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Abstract—In this paper, a novel approach to the automatic
control of a DC motor has been presented through the
application of advanced identification and adaptive control
techniques. A combination of online and offline identification
methods, including least squares and projection algorithms,
has been explored to establish accurate models for the
motor. Based on these identified models, PID and generalized
polynomial integral-acting controllers have been specifically
tailored and implemented. A distinctive feature of this
work is the integration of adaptive control strategies with
these controllers. The adaptive framework has enabled the
controllers to autonomously adjust in response to varying
DC motor conditions, thereby ensuring robust performance
across different operating scenarios. The efficacy of the
proposed methodology has been rigorously evaluated through
comprehensive simulations and practical experiments on a
physical DC motor setup. Utilizing an Arduino Due and an
H-bridge for motor control, disturbances have been assessed
by coupling an additional motor to the main setup. This
approach has facilitated a thorough comparison of disturbance
responses across all implemented models and controllers.
In summary, a novel methodology combining advanced
identification techniques with adaptive control strategies has
been contributed by this research, demonstrating significant
advancements in the automatic control of DC motors under
varying operational conditions.

Index Terms—Adaptive control, DC motor, Identification
techniques, Arduino

I. INTRODUCTION

DC motors have been commonly utilized for extended
operational periods due to their favorable internal and
external properties as well as their control characteristics
[1],[2]. Their linearity has made them suitable for various
speed control applications; however, nonlinear behavior has
been exhibited under unstable conditions and in the presence
of disturbances. In the control of dynamic systems like
DC motors, model-based techniques have been extensively
employed for designing feedback controllers to maintain
desired motor positions [3],[4]. Nevertheless, discrepancies
have inevitably arisen between developed mathematical
models and actual plants due to uncertainties in system
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parameters, unmodeled dynamics, nonlinearities, external
disturbances, and measurement noise. Thus, the challenge
has lain in designing identification and control systems
capable of handling these uncertainties to implement robust
and efficient control systems.

The modeling of physical plants has been acknowledged
as having played a crucial role in the design and control
of automated systems, as noted in [5]. In many cases,
an accurate representation of system dynamics through
parameter identification has been required to be achieved
using parametric models. Elementary identification methods
may have proven inadequate, necessitating the use of
advanced techniques such as optimization or model fitting
methods. Despite this, manual model implementations
have often been described in the literature, even in
critical applications such as navigation bridge simulator
design. While human expertise has been relied upon, this
interactive approach has been found to be laborious and
time-consuming. Therefore, the exploration of advanced
parameter identification methods has been deemed essential
to improve system representation accuracy and enhance
feedback controller design. Initially, the problem of
parameter identification has been formulated and studied
within the framework of general systems theory, with the
aim of applying it to solve control system reference problems
[6],[7],[8]. Sufficient knowledge of mathematical models of
controlled or stabilized objects has been deemed necessary
for the synthesis of adaptive and optimized control laws.

According to [9], identification algorithms have been
categorized into two main groups: online and offline
identification. Offline identification has involved the
determination of a system model using a batch of measured
data available at all stages of the procedure. In experimental
studies, parameter identification has often been performed
during the post-processing of obtained data, requiring careful
analysis to ensure accuracy and reliability. In contrast,
online identification has entailed simultaneous measurement
and identification processes, albeit with some temporal
separation, necessitating precise synchronization to achieve
accurate model parameter identification.

In [10], a didactic plant has been implemented for
learning control techniques, with potential plant changes
considered during mathematical modeling. Various methods
for identifying DC motor plants have been employed, such
as online identification using least squares, as proposed in
[11]. Control systems for managing motor position, speed,
and torque have been categorized into three main groups
[12]: classical systems (P, PI, PD, PID) [13], modern systems
(adaptive, sliding mode, etc.) [14], and intelligent systems
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(neural networks, fuzzy controllers, etc.). In [15], a general
form of adaptive control for multivariable systems, including
identification and polynomial control, has been presented.
In [16], adaptive control of an induction motor based
on indirect field-oriented control has been presented and
validated through simulation and a real prototype.

