Efficient Improved Henry Gas Solubility

Optimization and Its Application in Feature

Selection Problems

Jiayin Wang, Ronghe Zhou, Yukun Wang*, and Zhongfeng Li
 Abstract—The henry gas solubility optimization algorithm **before the sum of the meta-heuristic spired by Henry's law. While if
a meta-heuristic algorithm is problem and the sum of the sum of** enry Gas Solubility
pplication in Feature
Problems
in Wang*, and Zhongfeng Li
tion problems involving multiple variables and constraints.
These algorithms are able to search in high-dimensional
spaces and find optimal solu Efficient Improved Henry Gas Solubility

Diptimization and Its Application in Feature

Selection Problems

Miayin Wang, Ronghe Zhou, Yukun Wang*, and Zhongfeng Li Efficient Improved Henry Gas Solubility
Optimization and Its Application in Feature
Selection Problems
Diayin Wang, Ronghe Zhou, Yukun Wang*, and Zhongfeng Li
The henry assessibility entimization algorithm is
 $\frac{\text{tion problems involving multiple variables and constraints$ Engineering Letters

mproved Henry Gas Solubility

m and Its Application in Feature

Selection Problems

mg, Ronghe Zhou, Yukun Wang*, and Zhongfeng Li

mization algorithm is

tion problems involving multiple variables and Engineering Letters

The United Schemes Case Solubility

Tation and Its Application in Feature

Selection Problems

These algorithms are able to search in high-dimensional

Mubility optimization algorithm is

These algorit

has demonstrated effectiveness in solvid various optimization
 has demonstrated effectiveness in solving various optimization
 has demonstrated effectiveness in solving various optimization
 has demonstrated effecti problems
 problems
 problems
 problems
 problems
 **extract—The henry gas solubility optimization algorithm is

a** meta-heuristic algorithm is and the problems inverse and find op
 has demonstrated effectiveness population diversity, and slow convergence speed when dealing the slow component of the abstract—The henry gas solubility optimization algorithm is a meta-heuristic algorithm inspired by Henry's law. While it has a demons WECCLOIT I TOUTCHIS

Jiayin Wang, Ronghe Zhou, Yukun Wang*, and Zhou
 Abstract—The henry gas solubility optimization algorithm is

ition problems involved

and a meta-heuristic algorithm inspired by Henry's law. While Jiayin Wang, Ronghe Zhou, Yukun Wang*, and Zhong
 Abstract—The henry gas solubility optimization algorithm is

a meta-heuristic algorithm inspired by Henry's law. While it

has demonstrated effectiveness in solving vario Jiayin Wang, Ronghe Zhou, Yukun Wang^{*}, and Zhor
 Abstract—The henry gas solubility optimization algorithm is

a meta-heuristic algorithm inspired by Henry's law. While it

has demonstrated effectiveness in solving vari Jiayin Wang, Ronghe Zhou, Yukun Wang^{*}, and Zhongf
 Abstract—The henry gas solubility optimization algorithm is

a meta-heuristic algorithm inspired by Henry's law. While it

has demonstrated effectiveness in solving va *Abstract***—The henry gas solubility optimization algorithm is

a meta-heuristic algorithm inspired by Henry's law. While it

has demonstrated effectiveness in solving various optimization

problems, it does face certain** *Abstract***—The henry gas solubility optimization algorithm is

a meta-heuristic algorithm inspired by Henry's law. While it

has demonstrated effectiveness in solving various optimization

problems, it does face certain l Exploration and School is a meta-heuristic algorithm inspired by Henry's law. While it and a explorithms are spaces and find optimization problems, it does face certain limitations such as insufficient proplems, it does f Abstract—The henry gas solubility optimization algorithm is**

a meta-heuristic algorithm inspired by Henry's law. While it

has demonstrated effectiveness in solving various optimization

propolems, it does face certain l **show the context of the search is the search in the search in the search the search in this partial and solven is a meta-heuristic algorithm inspired by Henry's law. While it has demonstrated effectiveness in solving vari** a mena-neurism approxim inspired by remiv is awe. While the effectiveness in solving various optimization
problems, it does face certain limitations such as insufficient appropriate meta-algorithms so
population diversity, **Endamination** and encouver the search in some that the endamination subset about the search in this paper, we propose an enhanced population diversity, and slow convergence speed when dealing characteristics of the with c provisms, it couss are ecret wan imitations such as instincted
population diversity, and slow convergence speed when dealing
with complex problems. In this paper, we propose an enhanced
state increases. (4) M
as E_HGSO. Fi pouration unversity, and sow convergence speed when dealing the propose and enhanced

with complex problems. In this paper, we propose an enhanced

section of henry gas solubility optimization algorithm, known

techniques. **Example the ELEGSO** algorithm, we provided a comparison with eight and the E-HGSO algorithm, we conducted a comparison of the eight parametering in a single range, while we introduce a new proprimization algorithm, known **Example the CEC2017** benchmark functions. The results and Wilcom-
 algorithms on the ability of avoiding easy to fall into local
 algorithms perform well in dealing
 algorithms on the concept of a search factor to st SEVENCY FIG. We miroute a new group search formula and search of a search factor to strike a balance between
 of improve the ability of avoiding easy to fall into local
 of the concept of a search factor to strike a b For the analy of a search and more to the analy of a search and more in the concept of a search factor to strike a balance between exploration and exploitation. Second, we introduce a position and independence update formu Furthermore, we applied E.HGSO to the feature selection
the process. Finally, we propose a new worst gas position
and independence
exploration and exploitation. Second, we introduce a position
and independence
update formu **Problem.** The results indicate that a basance between
the results include a position and exploration and exploration. Second, we introduce a position and independence
update formula to enhance the diversity and randomness **Exploration and exploration. Second, we introduce a position**
 the distribution is the search process. Finally, we propose a new worst gas position optimization proble

update formula with a Lévy flight mechanism. This update formula to emfance the urversity and randominess or the unger
search process. Finally, we propose a new worst gas position
update formula with a Lévy flight mechanism. This mechanism
enhances the gas search's abilit date formula with a Levy flight mechanism. I his mechanism

ances the gas search's ability to addifferent distance

quirements within the search space, leading to improved

the Friedman test and Wilcoxon rank sum test indi ennances the gas search s ability to adapt to unterent d
requirements within the search space, leading to im
search efficiency and accuracy. To evaluate the effective
the E_HGSO algorithm, we conducted a comparison wi
algo the search space, leading to improved
accuracy. To evaluate the effectiveness of
m, we conducted a comparison with eight
C2017 benchmark functions. The results
provided a comparison with eight
and Wilcoxon rank sum test in EXECT and convertion and Wilcox and Microsofter and Microsofter and Microsofter and Microsofter and Microsofter and Microsofter and the results in the resu hms on the CEC2017 benchmark functions. The results

Friedman test and Wilcoxon rank sum test indicate that

Meta-heuristic optimization

problems [1].

The results indicates and Wilcoxon rank sum test indicate that

meta-

Manuscript received April 22, 2024; revised July 26, 2024. This working the solutionary and Evolutionary and Evolutionary and Evolutionary Media Evolutions simulate nature and human intelligence to search interval Evolutio Example 11 INTRODUCTION

I. INTRODUCTION

Differential Evolution

Mich the continuous

algorithms simulate nature and human intelligence to search

for optimal solutions. These algorithms exhibit several key

for optimal s I. INTRODUC
 No. 2023-

I. INTRODUC
 No. 2024 for solving global optic

algorithms simulate nature and hur

for optimal solutions. These algor

characteristics: (1) Suitable for solv

Manuscript received April 22, 2024 **IDENTIFY**
 INFORM Example the simulate nature and human intelligence to search

algorithms simulate nature and human intelligence to search

for optimal solutions. These algorithms exhibit several key

more popular algo **TV L**loyed for solving global optimization problems. These
algorithms simulate nature and human intelligence to search
for optimal solutions. These algorithms exhibit several key
characteristics: (1) Suitable for solving gorithms simulate nature and human intelligence to search

r optimal solutions. These algorithms exhibit several key

r optimal solutionary Fractacteristics: (1) Suitable for solving large scale optimiza-

Programming (GE

Manuscript received April 22, 2024; revised July 26, 2024. This work
was supported by Liaoning Provincial Joint Funds Project of China (Gran
No. 2023-MSLH-323).
Jiayin Wang is a postgraduate student of School of Electronic Jiayin Wang is a postgraduate student of Schoolnformation Engineering, University of Science and Te
Anshan, Liaoning 114051, PR China; (e-mail: wangjy
Ronghe Zhou is a PhD Candidate of School of Ele-
tion Engineering, Univ

enry Gas Solubility
pplication in Feature
Problems
in Wang*, and Zhongfeng Li
tion problems involving multiple variables and constraints.
These algorithms are able to search in high-dimensional
spaces and find optimal solu **SPACE SPACE THEORY**
 SPACE SPACE THEORY
 Problems

In Wang*, and Zhongfeng Li

tion problems involving multiple variables and constraints.

These algorithms are able to search in high-dimensional

spaces and find opti pplication in Feature

Problems

in Wang*, and Zhongfeng Li

tion problems involving multiple variables and constraints.

These algorithms are able to search in high-dimensional

spaces and find optimal solutions. (2) High **Pyrication in Teature**
 Characteristics
 Characteristics of the problems

iton problems involving multiple variables and constraints.

These algorithms are able to search in high-dimensional

spaces and find optimal s **Problems**

in Wang*, and Zhongfeng Li

ion problems involving multiple variables and constraints.

These algorithms are able to search in high-dimensional

spaces and find optimal solutions. (2) Highly flexible, with

app **TOOTCITIS**

un Wang*, and Zhongfeng Li

tion problems involving multiple variables and constraints.

These algorithms are able to search in high-dimensional

spaces and find optimal solutions. (2) Highly flexible, with

a In Wang*, and Zhongfeng Li

ion problems involving multiple variables and constraints.

These algorithms are able to search in high-dimensional

spaces and find optimal solutions. (2) Highly flexible, with

appropriate met In Wang*, and Zhongfeng Li

tion problems involving multiple variables and constraints.

These algorithms are able to search in high-dimensional

spaces and find optimal solutions. (2) Highly flexible, with

appropriate me In Wang*, and Zhongfeng Li

tion problems involving multiple variables and constraints.

These algorithms are able to search in high-dimensional

spaces and find optimal solutions. (2) Highly flexible, with

appropriate me tion problems involving multiple variables and constraints.
These algorithms are able to search in high-dimensional
spaces and find optimal solutions. (2) Highly flexible, with
appropriate meta-algorithms selectable based tion problems involving multiple variables and constraints.
These algorithms are able to search in high-dimensional
spaces and find optimal solutions. (2) Highly flexible, with
appropriate meta-algorithms selectable based tion problems involving multiple variables and constraints.
These algorithms are able to search in high-dimensional
spaces and find optimal solutions. (2) Highly flexible, with
appropriate meta-algorithms selectable based These algorithms are able to search in high-dimensional
spaces and find optimal solutions. (2) Highly flexible, with
appropriate meta-algorithms selectable based on the specific
characteristics of the problem. (3) Faster c spaces and find optimal solutions. (2) Highly flexible, with
appropriate meta-algorithms selectable based on the specific
characteristics of the problem. (3) Faster convergence and
shorter solution times compared to altern appropriate meta-algorithms selectable based on the specific
characteristics of the problem. (3) Faster convergence and
shorter solution times compared to alternative optimization
techniques. (4) Meta-heuristic optimizatio characteristics of the problem. (3) Faster convergence and
shorter solution times compared to alternative optimization
techniques. (4) Meta-heuristic optimization algorithms
perform well in dealing with non-linear problems shorter solution times compared to alternative o
techniques. (4) Meta-heuristic optimization
perform well in dealing with non-linear problem
able to find globally optimal or near-optimal s
using diverse search strategies. chiniques. (4) Meta-heuristic optimization algorithms
from well in dealing with non-linear problems. They are
le to find globally optimal or near-optimal solutions by
ing diverse search strategies. Additionally, the flexib perform well in dealing with non-linear problems. They are
able to find globally optimal or near-optimal solutions by
using diverse search strategies. Additionally, the flexibility
and independence from gradients of meta-h able to find globally optimal or near-optimal solutions by
using diverse search strategies. Additionally, the flexibility
and independence from gradients of meta-heuristic
algorithms provide them with an advantage in solvi using diverse search strategies. Additionally, the flexibility
and independence from gradients of meta-heuristic
algorithms provide them with an advantage in solving global
optimization problems. When compared to tradition d independence from gradients of meta-heuristic
gorithms provide them with an advantage in solving global
timization problems. When compared to traditional
timization methods like simulated annealing algorithm,
ta-heuristi algorithms provide them with an advantage in solving global
optimization problems. When compared to traditional
optimization methods like simulated annealing algorithm,
meta-heuristic algorithms excel in finding optimal so

of the Friedman test and Wilcoxon rank sum test indicate that

ms. Furthermore, we applied E_HGSO otoperformed the comparison algorithms into four main categorie

ms. Furthermore, we applied E_HGSO to the feature selection the proposed E_HGSO outperformed the comparison algorithm

ms. Furthermore, we applied E_HGSO to the feature selection

foroup intelligence based

sproblem. The results indicate that E_HGSO performs competi-

discussions **Extreme in the example E-HGSO to the teature selection**
 Examplementally intelligence the selection
 Examplement intelligence the solution-based and convergence precision.
 Examplementally arons solutionly also solu Meta-heuristic optimization algorithms are widely emp-

Mith the continuous exploration of natural evolution-based

algorithms simulate nature and human intelligence to search

algorithms shows been proposed, among which s complemization problems. When compared to traditional
optimization problems. When compared to traditional
optimization methods like simulated annealing algorithm,
meta-heuristic algorithms excel in finding optimal solution eptimization methods like simulated annealing algorithm,
meta-heuristic algorithms excel in finding optimal solutions
by simulating nature and human intelligence, which makes
them particularly effective in tackling complex penarization inclusion and simulated unitarial equilibrius the share of the meta-heuristic algorithms excel in finding omplex optimization by simulating nature and human intelligence, which makes them particularly effectiv mean-means and human intelligence, which makes
by simulating nature and human intelligence, which makes
them particularly effective in tackling complex optimization
problems [1].
Meta-heuristic optimization algorithms can by simulating italite and initial intelligence, winch inacts
them particularly effective in tackling complex optimization
problems [1].
Meta-heuristic optimization algorithms can be classified
into four main categories: Ev mem patuculary enective in tacking complex opunization
problems [1].
Meta-heuristic optimization algorithms can be classified
foroup mitelligence based algorithms. Human based
algorithms, Physics and chemity based algorith problems [1].

Meta-heuristic optimization algorithms can be classified

algorithms,

foroup intelligence based algorithms, Human based

algorithms, Physics and chemistry based algorithms.

Evolution-based algorithms are m Meta-heuristic optimization algorithms can be classified
into four main categories: Evolution-based algorithms,
Group intelligence based algorithms, Human based
algorithms, Physics and chemitry based algorithms.
Evolutionmto four mann categories: Evolution-based algorithms,
Group intelligence based algorithms, Human based
algorithms, Physics and chemistry based algorithms.
Evolution-based algorithms are mainly designed to
achieve the overa Group intenigence based aigorithms, Human based
algorithms, Physics and chemistry based algorithms.
Evolution-based algorithms are mainly designed to
achieve the overall progress of the group and ultimately
acomplete the o argoriums, Physics and chemistry based argoriums.

Evolution-based algorithms are mainly designed to

achieve the overall progress of the group and ultimately

evolutionary law of superiority and inferiority in nature

(Da Evolution-based algorithms are mainly designed to
achieve the overall progress of the group and ultimately
complete the optimal solution by simulating the
evolutionary law of superiority and inferiority in nature
(Darwin's meve the overall progress of the group and ultimately
mplete the optimal solution by simulating the
olutionary law of superiority and inferiority in nature
olution(OE) [3] are the main representatives.
ith the continuous e complete the optimal solution by simulating the

evolutionary law of superiority and inferiority in nature

(Darwin's law). The Genetic Algorithm (GA) [2] and

Differential Evolution (DE) [3] are the main representatives.
 evolutionary law of superiority and inferiority in nature
(Darwin's law). The Genetic Algorithm (GA) [2] and
Differential Evolution (DE) [3] are the main representatives.
With the continuous exploration of natural evolutio (Darwin's law). The Genetic Algorithm (GA) [2] and
Differential Evolution (DE) [3] are the main representatives.
With the continuous exploration of natural evolution-based
algorithms by scientists, various evolutionary op Differential Evolution (DE) [3] are the main representatives.
With the continuous exploration of natural evolution-based
algorithms have been proposed, among which some of the
more popular algorithms are Evolutionary Orti

more popular algorithms annality matrix and the method method is several key

for optimal solutions. These algorithms exhibit several key

Evolutionary Brat

Manuscript received April 22, 2024; revised July 26, 2024. This Coloring Solutions, These and Coloring and Kindel and Coloring Programming (GEP) [Continentations: The Evolutionary Programming (GEP) [Continentation Strategies Manuscript received April 22, 2024; revised July 26, 2024. Th Programming(GEP)

Evolutionary Strategi

Manuscript received April 22, 2024; revised July 26, 2024. This work

Sased Optimization (B

supported by Liaoning Provincial Joint Funds Project of China (Grant

7.2023-MSLH-323). Evolutionary Str

Wanuscript received April 22, 2024; revised July 26, 2024. This work

Was supported by Liaoning Provincial Joint Funds Project of China (Grant

No. 2023-MSLH-323).

Jiayin Wang is a postgraduate student o Manuscript received April 22, 2024; revised July 26, 2024. This work

Was supported by Liaoning Provincial Joint Funds Project of China (Grant

No. 2023-MSLH-323).

Jayin Wang is a postgraduate student of School of Electro s supported by Liaoning Provincial Joint Funds Project of China (Grant

2023-MSLH-323).

Jintelligence of the School of Electronic and

Jintelligence of the Somoniain Engineering, University of Science and Technology Liaon No. 2023-MSLH-323). Intelligence of the growing is a postgraduate student of School of Electronic and solution. In such algorify and the and rechnology Liaoning, Anshan, Liaoning 114051, PR China; (e-mail: wangiy_97@163.co win ine continuous exploration of natural evolution-based
algorithms by scientists, various evolutionary optimization
algorithms have been proposed, among which some of the
more popular algorithms are Evolutionary Strategi algorithms by scientists, various evolutionary optimization
algorithms have been proposed, among which some of the
more popular algorithms are Evolutionary Strategies (ES)
[4], Evolutionary Programming (EP) [5], Gene Expre algorithms have been proposed, among which some of the
more popular algorithms are Evolutionary Strategies (ES)
[4], Evolutionary Programming (GP) [6], Govariance Matrix Adaptive
Evolutionary Strategies (CMA-ES) [7], Bioge more popular algorithms are Evolutionary Strategies (ES)
[4], Evolutionary Programming (EP) [5], Gene Expression
Programming (GEP) [6], Covariance Matrix Adaptive
Evolutionary Strategies (CMA-ES) [7], Biogeography
Based Op [4], Evolutionary Programming (EP) [5], Gene Expression
Programming (GEP) [6], Covariance Matrix Adaptive
Evolutionary Strategies (CMA-ES) [7], Biogeography
Based Optimization (BBO) [8] and so on.
Group intelligence optimi Programming (GE) [0], Covariance Matrix Adaptive
Evolutionary Strategies $(CMA-ES)$ [7], Biogeography
Based Optimization (BBO) [8] and so on.
Group intelligence optimization algorithms use the
intelligence of the group to a Evolutionary Strategies (CMA-ES) [7], Biogeography
Based Optimization (BBO) [8] and so on.

Group intelligence optimization algorithms use the

intelligence of the group to achieve the global optimal

solution. In such al Based Optimization (BBO) [8] and so on.

Group intelligence optimization algorith

intelligence of the group to achieve the g

solution. In such algorithms, each group is co

population of organisms that performs tasks t

Engineering Letters
Algorithms based on human behaviour typically use which improves the speed
tterns of human behavior and decision-making processes engineering optimization prob
achieve optimization and solve problems. **Engineering Letters**
Algorithms based on human behaviour typically use which improves the s
patterns of human behavior and decision-making processes
to achieve optimization and solve problems. For example, variable in mec **Engineering Letters**

Algorithms based on human behaviour typically use which improves the s

patterns of human behavior and decision-making processes

to achieve optimization and solve problems. For example, variable in **Engineering Letters**

Algorithms based on human behaviour typically use

patterns of human behavior and decision-making processes

to achieve optimization and solve problems. For example,

human teaching behaviour, social **Engineering Letters**

Algorithms based on human behaviour typically use

patterns of human behavior and decision-making processes

to achieve optimization and solve problems. For example,

human teaching behaviour, social **Engineering Letters**

Algorithms based on human behaviour typically use which improves the s

patterns of human behavior and decision-making processes

to achieve optimization and solve problems. For example, variable in **Engineering Letters**

Algorithms based on human behaviour typically use which improves

patterns of human behavior and decision-making processes engineering optim

to achieve optimization and solve problems. For example, **Engineering Letters**
Algorithms based on human behaviour typically use
patterns of human behavior and decision-making processes engineering optimization pro
to achieve optimization and solve problems. For example, variabl **Engineering Letters**

Algorithms based on human behaviour typically use

patterns of human behaviour and decision-making processes

engineering optimization to achieve optimization and solve problems. For example,

behavi **Engineering Letters**

Algorithms based on human behaviour typically use which improves the speaterns of human behavior and decision-making processes engineering optimization at all to achieve optimization and solve proble Algorithms based on human behaviour typically use
patterns of human behavior and decision-making processes
engineering optimization and solve problems. For example,
human teaching behaviour, leading the behaviour, leading Algorithms based on human behaviour typically use which improves the speaterns of human behavior and decision-making processes engineering optimization pro to achieve optimization and solve problems. For example, wariable Algorithms based on human behaviour typically use which improves the patterns of human behavior and decision-making processes engineering optimizatio
to achieve optimization and solve problems. For example, variable in mec Algorithm balayton and soles of numan behaviour typically use

to achieve optimization and solve problems. For example,

to achieve optimization and solve problems. For example,

behaviour, management behaviour, social beh terns of numan behavior and decision-making processes

engineering optimization and solving

achieve optimization and solving

man teaching behaviour, social behaviour, learning

poptimization problems.

haviour, managemen to achieve optimization and solve problems. For example, variable in mechanical divident behaviour, hearing optimization problems. Family and behaviour, management behaviour and so on. The following proposed an improved He numan teaching behaviour, social behaviour, tearning oplumization problems. Falm behaviour management behaviour and so on. The following proposed in improved Henry's is a list of intelligent optimization algorithms propose benaviour, management benaviour and so on. The following

is a list of intelligent optimization algorithms proposed

in DNA genome sequences, v

based on human behaviour: Teaching-Learning-Based

in DNA genome sequences, v

is a its of intelligent optimization algorithms proposed (MHOSO) algorithm for
based on human behaviou: Teaching-Learning-Based in DNA genome sequence
Optimization (TLBO) [17], Tabu Search Algorithm (TS) detecting the targ based on numan benaviour: Teading-Learning-Based in DNA genome sequence

Optimization (TLBO) [17], Tabu Search Algorithm (TS) detecting the target mood

[18], League Championship Algorithm (LCA) [19], Seeker introduced a n Optimization (1LBO) [17], Tabu Search Algorithm (1S) according the target modal

[18], League Championship Algorithm (LCA) [19], Secker introduced a new the Henry

Algorithm (EMA) [21], Group Counselling Optimization propo [18], League Championsin (SOA) [20], