
 

  

Abstract: For the complex control issues such as tire 

slippage, uncertain model parameters, and external 

disturbances in wheeled mobile robots (WMRs), a novel 

control approach based on observer-based fuzzy wavelet 

neural networks (FWNN) is proposed. To address the 

distortion of angular velocity information caused by tire 

slippage, mathematical equations for tire slippage and 

attitude deviation are utilized to design a sliding-mode 

observer for real-time estimation of angular velocity 

information. Considering the uncertainties in parameters 

and unknown model components due to external 

disturbances, a FWNN is designed to dynamically 

compensate for these uncertainties using expert 

knowledge from fuzzy systems and the generalization 

capability of wavelet neural networks (WNN). To ensure 

bounded control signals and system stability, a robust 

controller for the neural network is developed based on 

H∞ theory, and the asymptotic stability of the entire 

closed-loop system is proven using Lyapunov theory. 

Experimental results validate the effectiveness of the 

proposed control algorithm. 

 

Keywords: Mobile robots; Wheel slip; Sliding mode 
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I. INTRODUCTION 

ith the development of robot application technologies 

[1-4], wheeled mobile robots (WMRs) have gradually 

entered various domains, including assembly handling, home 

services, disaster relief, planetary exploration, and various 

military applications. However, when mobile robots operate 

in complex environments such as wet and slippery surfaces or 

during rapid turns, the assumption of pure rolling of the 
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wheels becomes invalid due to wheel slippage. Consequently, 

studies based on this assumption fail to meet the requirements, 

resulting in accumulation of pose errors and a significant 

decrease in the motion accuracy of mobile robots. 

Many scholars have conducted research on the 

phenomenon of wheel slip in mobile robots. Moosavian et al. 

[5] considered the relationship between slip and trajectory 

radius, obtaining the slip parameters in the form of an 

exponential function of the path curvature radius. Gracia et al. 

[6] integrated the traction force model of wheel slip and 

utilized a weighted least squares algorithm to establish a 

connection between the non-slip kinematic equations of 

WMR and the slip modeling equations. Muir et al. [7] 

employed axle encoder readings for real-time computation of 

robot position to prevent excessive slipping and devised 

feedback control algorithms utilizing sensor data for 

real-time robot control. These scholars primarily focused on 

wheel slip at the kinematic level, where the kinematic model 

only considers position and velocity. Therefore, this paper 

introduces a dynamic model based on kinematics, while 

considering factors such as model uncertainty, unmodeled or 

unstructured disturbances. Nandy et al. [8] established a 

dynamic model for nonholonomic mobile robots considering 

constraints of both slipping and non-slipping, and proposed 

transition conditions between them. Through simulation 

combining the traction force model and system dynamics 

equations, the effectiveness of the method was validated. 

Wang et al. [9] proposed an active control method to adjust 

the vertical forces of the wheels on the ground by 

manipulating the pose of a manipulator on the mobile base to 

exert greater force and prevent slipping. However, the 

effectiveness of this method, which adjusts the center of 

gravity to prevent slipping, is limited. The aforementioned 

studies primarily focused on the dynamics of slipping motion, 

without developing controllers to investigate the 

effectiveness of dynamic models. WMR considering slip are 

multivariable nonlinear systems. Various uncertainties exist 

in dynamics due to external disturbances and nonlinear 

friction, making it challenging to establish accurate 

mathematical models. Wang et al. [10] introduced slip 

parameters in mobile robot dynamics and utilized adaptive 

control techniques to compensate for errors in longitudinal 

slip. Nguyena et al. [11] established an online updating rate 

of Gaussian wavelet networks in controllers to approximate 

unknown nonlinear functions dynamically. The 

aforementioned studies treated slipping as a disturbance 

without addressing it specifically. Therefore, this paper 

designs a sliding mode observer based on sensor feedback 

information such as the robot's reference trajectory and drive 

wheel speeds to observe the slipping parameters of the left 

and right wheels. 

As research into trajectory tracking control for wheeled 

mobile robots advances, various soft computing methods 
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have been applied [12-17]. In recent years, controllers based 

on neural networks have been widely used in the field of 

robotics [18-21]. Hoang et al. [22] proposed a neural network 

adaptive controller based on online weight updating rules to 

manage uncertainties caused by wheel slippage and external 

forces, aiming to achieve desired tracking performance. 

However, in highly uncertain dynamic systems, the adaptive 

updating of neural network weights, due to the large number 

of neurons, requires extended periods of observation and 

learning, making it unsuitable for online control. Wavelet 

Neural Networks (WNNs) integrate wavelets with neural 

networks. Wavelet networks possess the ability to analyze 

non-stationary signals to uncover local details, with 

characteristics such as simple structure, fast learning speed, 

higher efficiency compared to traditional neural networks, 

and easier training [23, 24]. Nevertheless, there exists a 

significant relationship between the approximation of mobile 

robot dynamics and approximation errors, leading to 

performance degradation of the controller. Therefore, to 

minimize the impact of approximation errors to a 

predetermined level, this paper proposes an H∞ controller. 

In summary, this paper proposes a mobile robot control 

scheme that integrates fuzzy logic, Waveform Neural 

Network (WNN), sliding mode observer, and H∞ control. 

The scheme aims to achieve high-precision position tracking 

under wheel slip conditions, with capabilities of rapid 

learning, fast convergence, and compensation for structured 

and unstructured uncertainties. Additionally, Lyapunov 

theory is employed to demonstrate the asymptotic stability of 

the closed-loop system. The main contributions of this study 

are as follows:  

(i) A novel FWNN is designed by integrating 

Takagi-Sugeno-Kang (TSK) fuzzy system and WNN. By 

combining and defuzzifying two types of output signals at the 

output layer, the overall network output is optimized, thereby 

enhancing the network's generalization ability. 

(ii) A sliding mode observer is designed to online estimate 

parameters related to wheel slip, based on the correlation 

between vehicle posture and reference trajectory, and the 

relationship between left and right wheel speeds. To address 

chattering in sliding mode variable structure, a novel 

sinusoidal saturation function is designed to eliminate 

oscillations.  

(iii) A robust controller is designed using H∞ theory to 

address approximation errors of neural network 

approximations of unknown robot dynamics and 

disturbances introduced by interference signals. The 

controller aims to bound all parameter errors and control 

signals, ensuring that error signals decay within specified 

boundaries. 

II. KINEMATIC AND DYNAMIC MODELING OF WMR 

Robotic kinematic modeling serves as the foundation for 

robotic motion control, with the accuracy of the model 

directly influencing control precision. However, solely 

tracking trajectories at the kinematic level often falls short of 

achieving the desired performance metrics. Therefore, this 

paper considers integrating kinematics and dynamics to 

establish functional relationships between torque and 

velocity [25-27]. 

In ideal circumstances, the Lagrangian formulation of 

dynamics equations for WMRs is typically represented as: 

( ) ( , ) ( ) ( ) ( )T

dM q q V q q q G q A q T q  + + + + =  (1) 

Where: ( )M q  represents the inertia matrix,  ( , )V q q  denotes 

the Coriolis matrix,  ( )G q  stands for the gravitational term,  

( )T q  signifies the transformation matrix,  ( )TA q  is the 

matrix associated with constraints,    represents the torque 

term,  and   denotes the Lagrangian operator. 

 

 
Fig. 1  WMR movement diagram 

 

The schematic diagram in Fig. 1 illustrates a WMR with 

non-coincident geometric center and center of mass; XOY 

represents the inertial coordinate system, while c c cx o y  

denotes the robot coordinate system.  , ,
T

q x y = represents 

the position and orientation angle of the robot in the inertial 

coordinate system. 

The transformation of the velocity of the robot's center of 

mass from the inertial coordinate system to the robot 

coordinate system can be calculated as follows: 

cos sin 0

sin cos 0

0 0 1

x

y

x v

q y v

w

 

 



−     
     

= =
     
          

 (2) 

By combining equations (1) and (2), the kinematic model 

of the robot in the inertial coordinate system can be obtained: 

cos cos

2 2

sin sin

2 2

l

r

r r

x
r r

y

r r

d d

 

 




 
 

   
    =           

 −
  

 (3) 

l and r denote the angular velocities of the left and right 

wheels. For simplification, let the transformation matrix ( )  

be defined as follows: 

cos cos

2 2

cos cos
( )

2 2

r r

r r

r r

d d

 

 


 
 
 
  =
 
 
 −
  

 (4) 

When the robot experiences wheel slippage during motion, 

define the slip ratio as i: 

r v
i

r





−
=  (5) 

In equation (5),  v  represents the actual velocity of the 

wheel relative to the ground when wheel slippage occurs. 

When i = 1, it means the wheel is completely slipping and 
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spinning freely without traction, resulting in the robot being 

stationary relative to the ground. At this point, the robot is in 

a completely uncontrollable state, and studying this scenario 

is meaningless. Therefore, the range of the slip ratio is 

defined as 0 1i  . 

The velocity of the wheel relative to the ground when the 

wheel is slipping is: 

(1 )v r i = −  (6) 

Therefore, the kinematic model of the robot under slip 

conditions is: 

1
0

1

1
0

1

ll l

r r

r

i

i

 

 

 
 −   
 =   
    
 − 

 (7) 

Obtained from equations (4) and (7) 

1
0

1
( ) ( )

1
0

1

l

r

i

i

 

 
 −
  = 
 
 − 

 (8) 

 
T

l rv r r =  is the current speed of the wheel compared 

to the ground. By substituting equations (4) and (8) into 

formula (3), the kinematic model of WMR longitudinal slip is 

obtained as follows: 

( )q v=   (9) 

Substituting equation (9) into equation (1), we obtain the 

dynamic model of longitudinal slip for a WMR. 

( ) ( ) ( )dM v v C v v T v + + =  (10) 

In equation (10),  ( ) , ( ) ( )T TM v M C v M C=   =   +   

( )T T

d d T v B =  = ，  .Moreover, for any n-dimensional 

vector, the following property holds: 

( ( ) 2 ( )) 0Tx M v C v x− =  (11) 

III.  OBSERVER DESIGN BASED ON SLIDING MODE 

Design the control system as illustrated in Fig. 2 

 

 
Fig. 2  Control system framework 

 

A.  Observer design based on sliding mode 

The actual velocity of the mobile robot can also be 

represented as follows: 

(1 ) (1 )

2

l l r rr i r i
v

 − + −
=  (12) 

It can be obtained by formula (3) and formula (12) 

2 2 (1 ) 2 2 (1 )l l r r
v r i v r i

l l

 


− − + −
= = −  (13) 

1 1 1
ˆ ˆ, , ,   and 

2 2 2
ˆ ˆ, , ,   are both introduced as virtual 

directional variables for the robot, where 1 2  = = . 

Express the virtual variables
1 and

2 as follows: 

1

2

2 2 (1 )

2 2 (1 )

l l

r r

v r i

l

v r i

l







− −
=

+ −
= −

 (14) 

The sliding mode observer is designed according to 

formula (14) as follows: 

1 1 1 1

2 2 2 2

2 ˆ ˆsgn( ) ( )

2 ˆ ˆsgn( ) ( )

v
L L

l

v
L L

l

    

    

= + − + −

= − + − + −

 (15) 

In the equation, the parameters L , 1L and 2L represent the 

gains of the sliding mode observer, both of which are positive 

numbers. 

Define the differential equations for observation errors as 

222111
ˆ~ˆ~




−=−= ， . By combining the above equations 

(14) and (15),  the following equation is obtained: 

1 1 1 1

2 2 2 2

2 (1 ) ˆ ˆsgn( ) ( )

2 (1 ) ˆ ˆsgn( ) ( )

l l

r r

r i
L L

l

r i
L L

l


    


    

−
= − − − − −

−
= − − − −

 (16) 

Given the appropriate selection of sliding mode observer 

gains, observation errors will converge to the sliding mode 

surface within a valid time frame. Thus, it follows from the 

above equation: 

1 1 1

2 2 2

2 (1 ) ˆ ˆsgn( ) ( ) 0

2 (1 ) ˆ ˆsgn( ) ( ) 0

l l

r r

r i
L L

l

r i
L L

l


   


   

−
− − − − − 

−
− − − − 

 (17) 