In [17], a discrete sliding mode-based control algorithm,
termed ”Position-Braking Tracking Control (PBTC),” has
been developed to enhance position-tracking performance
for low-frequency trajectories in a permanent magnet DC
servo motor application. With the estimation of plant values,
discrete controllers have been found necessary, as proposed
in [18]. Specifically, PID controllers for second-order plants
and more general controllers, such as generalized polynomial
controllers with integral action, have been considered.
Methods for simultaneous estimation and control have
been suggested for DC motor position control [19]. The
evaluation of the proposed controllers and identification
methods has been conducted to highlight superior controller
performance under both normal and disturbed conditions.
In [20], model-based control of a buck converter has been
presented, with the system identified as a second-order
discrete model using a PID controller, as well as other state
space controllers, which have been successfully validated
over a real prototype [21],[22],[23],[24].

In this paper, an innovative methodology for the automatic
control of DC motors has been introduced, featuring
cutting-edge identification and adaptive control techniques.
State-of-the-art algorithms have been integrated into this
novel approach to redefine how DC motor control is
achieved, advancing both the precision and adaptability of
the control systems. The main contribution of this study has
been the enhancement of control system performance against
external disturbances through the use of adaptive control
techniques and their validation by using open-source Arduino
microcontrollers and low cost DC motors. The proposed
adaptive control techniques are evaluated in simulation and
over a real workbench with two coupled DC motors. In
addition, a comparison analysis of the proposed techniques
is presented. The paper has been structured as follows:
Section II has presented identification model methods and
control techniques, outlining structures designed for online
and offline identification, PID controllers, and integral action
polynomial controllers. Section III has showcased evaluation
results of the proposed controllers in simulations and
real-time DC motor experiments under external disturbances.
Finally, conclusions have been drawn.

II. MATERIALS AND METHODS

In this work are proposed several combinations between
identification methods and discrete controllers in order to
evaluate adaptive control approaches over two coupled DC
motors by using open-source Arduino microcontrollers.

A. Discrete controllers

1) PID Controller: This version of the PID controller is
used for second-order systems. This controller has integral
action and therefore the closed-loop system will have zero
steady-state error. The equation of the controller is defined

as follows:

C(z) =
c0z

2 + c1z + c2
(z + c3)(z − 1)

(1)

being ci, with i = 1, . . . , 4 the controller coefficients.
2) Generalized polynomial controller with integral action:

This polynomial controller can be used for systems of
any order. In this case, the equation will be given for a
second-order system:

C(z) =

(
1

z − 1

)
p1z

2 + p2z + p3
z3 + l1z2 + l2z + l3

(2)

being pi and li, with i = 1, . . . , 3 the controller coefficients.

B. System identification

System identification is the process of obtaining a
mathematical model from the input and output data of a
dynamic system [25]. Offline and online identification are
two common approaches to system identification.

1) Offline identification: Offline identification involves the
use of historical data to build a mathematical model. In this
approach, system input and output data are collected over
time, and the identification algorithms are used to fit the
parameters of the mathematical model [26].

For least squares, the input-output data measurements are
organized as y = Aθ, being y is the system’s outputs, A
the inputs and outputs of the system at a previous time,
and θ the parameters that describe the system dynamics. A
general description of this data arrangement can be expressed
as follows:

y[k] = −
n∑

j=1

ajy[k − j] +

m∑
j=1

bju[k − j] (3)

For a second-order system it would be simplified as follows:

y[k] =
[
−y[k − 1] −y[k − 2] u[k − 1] u[k − 2]

] 
a1
a2
b1
b2


︸ ︷︷ ︸

θ
(4)

being θ the vector that holds the parameters of the system
for the whole measured dataset.

2) Online identification: In this work an online
identification is proposed to achieve a good performance of
the controllers regardless of the disturbance applied to the
system.

3) Online projection algorithms: Projection algorithms
are a common technique for online identification used for
linear and nonlinear systems. The identification is performed
by applying the following equation recursively:

θ[k] = θ[k−1]+
ϕ[k − 1]

ϕT [k − 1]ϕ[k − 1]
(y[k]−ϕT [k−1]θ[k−1])

(5)
being θ[k] the systems parameters identified at time instant
k.
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4) Online Least Squares: Least squares algorithms are
another common technique for online identification, as
described in [27]. This approach involves minimizing the
sum of squared errors between the system output and
the mathematical model output. The model parameters are
recursively adjusted to minimize the difference between
the system output and the model output. To this end, the
identification of θ is performed by applying recursively the
following equation:

θ[k] = θ[k − 1] +
p[k − 1]ϕ[k − 1]

1 + ϕT [k − 1]P [k − 1]ϕ[k − 1]

(y[k]− ϕT [k − 1]θ[k − 1])

(6)

where θ holds the parameters of the system to be identified.
The matrix P is computed recursively by applying the
following equation:

P [k] = P [k−1]− P [k − 1]ϕ[k − 1]ϕT [k − 1]P [k − 1]

1 + ϕT [k − 1]P [k − 1]ϕ[k − 1]
(7)

C. Controllers design

The design of the controllers is performed by defining the
closed-loop characteristic polynomial pLC(z) according to
a desired polynomial pD(z). In this case, a second order
system defined as follows is considered:

H(z) =
b1z + b2

z2 + a1z + a2
(8)

By considering the closed-loop polynomial pLC(z) the
desired polynomial is defined as follows:

pD(z) = z4 + α1z
3 + α2z

2 + α3z + α4

being α the desired coefficients for the closed-loop dynamics.
By comparing the polynomials pLC(z) = pD(z), the
following set of equations is obtained for the PID controller
of (1) in matrix form:

b0 0 0 1
b1 b0 0 a1 − 1
0 b1 b0 a2 − a1
0 0 b1 −a2



c0
c1
c2
c3

 =


α1 + 1− a1
α2 + a1 − a2

α3 + a2
α4

 (9)

where is worth noting that the parameters a1, a2, b1 and b2
are computed at each time instant, and therefore (9) must be
solved at each time instant as well.

The implementation of the polynomial controller with
integral action is perform in a similar way to the PID
controller. In this case, the desired polynomial is defined as
follows:

pD(z) = z6 + α1z
5 + α2z

4 + α3z
3 + α4z

2 + α5z + α6

By comparing the polynomials pLC(z) = pD(z), the
following set of equations is obtained for the polynomial

controller of (2) in matrix form:
1 0 0 0 0 0

a1 − 1 1 0 0 0 0
a2 − a1 a1 − 1 1 b0 0 0
−a2 a2 − a1 a1 b1 b0 0
0 −a2 a2 − a1 0 b1 b0
0 0 −a2 0 0 b1




l1
l2
l3
p1
p2
p3

 =


α1 + 1− a1
α2 + a1 − a2

α3 + a2
α4

α5

α6


(10)

where the parameters a1, a2, b1 and b2 are also computed at
each time instant, and therefore (9) must be solved at each
time instant.

III. RESULT AND DISCUSSION

An Arduino DUE is used for the evaluation of the
proposed approach, which is connected to the DC motor
position sensor that has an encoder with 2000 pulses per
revolution. The motor, which has a maximum supply voltage
of 12 V DC, requires power that the Arduino cannot deliver.
Therefore, an H bridge is used to change the rotation of the
motor and to add a different power supply. The connection
diagram is shown in Fig. 1. The system is identified and
controlled in real time by using a sampling time pf 0.010
seconds.

Very low-cost elements were employed for the actual
implementation of advanced control techniques in
conjunction with different identification techniques. In
Fig. 2, the components used for implementing control
without disturbance are depicted, along with the elements
used to connect the two motors via coupling. One motor
serves as the controlled motor, while the other motor acts
as the disturbance source in the system.

Fig. 2. Real implementation of the coupled DC motors.

When implementing the offline identification using least
squares to find the plant dynamics approximating a plant
of order 2, the following constants and discrete transfer
functions were obtained.
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Arduino DUE Arduino DUE

Fig. 1. Schematic diagram of the proposed approach.

θ =


a1
a2
b0
b1

 =


−1.7856
0.7734
0.1129
0.1181

 (11)

H(z) =
b0z + b1

z2 + a1z + a2
=

0.1129z + 0.1181

z2 − 1.7856z + 0.7734
(12)

To get an approximation of the mean square error, the
following expression is used:

J = ||b−Aθ||22 = (b−Aθ)T (b−Aθ) = 1207.9 (13)

The discrete transfer function found in (12) using offline least
squares identification behaves very similarly than the real
system, as shown in Fig. 3. In Fig. 3 a simulation under the
same input is performed by considering the estimated offline
parameters.

Fig. 3. Estimated output and system output.

The simulation and offline identification plots are so
over-plotted that they are not noticeable, which means that

the identified transfer function correctly models the changes
generated by the input u.

The constants of the closed-loop transfer function of the
PID controller are:

c0 = 16.7927

c1 = −18.2875

c2 = 5.8234

c3 = 0.8890

by considering that α coefficients are chosen as zero,
resulting in a closed-loop system with dead beat dynamics.

The closed-loop response of the PID controller of (12)
based on the offline identification is implemented in the
Arduino DUE microcontroller, and the reference tracking
performance is shown in Fig. 4.

Fig. 4. Offline PID controller.

Figure 4 shows the behavior of the offline PID controller,
by considering a reference signal that varies in step values.
In Fig. 4 can be seen how the output signal manages to
reach the reference after 100 seconds and stabilizes near the
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reference, and remaining with some small errors that fail to
eliminate due to the dead point that has the engine, which
behaves as a non-linearity just at this point.

For the polynomial controller it follows that, when solving
the system (10), the following constants are obtained:

l1 = 2.7856

l2 = 6.7476

l3 = 4.7394

p1 = 68.1916

p2 = −88.2116

p3 = 31.0445

The closed-loop response of the polynomial controller
of the equation (13) is implemented in the Arduino DUE
microcontroller, and the reference tracking performance is
shown in Fig. 5.

Fig. 5. Generalized polynomial controller with offline integral action.

Fig. 6. Estimation of values by projection algorithm projection algorithm.

Figure 5 is the graph representing the generalized
polynomial controller with integral action with offline
identification. There it can be seen that the output reaches
the reference with a bit of overshoot, however this quickly
returns to the reference and stays there stable until the
reference changes.

The online identification of the plant is performed in
this case using the equation (5) of the projection algorithm
to estimate the real-time values of the plant in addition
to the fact that we would also be monitoring changes or
disturbances of the identified plant at the same time.

Fig. 7. Least squares value estimation.

Fig. 8. PID Controller based on online identification.

The constants of the adaptive line identification are
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shown in Fig. 6, where an initial disturbance is made for
the projection algorithm to estimate the parameters of the
function in differences, these variables change over time
because the plant can change due to different circumstances
of the plant itself.

The variables estimated using this projection algorithm
need many iterations to converge to a value that represents
the system’s dynamics. This makes the identification very
slow and the initial controller will not be as good.

Figure 7 shows the graph of the variables obtained using
the least squares method, with this method it can be seen
that the response is faster because it reaches the parameter
values in a shorter time than with the projection algorithm.

The problem with this algorithm is that if the P matrix
becomes zero, the estimation values do not change even if the
system is disturbed. To solve this problem, what is proposed
is to reset the values of the P matrix so that the system
re-estimates and identifies the dynamics of the system again.

