristics of the actuator on the system’s control perfor-
mance is undeniably significant.

Common nonlinear characteristics of actuators encompass
saturation, dead-zone, and hysteresis, as delineated in [24].
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Notably, the dead-zone exerts a substantial influence on con-
trol performance. To mitigate this impact, various controller
design methodologies have been advanced in [25, 26]. For
instance, in [25], the actual control input of the system under
consideration must be bounded, with the dead-zone being
decomposed, mathematically transformed, and deflated. In
[27], an extended state observer (ESO) is employed to
estimate all external disturbances and other unknowns, albeit
at the expense of reducing the system’s conservatism.

In this paper, the dead-zone models presented are more
generalized. It is unnecessary to ascertain whether the actual
control input is bounded; instead, one need only be cognizant
of the dead-zone’s range. Furthermore, the majority of re-
search has adopted the strategy of constructing a dead-zone
inverse, as referenced in [28, 29], which, however, escalates
the complexity of the control strategy. It is acknowledged
that recurrent neural networks (RNNs) have demonstrated
superior efficacy in addressing dynamic systems. Nonethe-
less, RNNs necessitate the resolution of fixed points at every
instant, thereby augmenting the computational load.

In this paper, the dead-zone is addressed through the appli-
cation of a static neural network (NN) in conjunction with the
implicit function theorem. Consequently, the computational
burden associated with the control is alleviated herein. In
pursuit of enhancing the control performance of the PM
joint system, the principal contributions are enumerated as
follows:

1). An NN is used to estimate system states and external
disturbances online. Different from the literature [4], it can
make the system track the trajectory in real time and ensure
that the error is infinitely close to 0.

2). An online update robust term is used to reduce the
damage of reconstruction errors and system disturbances to
the control performance of the PM joint.

3). A static NN is introduced to solve the dead-zone
problem of the actuator.

4). The adaptive control method designed in this paper is
applicable not only to the controller with dead-zone, but also
to the controller without dead-zone. As a result, the control
method has a wider range of applications.

The structure of this paper is as follows. In Section II, the
system description and preliminaries are given. In Section III,
the controller design method is proposed. In Section IV, the
control method given in this paper is verified by simulation
experiments. Finally, Section V is a conclusion.

Notation: Let R denotes the real number, Rl and Rl×n

denote the l real vector and the l×n real matrix, respectively.
| · | denotes the absolute value. ∥·∥ for the vector denotes the
Euclidean norm of the vector, for the matrix denotes its F
norm, which is defined as ∥X∥ =

√
tr{XTX}, where tr{·}

denotes the trace of the matrix.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

A. System description

The PM joint as shown in Fig. 1. From [4], the force and
the internal pressure of the PM joint can be written as

F1(t) = Pb1(t)(kf1ε
2
1(t) + kf2ε1(t) + kf3) + kf4,

F2(t) = Pb2(t)(kf1ε
2
2(t) + kf2ε2(t) + kf3) + kf4,

Pb1(t) = Pb0 +∆P = k0u0 + k0kvV
′,

Pb2(t) = Pb0 −∆P = k0u0 − k0kvV
′,

(1)

where F1, F2 are two pulling forces on the PM joint; Pb1, Pb2

are two internal pressures of the PM joint; the initial internal
pressure Pb0 is defined; kf1, kf2, kf3 and kf4 are the PM
joint related parameters; k0 is a proportionality factor; kv is
the voltage distribution coefficient; the reloaded voltage u0

is defined; ε1 and ε2 are ratios of contraction lengths to the
initial length of the PM joint, they can be written as{

ε1(t) = ε0 +Rl−1
0 θ(t),

ε2(t) = ε0 −Rl−1
0 θ(t),

(2)

where R is a radius of the upper platform for the mechanism
of PM; the initial shrinking rate of PM ε0 is defined; the
initial length of PM l0 is defined. u is the input of the
actuator with unknown asymmetric dead-zone; V ′ is the
output of actuator with unknown asymmetric dead-zone, and
it is defined as follows:

V ′ = D(u) =


m1(u), if u ≤ b1,

0, if b1 ≤ u ≤ b2,

m2(u), if u ≥ b2,

where b1 ≤ 0 and b2 ≥ 0 are the lower and upper
bounds of the dead-zone, m1(u) and m2(u) are two unknown
continuous functions outside the dead-zone.