If the angular velocities of the two drive wheels of the 

mobile robot are measurable, the reference trajectory of the 

mobile robot is given, and the gains of the sliding mode 

observer are known, the estimated values of the sliding 

parameters can be expressed as follows: 

1 1 1

2 2 2

ˆ ˆsgn( ) ( )
ˆ 1

2

ˆ ˆsgn( ) ( )
ˆ 1

2

l

l

r

r

l L L
i

r

l L L
i

r

   



   



 − − −
 = +

 − − −
 = −

 (18) 

The presence of the sign function sgn( )x in the sliding 

mode observer leads to high-frequency switching of the 

control signal, causing discontinuities in control and resulting 

in chattering phenomena. Chattering severely affects control 

accuracy, increases energy consumption, and can even render 

the control system inoperable. In this study, a sine saturation 

function is proposed to replace the sign function sgn( )x . The 

expression of the new sine saturation function is as follows: 

sgn( )
( , )

sin( )

s
sat s

s


 = 



 
s

s

 

 

 (19) 

Here,   represents the thickness of the boundary layer, 

and 2 / =  . With this approach, switch control is utilized 

outside the saturation layer, while linear control is employed 

within the saturation layer. This ensures convergence speed 
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while reducing chattering caused by high-frequency 

switching. 

B.  Stability analysis 

The switching function of the sliding mode observer is 

defined as: 

1 1

2 2

ˆ

ˆ

s

s

 

 

= −

= −

 (20) 

Construct the Lyapunov function based on 1s  as follows: 

2

1 1

1

2
V s=  (21) 

Differentiating the above equation and combining it with 

formulas (14) and (15), we obtain： 

2

1 1 1 1 1 1 1 1

2 (1 ) ˆ( )l lr i
V s s s L sat s Ls

l


 

−
=  = −  − −  −  (22) 

When the sliding mode gain L is chosen as a relatively 

small positive number, the following relationship is derived: 

1 1 1 1

2
(1 ) 0l l

r
V i s L s

l
 − −   (23) 

To ensure that the state error converges to zero in a finite 

time, the sliding mode gain 1L  satisfies the following 

relationship: 

1

2
1 il l

r
L

l


+ +
 −  (24) 

Similarly, constructing the Lyapunov function based on 2s  

yields the following: 

2

2 2

1

2
V s=  (25) 

Differentiating the above equation and combining it with 

formulas (14) and (15), we obtain: 

2 2 2

2

2 2 2 2 2

r 2 2 2

2 (1 ) ˆ( )

2
(1 ) 0

r r

r

V s s

r i
s L sat s Ls

l

r
i s L s

l


 



= 

−
= −  − −  −

 − − 

 (26) 

To ensure that the state error converges to zero in a finite 

time, the sliding mode gain 2L  satisfies the following 

relationship: 

2 r

2
1 ir

r
L

l


+ +
 −  (27) 

IV. 4 CONTROLLER DESIGN BASED ON FWNN 

A. 4.1 Controller design based on dynamic models 

Considering the significant disparity between the velocity 

of the kinematic portion and the actual velocity of a WMR 

under slipping conditions, relying solely on the velocity of a 

kinematic controller may not achieve the desired control 

effectiveness. Therefore, introducing kinematic auxiliary 

control into dynamic control is necessary to design the 

controller. 

Given the reference trajectory ( ) ( , , )T

r r r rq t x y = and the 

actual motion trajectory ( ) ( , , )Tq t x y = .Tracking error can 

be expressed as： 

cos sin 0

( ) sin cos 0

0 0 1

r

r

r

x x

e t y y

 

 

 

−   
   

= − −
   
   −   

 (28) 

Taking the derivative of ( )e t  gives: 

cos

( ) sin

r r e

r e

r

v v x

e t v x

w

 

 



 − +
 

= + 
 − 

 (29) 

The auxiliary speed controller is designed: 

1

2 3

cos

sin

c r e e

c r r e r e

v v k x

w w k v y k v





+   
=   

+ +   

 (30) 

 
T

r rv w  represents the desired velocity,  ,c cv w  represents 

the linear velocity and angular velocity of the mobile robot at 

a point. In equation (30),  1 2 3, ,k k k  are all positive numbers. 

Construct the Lyapunov function as follows: 

2 2

2 1 2 3

2

1 1 1
(1 cos )

2 2
V e e e

k
= + + −  (31) 

Take the derivative of 2V : 

2 1 1 2 2 3 3

2

1
sinV e e e e e e

k
= + +  (32) 

Substituting equation (30) into the above expression, we 

obtain: 

2 23
2 1 1 3

2

sin
k

V k e e
k

= − −  (33) 

The above proof shows that 2 0V   and 2 0V  . Therefore, 

the system is asymptotically stable. 

B.  Controller design based on FWNN 

The linear and angular velocity of the mobile robot at a 

point is converted to the speed of the wheel relative to the 

ground. 

1

1

−     
=     

    

cl

cr

vv b

b wv
 (34) 

 d l rv v v= , v represents the actual velocity of the 

wheel relative to the ground. To track the desired velocity, we 

introduce the velocity tracking error: 

( ) de t v v= −  (35) 

Define the sliding mode surface as: 

s e e= +  (36) 

The dynamics of WMR can be expressed as:  

T ( ) dMs Cs u x = − − + +  (37) 

The function ( ) ( )( ) ( )( )u x M v v e C v v e= +  + +   is termed as 

the non-linear function representing the WMR slippage. We 

choose the input vector d dx e e v v =   . Hence, it can be 

observed that the non-linear function of WMR exhibits both 

structured and unstructured uncertainties. To address this 

uncertain model, we employ a fuzzy wavelet network for 

estimating this function. 
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Fig 3  The structure of FWNN 

 

As illustrated in Fig 3, FWNN proposed in this section 

combines the WNN with the TSK fuzzy system. 

First Layer: Input Layer. Vector d dx e e v v =    serves 

as the input. 

Second Layer: Membership Layer. Each node in this layer 

corresponds to a fuzzy membership function. 
2 2( )

( ) , 1,..., ; 1,..., ,j i jia x b

ix e i m j n
− −

 = = =  (38) 

The third layer: Fuzzy rule layer. 

2 2

1

( )2 2

( ) ( ), ( ),

1,..., , 1,..., ,

( ) 1 ( ) ji i ji

m

j i j i j j j i

i

a x b

j i ji i ji

x x y W x

i m j n

x a x b e

 



=

− −

=  =

= =

 = − − 


 (39) 

The fourth layer: Output layer. The output signals from the 

previous layer are multiplied by the signals outputted from 

the WNN and then defuzzified. 

1 1

( ) / ( )
n n

j j j

j j

u x y x 
= =

=    (40) 

Then u can be expressed as: 

 

 

 

 

 

1 2

1 2

1 2

1 2

1 2

( , , , ) , ,..., ( , , )

, ,...,

, ,...,

( , , ) , ,...,

, ,...,

T T

n

T Nm

n

T Nm

n

T

n

T nN

n

u x a b W u u u W x a b

a a a a R

b b b b R

x a b

W w w w R



   

= =

= 

= 

=

= 

 (41) 

FWNN has a strong approximate error analysis, then there 

is a nonlinear dynamic u(x) with optimal parameters: 
* * * * *

0( ) ( , , ) ( )Tu x W x a b u x= +  (42) 

* * *bW a， ，  are the optimal parameters of , ,W a b  

respectively, and ( )u x is the minimum approximation error 

vector. The approximate design of the output FWNN is: 

* *

0

ˆˆˆ ˆ ˆ( , , )

ˆˆ ˆ

T

T T

u W x a b

u u u W W u



 

=

= − = − +

 (43) 

Define the parameter error: * *ˆ ˆ; ;W W W a a a= − = −  
* *ˆ ˆ;b b b   = − = − ,  equation (43) can be written as: 

*

0
ˆT Tu W W u = + +  (44) 

u can be expanded as a Taylor series: 

1 2

ˆ

1 2
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ˆ
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a a
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T N
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T N NmN

a a

a
a a a

b H a b
b b b

R
a a a

R
b b b

 


 

 

 

=

=



=



=

  
=     

  
+ +    

  
=     

  
=     

 (45) 

Then the above formula can be written as: 

( , )T Tu A a B b H a b= + +  (46) 

Substitute equation (46) into equation (43) to get: 

( ) ( )

( )

* *

*

0

'

' *

0

ˆˆ ˆ( ) ( )

ˆ ( ) ( , )

ˆ ˆˆ ˆ

( , , )

ˆ( , , ) ( , )

T T T

T T T

T T T T T T

T T T T

u W u A a a B b b

W A a B b W H a b u

u W u A a B b W A a B b

x a b

x a b W A a B b W H a b u





 = + − + −
 

+ + + +

= − − + +

+

= + + +

 (47) 

Let 

( ) *

0
ˆ( , , ) ( , )T T T T

dx a b W A a B b W H a b u = + + + +  (48) 

Then the dynamics of WMR can be described as: 

ˆˆ ˆ( ) ( , , )

ˆ ˆ ˆˆ ˆ( b)

T

T T T

Ms Cs T v W x a b

W Aa B W Aa W Bb

 

 

= − − +

+ − − + + +

 (49) 

C.  Design of FWNN controller based on H∞ 

Introducing approximation errors in the dynamics of 

unknown robots through FWNN approximation can lead to a 

decrease in the performance of controllers. Therefore, to 

mitigate the impact of approximation errors to a 

predetermined level, this paper proposes an H∞ 

controller-based approach. 

The control goal is to design the controller so that the 

closed-loop system meets the following requirements: 

1. If the perturbation term has a finite energy  2 0,L t  ,  

for all t≥0, then all errors in the FWNN parameters, as well as 

the control signal, are bounded and e(t) converges to 0. 

2. Under the specified attenuation level 0  , the system 

must meet the H∞ tracking performance requirements as 

follows: 

0

0

1 1

21 2

0

(0) (0) (0) (0)

( (0) (0)) (0) (0)

(0) (0)

T

T T T

T T

w a

T

T

b

e Zedt s M s e Ne

tr W W a a

b b dt 

− −

−

 +

+  + 

+  +





 (50) 

Here, TZ Z= , and Z  is a positive definite matrix where 

(0, )T   . 

According to formula (49), we assume that the selection 

control law is: 

1

2
ˆ ˆT ( )( sgn( ) )

2

T s
v W u K s Ne



−= + + +  (51) 

K is a positive definite matrix, and if 12Z N=  .then the 

updating rule of parameters of FWNN is as follows: 
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ˆˆ ˆ ˆ( )
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ˆ ˆ
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T
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T

b

W Aa Bb s

a A Ws

b B Ws
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 (52) 

Here, R , R , RN N N N N N

W a b

         are all positive 

definite matrices. Then all FWNN parameter errors and 

control signals are bounded, and the tracking error 
0e → satisfies the H∞ tracking performance guarantee 

given by equation (52). 

D. 4.4 Stability analysis based on Lyapunov 

Select the Lyapunov function as: 

1

1 1

1 1 1
( )

2 2 2

1 1

2 2

T T T

W

T T

a b

V s Ms e Pe tr W W

a a b b

−

− −

= + + 

+  + 

 (53) 

Take the derivative of t on both sides, substituting in the 

control law (51),  and using 
2Ts s s= ,  properties (11),  and 

updating rules of the parameters of FWNN 

ˆˆ ˆ, ,W W a a b b= − = − = − . 
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 

− − −

 − + +

+ − − + +

+  +  + 

 (54) 

Replace equation (36) with e s e= −   to get: 

21
s

2

T T TV Ne e Ns e N e  − + + −   (55) 

Substitute 12Z N=   into the above equation. 

22 T1 1
e Ze

2 2
V   −  (56) 

Integrating the above formula from 0 to T yields: 
2T T

2 T

0 0

1 1
( ) (0) dt e Zedt

2 2
V T V  −  −   (57) 

Considering ( ) 0V T   ,  and using the value of V(0) in 

equation (42),  the H∞ tracking performance required by the 

controller can be obtained as follows: 

T
T T

0
0

1 1

2
1 2

0

e Zedt s (0) (0) (0) (0)

( (0) (0)) (0) (0)
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tr W W a a
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+  +





 (58) 

The inequality (57) is rewritten as the integral from 0 to t in 

order to establish the bound-ability of the parameter error and 

control signal of FWNN. 
2 2

2 2

0 0

1 1
( ) (0)

2 2

t t

V t V N dt N dt  +    (59) 

Since, for all  20, 0,t L t  , we derive ( )V t   . This 

establishes boundness for all error signals , , , ,e s W a b . Thus, 

the boundedness of ˆˆ ˆ, , , , , ,v W a b W a b and the control signal τ 

is proved. In order to obtain asymptotic stability of the system, 

we choose the following Lyapunov function: 

T

1 2

1 1
e

2 2

TV V V s Ms Ne= + = +  (60) 

Take the derivative of t on both sides, substitute the control 

law (40),  and use
2Ts s s= , we get 
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 (61) 

Where min  is the least singular value of the matrix K. 

Since the tracking error e ,  e  is bounded, and the expected 

velocity dv  is also bounded,  a boundedness of the input 

vector x is established. Since,  any Gaussian function x（ ） 

is bounded as 0 ( ) 1x  ; Therefore,  the boundedness of 

û  and matrices a and b is obtained by using the estimated 

boundedness of the WNN parameter ˆˆ ˆ, ,W a b and the input 

vector x . Assuming boundedness of the perturbation term 
 ,  we get 

ˆ ˆ ˆˆ ˆ( )T T TW u Aa Bb W Aa W Bb − − + + +
 

ˆ ˆ ˆˆ ˆ( )T T TW u Aa Bb W Aa W Ba  − − + + +
 

FF F F

ˆ ˆ ˆˆ ˆ
F

W u Aa Bb W A a W B b  − − + + +
 

1 2 3 4m m m m MK K K K K + + + =  (62) 

Where .
F

 represents the Frobenius norm. If the gain 

matrix K is chosen so that min MK  ,  s  will asymptotically 

converge to zero according to the two-point requirement of 

the H∞ closed-loop system. Using the definition of sliding 

surface, it can be deduced that the tracking error along the 

sliding surface asymptotically converges to zero. 

V.  SIMULATION EXPERIMENT 

The physical model of the mobile robot under wheel slip 

condition is shown in the figure, and its dynamic model 
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equation (10) is used as the numerical simulation 

experimental object to verify the proposed algorithm. 

 

 
Fig. 4  WMR platform 
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，

 (63) 

Take 
2 22 , 2 2c c c mm m m I m d m b I I = + = + + + . The 

robot mass is taken as cm = 10kg, d=0.3m, r=0.05,  b=0.15m. 

The mass of a single driving wheel and motor is m =1kg,  

and the moment of inertia of the robot for the longitudinal 

symmetry axis is 24.625cI kg m=  ; The moment of inertia of a 

single drive wheel together with the motor for the drive wheel 

shaft 20.0016I kg m =  ; The moment of inertia of a single 

drive wheel together with the motor for the drive wheel 

diameter 20.0004mI kg m=  . 

The parametric equation 
cos

( 0)
sin

d

d

x t
t

y t

=


=
 for the expected 

trajectory is a circular trajectory. The design parameters of 

the controller in this paper are 

1 2 350, 50, 50, 15, (10,10), 0.01k k k K diag = = = =  = = ,  and the 

external disturbance  0.1sin ,0.1cosd t t = . The initial pose is 

 0 0 0
T

q = ,  the expected linear velocity is 0.2 /rv m s= ,  and 

the expected angular velocity is 0.35 /rv rad s= . 

A.  Wheel no skid condition 

To compare the tracking performance of the control 

scheme designed in this paper under non-slip conditions, we 

first contrast it with adaptive sliding mode control applied in 

the absence of slipping. 

 
Fig. 5  Circular trajectory tracking 

 

 
Fig. 6  Linear velocity tracking 

 

 
Fig. 7  Angular velocity tracking 
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Fig.  8 X-axis direction error 

 

 
Fig. 9  Error in y direction 

 

 
Fig. 10  Angle error 

 

Fig.5 and Fig.8- Fig.10 demonstrate the tracking 

performance of two control schemes for circular trajectories. 

Notably, the tracking error of the control scheme proposed in 

this paper converges rapidly to zero, showcasing a significant 

improvement over typical adaptive sliding mode control. 

Specifically, the maximum lateral error (x) achieves an 

accuracy of approximately 6×10-4m, the longitudinal error (y) 

is 5×10-3m, and the angular error is 5×10-3m, whereas the 

maximum error precision of typical adaptive sliding mode 

control is approximately 0.01m. Additionally, our controller 

demonstrates remarkable advantages in tracking vehicle body 

velocity and angular velocity. Compared to adaptive sliding 

mode control,  the vehicle body velocity and angular velocity 

can track the desired speed more swiftly,  with reduced 

angular velocity fluctuations,  as illustrated in Fig.6 - Fig.7. 

This contributes significantly to the stability of the vehicle. 

 

B.  Wheel skid condition 

To validate the correctness of the control algorithm for 

tracking trajectories of mobile robots under slip conditions as 

discussed earlier, and to assess the system's robustness, the 

variation in slip ratios is assumed as follows: 

1. Initially, the left wheel of the mobile robot has no slip 

ratio, which abruptly changes to 30% at t=6s, and then reverts 

to no slip at t=14s. 

2. Initially, the right wheel of the mobile robot has no slip 

ratio, which abruptly changes to 20% at t=4s, and then reverts 

to no slip at t=12s. 

 
Fig. 11  Circular track tracking under skid conditions 

 

 
Fig. 12  X-axis error under skid conditions 
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Fig. 13  Y-axis error under skid conditions 

 

 
Fig. 14  Angle error under skid conditions 

 

The reference trajectory of the mobile robot remains the 

parametric equation of a circular trajectory. The tracking 

performance of controlling after estimating the sliding 

parameters, as depicted in Fig. 11-14, surpasses that of direct 

control without estimation. From Fig. 12 and 13, it can be 

observed that the pose under direct control without 

estimation exhibits a deviation of approximately 0.02m in 

lateral and longitudinal errors after slipping occurs, although 

corrections are made under the control algorithm, the 

convergence of errors fluctuates significantly. In the second 

set of simulations, utilizing an observer for estimation before 

control reduces the deviation by half. Fig. 14 illustrates the 

angular error, where it is evident that in the first set of 

simulations, there exists a fixed deviation after slipping 

occurs, which cannot be corrected, with an error of 

approximately 0.035m. However, after estimating the sliding 

parameters before control, the angular error can converge in a 

short time, with the angular tracking accuracy improving to 

approximately 0.01m. 

 
Fig 15  Iine speed tracking under skid conditions 

 

 
Fig 16  Angular velocity tracking under skid conditions 

 

 
Fig. 17  Left wheel slip estimate 
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Fig 18  Right wheel slip estimate 

 

The first set of simulations in Fig. 15 - Fig.16 exhibit 

similar trends in pose errors, where there exists a fixed 

deviation after wheel slippage occurs, which cannot be 

corrected.  However, after estimating the sliding parameters 

before control, both the vehicle's linear and angular velocities 

can converge in a short time, tracking the desired velocities. 

Fig. 17 -Fig.18 depict the estimation results of the sliding 

parameters. It can be observed that both sliding parameters 

can be tracked to the actual slip parameters in a short time, 

with effective mitigation of disturbances caused by 

simultaneous slipping, demonstrating the effectiveness of the 

sliding mode observer for sliding parameter estimation. 

VI. CONCLUSION 

Addressing the stability control problem of wheeled 

mobile robots (WMR) under wheel slippage conditions,  

considering model parameter uncertainties and external 

disturbances,  a FWNN control method based on a velocity 

observer is proposed. The following conclusions were drawn 

from the study: (1) By leveraging the relationship between 

slippage-induced pose deviations and the angular velocity 

equation,  a sliding mode velocity observer was designed to 

achieve real-time estimation of velocity. (2) A FWNN 

compensator was designed to provide real-time 

compensation for uncertain models caused by parameter 

uncertainties and external disturbances. (3) A robust 

controller based on neural networks was designed using H∞ 

theory to ensure bounded control signals and system stability. 

Experimental validation confirmed the effectiveness of the 

proposed algorithm. 
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