In the same way as the PID control with offline
identification in Fig. 4, a PID controller with online
identification in Fig. 8 was implemented to evaluate the
behavior of this form of identification.

Fig. 9. Generalized polynomial controller with line integral action with
online identification.

In Fig. 8 we see that there are some overshoot peaks
coming out due to the projection algorithm as it tries to
approximate a nonlinear system to a linear one, however,

it can also be seen that the reaction time of the controller
makes the system follow the reference faster.

Fig. 10. PID Controller with online least squares.

Fig. 11. Generalized polynomial controller with online least squares

When the system is implemented, it is possible to see
the response of the estimated system, which is modeled by
differential equations and compared with the response of
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the real system. This visual analysis allows to verify if the
estimation of the system is good or not.

After having the PID controller working we change the
controller in this case the generalized polynomial with
integral action. The solution of the system of equations,
given by (10), is solved by using a LU decomposition, which
reduces the number of operations needed to solve the system.
This reduced the computational load of the Arduino, which
has to compute the identification and controller design every
0.01 seconds.

Using this polynomial controller, the closed-loop response
of Fig. 9 is obtained.

It is worth noting that, while the system estimated
the parameters by using the projection algorithm, several
oscillations are shown in the closed-loop response when the
reference is reached. This makes the motor direction changes
very fast, so the actuator used to switch much faster and
therefore generating a higher heat dissipation.

A more efficient identification method will be used to
estimate the values of the difference equation much faster. To
this end, the online least squares identification algorithm is
used, as described in (6) and (7). This identification algorithm
is used by considering the PID and the polynomial controller.

Fig. 12. PID controller with online least square identification under a
disturbance.

For the online identification using least squares for the

generalized polynomial and PID controllers, a better system
response is seen when using the generalized polynomial
compared to the PID controller, as shown in Fig. 10, which
has a lot of oscillation and does not stabilize quickly, on
the contrary in Fig. 11 it has a small overshoot and then
stabilizes at the desired reference.

The estimation of the values is so good with the least
squares method that in Fig. 10 and Fig. 11 the two graphs
overlap and are not easily visualized, so in Fig. 11 an
approach is made to notice which is the simulated and which
is the real one.

Fig. 13. Polynomial controller with online least square identification under
a disturbance.

To evaluate the controllers and estimators to additive
disturbances in the system and check their performance, for
this we used another motor with the same characteristics
using the same H-bridge and another Arduino DUE that
fulfills the function of adding a disturbance in torque one of
the disturbances difficult to control. In this case, the motor
that generates the disturbance will do it for 3.5 s and then
leave the controlled motor free to reach its reference, the
case where we are interested in checking this disturbance is
in the online identifiers.

For the Fig. 12 the disturbance for the identification
by least squares and the PID controller is being checked,
the disturbance entered in the time of 9.8 seconds and
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the disturbance was maintained until the 13. 3 seconds of
simulation, this time the controlled engine deviated from the
reference about 90 degrees but remained in that position and
did not let the engine with the disturbance make it deviate
more from the reference, after the disturbance the engine
reaches the reference without any problem.

.

Fig. 14. PID controller with online projection identification under a
disturbance.

Now the disturbance is applied to the same previous
identifier, and the controller is changed to the generalized
polynomial. In this case, as can be observed in Fig. 13, the
disturbance is initiated at 14 seconds, and at 17.5 seconds,
it is disconnected. The controlled motor attempts to reach
the reference, but later changes its reference and eventually
achieves it. The disturbance causes the controlled motor to
deviate from the reference by almost 350 degrees, surpassing
the intended deviation of 300 degrees.

The identification is switched to the projection algorithm,
and the first controller tested for performance is the PID
controller, as depicted in Fig. 14. In this case, the disturbance
begins at 6.2 seconds and concludes at 9.7 seconds. The
system experiences multiple overshoots as it attempts to
estimate and control the disturbance. Due to the projection
algorithm requiring numerous iterations to converge, the
disturbances are highly noticeable.

In the case of Fig. 16, the disturbance in torque for
the polynomial with in-line identification by the projection

method resulted in the output being moved away from the
reference, resulting in a substantial error of approximately
2700 degrees. This disturbance could not be effectively
countered by this controller with this identification method,
demonstrating inefficiency compared to expectations.

Fig. 15. Polynomial controller with online projection identification under
a disturbance

Since no arrangement between identifier and controller
proved effective against torque disturbances, a hybrid method
is proposed where the two identification methods are
combined. This hybrid method incorporates the strengths
of each: least squares identification for its high-speed
convergence and the projection algorithm for its robustness.

The Hybrid method is tested in Fig. 16 without
disturbances to evaluate its performance against reference
changes and tracking.

In Fig. 16, a hybrid identification is implemented with
the PID controller. Initially, there is time for identification
and calculation of control constants to achieve the reference,
resulting in decreasing oscillations over time. However, a
steady-state error is observed in the system, attributed to
the motor’s dead zone and the resolution limitations of the
encoder sensor.
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Fig. 16. Hybrid identification with the PID controller.

Unlike Fig. 16, in Fig. 17 where a generalized polynomial
control is utilized and the hybrid identification was conducted
swiftly, focusing on reference tracking.

Fig. 17. Hybrid identification with the polynomial controller.

In this case, oscillations are observed as the system
attempts to reach the reference and compensate for the
motor’s dead zone.

Fig. 18. Hybrid identification control polynomial with disturbance.

Regarding the identification, it can be noted that the
approximation is very close, making it difficult to distinguish
between simulated and actual data.

The performance of the disturbance in the proposed
identification system is now being evaluated under these
conditions, as depicted in Fig. 18 and Fig. 19.

The first controller evaluated with disturbance and hybrid
identification was the polynomial control, as depicted
in Fig. 18. When the disturbance occurs, the system
momentarily deviates from the reference but manages to
bring the output back to the reference with increased
oscillation, influenced by the motor’s response to the
disturbance. This behavior represents an improvement
compared to previous observations.

Finally, the hybrid identification is utilized in conjunction
with the PID controller in Fig. 19. In this case, the torque
disturbance manages to cause the output of the controlled
system to deviate, resulting in a steady-state error. However,
this error is expected to be less than with previous controllers
and with fewer oscillations compared to Fig. 18.

IV. CONCLUSION

In this work, a comparison analysis of several control and
identification techniques is conducted. The performance of
each control and identification method is evaluated using two
coupled DC motors.
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Fig. 19. Hybrid identification with the PID controller under a disturbance.

An angular position tracking control task is implemented
on one motor, while a torque disturbance is induced in
the coupled motor. The hybrid identification methods,
in conjunction with the PID controller, exhibited the
best performance against disturbances compared to
state-of-the-art methods. Furthermore, it is observed that
the evaluation of these complex adaptive controllers is
carried out on a low-cost Arduino-based platform. It is
noteworthy that the motor model is successfully identified
using the identification methods, rendering the proposed
approach suitable for implementation in both simulated and
real prototypes, even under nonlinear, unstable, or disturbed
conditions.
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[1] S. J. Chapman, Máquinas Eléctricas. McGraw Hill Mexico, 2012.
[2] A. E. Fitzgerald, C. Kingsley, S. D. Umans, and B. James, Electric

Machinery. New York: McGraw-Hill, 2003, vol. 5.
[3] H.-L. CHOI, Y.-H. Chang, Y. Oh, and J.-T. Lim, “On robust

position control of dc motors by ϵ-pid controller and its application
to humanoid robot arms,” IFAC Proceedings Volumes, vol. 41,
no. 2, pp. 14 449–14 453, 2008, 17th IFAC World Congress.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1474667016413133

[4] D. Debnath, P. Malla, and S. Roy, “Position control of a dc servo motor
using various controllers: A comparative study,” Materials Today:
Proceedings, vol. 58, pp. 484–488, 2022, international Conference on
Artificial Intelligence & Energy Systems. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2214785322012986

[5] S. Sutulo and C. Guedes Soares, “An algorithm for offline
identification of ship manoeuvring mathematical models from
free-running tests,” Ocean Engineering, vol. 79, pp. 10–25, 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0029801814000080

[6] N. K. Sinha, “System identification—theory for the user:
Lennart ljung,” Automatica, vol. 25, no. 3, pp. 475–476, 1989.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0005109889900198

[7] T. Matsuo, Y. Terada, and M. Shimasaki, “Stop model with
input-dependent shape function and its identification methods,” IEEE
Transactions on Magnetics, vol. 40, no. 4, pp. 1776–1783, 2004.

[8] S.-C. Chan, J.-Q. Lin, X. Sun, H.-J. Tan, and W.-C. Xu, “A new
variable forgetting factor-based bias-compensation algorithm for
recursive identification of time-varying multi-input single-output
systems with measurement noise,” IEEE Transactions on
Instrumentation and Measurement, vol. 69, no. 7, pp. 4555–4568,
2020.

[9] F. Dumortier, “Theory and practice of recursive identification:
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Controllers. London: Springer London, 2005.

[19] S. D. Sahputro, F. Fadilah, N. A. Wicaksono, and F. Yusivar, “Design
and implementation of adaptive pid controller for speed control of
dc motor,” in 2017 15th International Conference on Quality in
Research (QiR) : International Symposium on Electrical and Computer
Engineering, 2017, pp. 179–183.

[20] E. Giraldo, “Adaptive model-based control design of a synchronous
buck converter,” Engineering Letters, vol. 30, no. 4, pp. 1364–1371,
2022.

[21] Ma’arif, Alfian and Iswanto, and Raharja, Nia and Rosyady, Phisca
and Cahya Baswara, Ahmad and Nuryono, Aninditya, “Control of dc
motor using proportional integral derivative (pid): Arduino hardware
implementation,” 12 2020.

[22] Setiawan, Iman and Junaidi, Junaidi and Fadjryani, and Amaliah,
Fika, “Automatic plant watering system for local red onion palu using
arduino,” Jurnal Online Informatika, vol. 7, pp. 28–37, 06 2022.

[23] E. Prayetno, T. Suhendra, and J. Saputra, “Monitoring system of the
temperature for mini fish storage using internet of things,” E3S Web
of Conferences, vol. 324, p. 01011, 01 2021.

[24] I. M. Nugraha, I. M. Mahardiananta, P. M. Putra, and I. G.
Adnyana, “Magnetic stirrer with speed advisor and timer based
on microcontroller,” Journal of Robotics and Control (JRC),

Engineering Letters

Volume 32, Issue 11, November 2024, Pages 2052-2062

 
______________________________________________________________________________________ 



vol. 3, no. 1, pp. 18–25, 2021. [Online]. Available: https:
//journal.umy.ac.id/index.php/jrc/article/view/11279

[25] R. Johansson, “Subspace-based continuous-time identification,” in
Identification of Continuous-time Models from Sampled Data,
H. Garnier and L. Wang, Eds. London: Springer-Verlag, 2008, pp.
291–309.

[26] G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction and
Control. Englewood-Cliffs: Dover Publications Inc., 2009.

[27] X. Sun, J. Ji, B. Ren, C. Xie, and D. Yan, “Adaptive forgetting factor
recursive least square algorithm for online identification of equivalent
circuit model parameters of a lithium-ion battery,” Energies, vol. 12,
no. 12, pp. 2242–, 2019.

Engineering Letters

Volume 32, Issue 11, November 2024, Pages 2052-2062

 
______________________________________________________________________________________ 