Fig. 1: The mechanism of the PM joint.

According to the law of rotation, we have

T (t) = Icθ̈(t) +Kdθ̇(t) = F1(t)r1 − F2(t)r2 + η(t), (3)

where Ic is the moment of inertia of PM; Kd is a damping
factor; η(t) is an unknown term such as external disturbances
and remodeled dynamics of PM; r1 and r2 are two values
for arm of force. In this paper, r1 = r2 = R.
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According to (1), (2) and (3), T (t) can be written as

T =k0u0R(4kf1ε0Rl−1
0 + 2kf2Rl−1

0 )θ(t)+

k0kuR(2kf1ε
2
0 + 2kf1R

2l−2θ2(t)+

2kf2ε0 + 2kf3)V
′ + η(t), (4)

where kf1R
2l−2

0 θ2(t)u(t) is considered in η(t).
Then, according to (3) and (4), the dynamic model of PM

mechanism can be written as

θ̈(t) =
2k0kvR(kf1ε

2
0 + kf2ε0 + kf3)

Ic
V ′ + d(θ, t)−

Kd

Ic
θ̇(t) +

2k0u0R
2(2kf1ε0 + kf2)l

−1
0

Ic
θ(t). (5)

B. System transformation

Recalling (5), let y1(t) = θ(t), y2(t) = θ̇(t). Then, the
system of the PM joint can be obtained as

ẏ1 = y2,

ẏ2 = d1y1(t) + d2y2(t) + b0V
′ + d(θ, t),

V ′ = D(u),

where, b0 = 2k0kuR(kf1ε
2
0 + kf2ε0 + kf3)Ic, d1 =

2k0u0R
2(2kf1ε0 + kf2)l

−1
0 Ic, d2 = KdI

−1
c .

Let g(y1, y2) = d1y1(t) + d2y2(t). Then, the system can
be written as

ẏ1 = y2,

ẏ2 = g(y1, y2) + b0V
′ + d(θ, t),

V ′ = D(u).

C. Preliminaries

According to the universal approximation property of NNs,
the unknown nonlinear function M(X) can be written as
g(X) = V ∗TΨ(W ∗TX) + ϵ, where V ∗ is an ideal weight
matrix between hidden layer and output layer; W ∗ is an ideal
weight matrix between the input layer and hidden layer; ϵ
is the network reconstruction error. Considering threshold
effect, the activation function is Ψ(x) = [Ψ(x), 1]T ∈ Rm,
where [Ψ(x)]i =

1
1+exi

, i = 1, · · · ,m, here m is the number
of neurons in the hidden layer.

Without loss of generality, make the following assump-
tion: W is the weight matrix between the input layer and
the hidden layer of the actual feed-forward neural network
(FNN), V is the weight matrix between the hidden layer
and the output layer of the actual FNN, m is the number of
neurons in the hidden layer. The output of three-layer FNN
can be written as

g(X,W, V ) = V TΨ(WTX). (6)

Considering threshold effect, the activation function is
Ψ(WTX) = [Ψ(WTX), 1]T ∈ Rm+1 , [Ψ(x)]i =

1
1+exi

, i = 1, · · · ,m.

Lemma 1. [30] For a three-layer FNN, if its two weight
matrices are adjusted at the same time. The approxima-
tion error satisfies the following equality: g(X,W, V ) −
g(X) = Ṽ T (Ψ − Ψ′WTX)+V TΨ′W̃TX+Θ, where W̃ =
W − W ∗ , Ṽ = V − V ∗ , Ψ and Ψ′ are short
for Ψ(WTX) and ∂Ψ(x)/∂x|x=WTX . Θ = Ṽ TΨ′W ∗TX −

V ∗T oΨ(·) − ϵ, oΨ(·) represents the higher order term of
Ψ(W ∗TX) in Taylor expansion of WTX .

Lemma 2. [30] If a three-layer FNN is set as (6), and
Lemma 1 holds, the following inequality holds |Θ| ≤ ζ∗P ,
where ζ∗ is an unknown finite constant, P = 1 + ∥X∥ +
∥W∥∥X∥+ ∥V ∥∥X∥.

Lemma 3. [31] The following inequality is true, that is
−2βtr{θθ̃T } ≤ −β|θ̃|2 + β|θ∗|2, where θ̃ = θ − θ∗, here θ̃
and θ are vectors or matrices with the same dimension, β is
an arbitrary constant.

Lemma 4. [24] If the following inequality is true, that
is 0 < ∂D

∂u
< 2, then there exists a unique u∗

dl satisfies
h(udc, udr, u

∗
dl) ≜ η(udc − u∗

dl + udr)− u∗
dl = 0.

III. ADAPTIVE CONTROLLER DESIGN

A. The basic form of adaptive controller

In this paper, the target trajectory is defined as θd(t). Let
yd(t) =

[
yd1(t) yd2(t)

]T
=

[
θd(t) θ̇d(t)

]T
. The system’s

state tracking error vector ∆(t) is ∆(t) = y(t)− yd(t). And
the filter tracking error r(t) is

r(t) =
[
k 1

]
∆(t), (7)

where k is the appropriate parameter to select. It makes the
tracking error ∆ tends to 0 when r tends to 0. Therefore, the
derivative of the filtering tracking error is

ṙ = g(y1, y2) + V ′ + d+ Yd, (8)

where Yd = −ẏd2(t)+k(y2−yd2(t)) is a known function for
target trajectories and tracking errors. Because the unknown
nonsymmetric dead-zone of the actuator is continuous, it
is assumed that V ′ = D

′
(u) + ϵr, where D

′
(u) is an

approximation of the unknown nonsymmetric actuator dead-
zone. ϵr is the reconstruction error satisfying |ϵr| ≤ ϵrm. It
can be obtained that

V ′ = u+ η(u) + ϵr, (9)

where η(u) = D
′
(u)− u is an unknown function. It can be

approximated by a neural network. And the input of actuator
be determined as

u = udc − udl + udr, (10)

where udc is a control input to stabilize linearized dynamics,
udl is the dead-zone compensation term constructed by using
NNs, udr is the robust term. Substitute (10) into (9), it can
be gotten that

V ′ = udc + η(u)− udl + udr + ϵr. (11)

If udl can completely counteract the effect of η(u), udr com-
pletely cancels the reconstruction error ϵr, disturbance d = 0,
then V = udc.

According to (8) and (11), the filtering error can be written
as follows:

ṙ(t) = g(y1, y2) + udc − udl + udr + η+ ϵr + d+ Yd. (12)

Because the nonlinear function g(y1, y2) is unknown, we first
give the control input udc as

udc = −ĝ − Yd −Krr(t), (13)
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where ĝ is the approximate output of NNs of nonlinear
function g(y1, y2), its specific form is given in the next
subsection.

B. Estimation of nonlinear dynamic behavior

The unknown nonlinear function g(y1, y2) of the con-
trolled system is estimated by an NN named NN1. For the
network NN1, we suppose that the weight matrix between
the hidden layer and the input layer is given randomly and no
longer adjusted, and the weight matrix between the hidden
layer and the output layer is adjusted according to the cor-
rection law given later, then g(y1, y2) = V ∗T

a Ψ(WT
a Y1)+ϵ1,

where Wa is the weight matrix between the input layer and
the hidden layer, V ∗

a is the ideal weight matrix between input
layer and hidden layer, ϵ1 is the network reconstruction error
satisfying |ϵ1| ≤ ϵ1m. The activation function is Ψ1(x) =
[Ψ̄1(x), 1]

T ∈ Rn+1, [Ψ̄1(x)]i =
1

1+e−xi
, i = 1, · · · , n, here

n is the number of hidden layer nodes.
The actual output of NN1 is ĝ = V T

a Ψa(W
T
a Y1),

where Y1 = [y1, y2, 1]
T ∈ R3.

The update law of Va can be designed as

V̇a = γVar(t)Ψa(W
T
a Y1)− γVaIVaVa, (14)

where γVa
, IVa

are positive learning rates given by designer.
Therefore, the estimation error of NN1 can be expressed

as

ĝ − g(y1, y2) = Ṽ T
a Ψ1 − ϵ1, (15)

where Ṽa = Va − V ∗
a is the estimation error of NN weight.

C. Actuator dead-zone compensator

In (10), udl is used to counteract the effect of dead-zone.
That is, using an NN to get udl to counteract η(u). Based
on Lemma 4, a static NN can be substituted for a recurrent
neural network (RNN) to approximate u∗

dl, which enables
the controller to avoid solving the fixed point problem at
every moment [24]. Therefore, a static NN named NN2 is
used to approximate η(u). According to the NN function
approximation theory, η(u) can be expressed as follows:
η(u) = V ∗T

b Ψb(W
∗T
b Y2) + ϵ2.

The output of NN2 is

udl = V T
b Ψb(W

T
b Y2), (16)

where Y2 = [udc, r(t)/α, ξ, (∥Wb∥ + ∥Vb∥), 1]T ∈ R5,
here r(t)/ρ, ξ and ∥Wb∥ + ∥Vb∥ are determined by the
expression of udr.

The update law of Vb can be designed as

V̇b =γVb
r(t)(Ψb(W

T
b Y2)−

Ψ′
b(W

T
b Y2)W

T
b Y2)− γVb

IVb
Vb, (17)

and the update law of Wb can be designed as

Ẇb = γWb
r(t)Y2V

T
b Ψ′

b − γWb
IWb

Wb, (18)

where γVb
, γWb

, IVb
, IWb

are positive learning rates given by
designer.

According to Lemma 1, the NN approximation error can
be expressed as

udl−η = Ṽ T
b (Ψb−Ψ′

bW
T
b Y2)+V T

b Ψ′
bW̃

T
b Y2+ δ(t), (19)

where δ(t) = Ṽ T
b Ψ′

bW
∗T
b Y2 − V ∗T

b oΨb
(·) − ϵ2(t), W̃b =

Wb − W ∗
b , Ṽb = Vb − V ∗

b is the estimation error of NN
weights.

According to Lemma 2, there is

|δ| ≤ ξ∗p, (20)

where ξ∗ ∈ R is an unknown constant, p = 1 + ∥Y2∥ +
∥Wb∥∥Y2∥+ ∥Vb∥∥Y2∥.

D. Stability analysis

According to (12), (13), (15), (16) and (19), the derivative
of the filtering error is

ṙ(t) =−Krr(t)− ĝ + (η − udl) + udr + ϵs + d(t)

=−Krr(t)− Ṽ T
a Ψa + ϵ1 − [V T

b (Ψb−
Ψ′

bW
T
b Y2) + V T

b Ψ′
bW̃

T
b Y2 + δ(t)]+

udr + ϵs + d(t), (21)

where the robust term is designed as

udr = −ζp tanh(r(t)p/α). (22)

The update law of robust term is

ζ̇ = γζr(t)p tanh(r(t)p/α)− γζIζζ, (23)

where γζ , Iζ are positive learning rates given by designer.

Remark 1. udr is used to overcome the unknown external
disturbance. Different from [4], which needs to know the
upper bound of the external disturbance in advance, the
method in this paper does not need to know in advance,
nor does it need offline estimation.

Theorem 1. For the internal pressure (1), if the controller
udc is designed as (13), the dead-zone compensator udl is
designed as (16), the robust term of the system and its update
law are designed as (22) and (23), and the update laws
of NNs are designed as (14), (17) and (18), the following
fact is true: The tracking error and the weight estimation
errors of NNs eventually converge to a compact set related
to parameters. They can be adjusted to be small enough.

Proof: Consider the following Lyapunov function:

Γ =
1

2
r2(t) +

1

2γVa

∥Ṽa∥2 +
1

2γWb

∥W̃b∥2+

1

2γVb

∥Ṽb∥2 +
1

2γζ
∥ζ∥2. (24)

The derivative of (24) is

Γ̇ =r(t)ṙ(t) +
1

γVa

Ṽ T
a

˙̃Va +
1

γWb

tr{W̃T
b

˙̃Wb}+

1

γVb

Ṽ T
b

˙̃Vb +
1

γζ
ζ̃
˙̃
ζ. (25)
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Recalling (20) and (21), we have

Γ̇ =r(t)
{
−Krr(t)− Ṽ T

a Ψa + ϵ1 −
[
V T
b Ψ′

bW̃
T
b Y2 +

Ṽ T
b (Ψb −Ψ′

bW
T
b Y2) + δ(t)

]
+ udr + ϵs + d

}
+

1

γVa

Ṽ T
a

˙̃Va +
1

γWb

tr{W̃T
b

˙̃Wb}+
1

γζ
ζ̃
˙̃
ζ

≤−Krr
2(t) + Ṽ T

a (
1

γVa

V̇a − r(t)Ψa)+

tr{W̃T
b (

1

γT
Wb

Ẇb − r(t)Y2V
T
b Ψ′

b)}+

Ṽ T
b (

1

γVb

V̇b − r(t)(Ψb −Ψ′
bW

T
b Y2)) + r(t)udr+

|r(t)|(ζ∗0p+ ϵsm + dm + ϵ1m) +
1

γζ
ζ̃
˙̃
ζ. (26)

Substitute (22) and (23) into the above inequality, and
let ζ∗ = ξ∗ + ϵsm + ϵ1m + dm, it can be gotten that

Γ̇ ≤−Krr
2(t) + Ṽ T

a

1

γVa

V̇a − rΨa+

tr{W̃T
b (

1

γWb

Ẇb − r(t)Y2V
T
b Ψ′

b)}+

Ṽ T
b

1

γVb

V̇b − r(t)(Ψb −Ψ′
bW

T
b Y2)−

ζr(t)p tanh(r(t)p/α) + |r(t)|ζ∗p+
ζ̃r(t)p tanh(r(t)p/α)−Kζ ζ̃ζ. (27)

Substitute (14), (17) and (18) into it, we have

Γ̇ ≤−Krr
2(t)− λVa

tr{W̃T
a Wa}−

λWb
tr{W̃T

b Wb} − λVb
tr{Ṽ T

b Vb}−
ξr(t)p tanh(r(t)p/α) + |r(t)|ξp− λζ ζ̃ζ. (28)

According to Lemma 3 and the inequality in [31], that is
0 ≤ |x| − xtanh(x/β) ≤ 0.2785β, where β > 0, x ∈ R, we
have

Γ̇ ≤−Krr
2(t) + 0.2785ρξ − IVa

2
∥Ṽa∥2+

IVa

2
∥V ∗

a ∥2 −
IWb

2
∥W̃b∥2 +

IWb

2
∥W ∗

b ∥2−
IVb

2
∥Ṽb∥2 +

IVb

2
∥V ∗

b ∥2 −
Iζ
2
|ζ̃|2 + Iζ

2
|ζ∗|2

≤−Krr
2(t)− IVa

2
∥Ṽa∥2 −

IWb

2
∥W̃ b∥2−

IVb

2
∥Ṽb∥2 −

Iζ
2
|ζ̃|2 +B, (29)

where B =
IVa

2 ∥V ∗
a ∥2+

IWb

2 ∥W ∗
b ∥2+

IVb

2 ∥V ∗
b ∥2+

Iζ
2 |ζ

∗|2+
0.2785ρξ∗ .

Let A = min{2Kr, IVa
γVa

, IWb
γWb

, IVb
γVb

, Iζγζ}, we
have Γ̇ ≤ −AΓ + B. Multiply both sides by eAt, it can
be obtained that d

dt (Γ(t)e
At) ≤ eAtB. According to [32],

integrating the above inequality over [0, t], we have

Γ(t) ≤ (Γ(0)− B

A
)e−At +

B

A
≤ Γ(0) +

B

A
. (30)

Therefore, combined with (24), it can be
obtained that |r| ≤

√
2Γ(0) + 2B/A, ∥Ṽa∥ ≤√

2γVa
(Γ(0) +B/A), ∥W̃b∥ ≤

√
2γWb

(Γ(0) +B/A),
∥Ṽb∥ ≤

√
2γVb

(Γ(0) +B/A), |ζ̃| ≤
√
2γζ(Γ(0) +B/A).

Let υ = 2Γ(0) + 2B/A. From (7), we have r(t) =
k∆1(t) +∆2(t). And there is a normal number c satisfying
|∆−kt| ≤ c∆−kt. Because ∆ = [∆1 ∆2]

T , it can be
obtained that ∥∆∥ ≤ |∆1| + |∆2| ≤ (1 + k)|∆1| + |r|,
∥∆∥ ≤ c(1 + |k|)|∆1(0)| +

[
1 + (1+k)c

k

]√
υ. Because

∆1(0) = 0, it can be obtained ∥∆∥ ≤
[
1 + (1+k)c

k

]√
υ.

Let ῡ = [1+ (1+k)c
k ]

√
υ. Therefore, the consistent bound-

edness of the system state and NN weight parameters can be
obtained as follows: ∥y(t)∥ ≤ ∥∆(t)∥, ∥Va∥ ≤ √

γVa
υ +

∥V ∗
a ∥, ∥Wb∥ ≤ √

γWb
υ + ∥W ∗

b ∥, ∥Vb∥ ≤ √
γVb

υ + ∥V ∗
b ∥,

|ζ| ≤ √
γζυ + |ζ∗|.

Furthermore, from (30), we have Γ(t) ≤[
Γ(0)− B

A

]
e−At + B

A . Let υ′ = 2B/A , we have
lim
t→∞

Γ(t) = 1
2υ

′.
Similarly, the consistent final boundedness of the

tracking error of the closed-loop system and the
weight parameters of NNs can be deduced as follows:
lim
t→∞

∥∆(t)∥ = ῡ′, lim
t→∞

∥Ṽa∥ =
√

γVa
υ′, lim

t→∞
|ζ̃| =

√
γζυ′,

lim
t→∞

∥W̃b∥ =
√
γWb

υ′, lim
t→∞

∥Ṽb∥ =
√
γVb

υ′,

where ῡ′ =
[
1 + (1+k)c

k

]√
υ′.

Remark 2. This paper uses an NN to estimate the system
state online for real-time tracking. This is different from
the reference auxiliary signal processing error in [4], which
improves the tracking speed of the system and reduces the
system state error.

IV. SIMULATION STUDIES

In order to prove the feasibility of the controller in this
paper, a numerical analysis is carried out on a same PM
system as in [4], which is shown in Fig. 1. The initial
parameters of the PM system are b10 = 2, d11 = 0.1,
d12 = 0.65, b20 = 3, d21 = 0.88, and d22 = 0.3.

The structure of neural network NN1 is 3-11-1. The
structure of neural network NN2 is 5-21-1. The initial values
of the weight Va of NN1 and the weight Vb of NN2 are placed
at −0.1. And the initial values of the weight Wa of NN1 and
the weight Wb of NN2 are set to 0.1. Estimated parameter
ξ is 0.01.

The initial parameters of the controller are k = 8, Kv =
10, IVa

= 0.005, IVb
= −0.005, IWb

= −0.005, Iζ = 0.05,
γVa = 0.9, γVb

= 0.9, γWb
= 0.3, γζ = 0.1, and α = 0.01.

The initial condition is set to y = [1 0]T . And d(y, t) =
0.2 sin(y1+y2) cos(t). In this paper, choose the target trajec-
tory θd(t) = sin(t). The following two cases are considered.

A. Case 1

Let b0 = b10, d1 = d11, d2 = d12. When b1 = b2 = 0,
the controller is a general actuator without dead-zone. The
simulation results are shown in Fig. 2 and 3. The tracking
performance and the tracking error are shown in the Fig. 2. It
can be observed that the deviation between the power angle
and the ideal operating point is almost 0 during the transient
process. And it also can be seen that the tracking error drops
rapidly and smoothly to around 0. Fig. 3 shows the output
of the actuator.

By comparing Fig. 2 and Fig. 1 in [4], it can be concluded
that there are better tracking performance and transient
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Fig. 2: The tracking performance and the tracking error
without actuator dead-zone in Case 1.
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Fig. 3: The output of actuator without dead-zone in Case 1.

performance than [4]. From Fig. 3, it is discernible that
the actuator output adheres to the system’s constraint re-
quirements Moreover, this approach takes into account the
actuator dead-zone issue, which was not addressed in [4].

According to Fig. 3, the dead-zone nonlinearity of the
actuator can be set as follows: b1 = −3, b2 = 4, m1(u) =
u − b1, m2(u) = u − b2. The simulation results are shown
in Fig. 4, 5 and 6. The tracking performance and error with
actuator dead-zone of the system are shown in Fig. 4. State
y2 with actuator dead-zone is shown in Fig. 5. The input
and output of actuator with actuator dead-zone are shown in
Fig. 6.

Based on the figures obtained in Case 1, the following
conclusions can be drawn.

1) After a comparison of Fig. 4 and Figure 1 in [4], it
can be seen that the actuator with dead-zone designed
in this paper can get better results than those obtained
in [4].

2) By comparing Fig. 4 and 2, and Fig. 6 and 3 respec-
tively, it can be seen that the results with actuator dead-
zone are almost no different from the results without
actuator dead-zone in this paper.

B. Case 2

Let b0 = b20, d1 = d21, d2 = d22. The simulation results
(including tracking performance, tracking error, state y2 and
the input and the output of actuator) are shown in Fig. 7, 8
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Fig. 4: The tracking performance and the tracking error
with actuator dead-zone in Case 1.
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Fig. 5: State y2 with actuator dead-zone in Case 1.
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Fig. 6: The input and the output of actuator in Case 1.

and 9. Based on the simulation figures, the results obtained
by the control method in this paper are independent of the
unknown system parameters b0, d1, d2. When the system
parameters change, the method proposed in this paper can
still ensure the stable tracking of the system.

V. CONCLUSION

This paper employs a design framework for an adaptive
neural network (NN) finite-time controller to effectively
address the inherent challenges of pneumatic muscles. This
framework leverages real-time estimation of system states
and external disturbances to enable online estimation of sys-
tem errors, significantly enhancing the tracking performance
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Fig. 7: The tracking performance and the tracking error
with actuator dead-zone in Case 2.

0 2 4 6 8 10

t(s)

-8

-6

-4

-2

0

2

y
2

Fig. 8: State y2 with actuator dead-zone in Case 2.
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Fig. 9: The input and the output of actuator with actuator
dead-zone in Case 2.

of pneumatic muscles. To tackle the dead-zone issue within
the nonlinear characteristics of actuators, a static neural net-
work compensator is introduced, effectively mitigating these
challenges. The research findings indicate that the tracking
error of the closed-loop system and the weight parameters
of the NN exhibit ultimate uniform boundedness, and the
system’s tracking error will converge to a small neighborhood
with an adjustable radius. Simulation results further validate
the feasibility and effectiveness of the controller in meeting
the system’s requirement for actuator output boundedness.
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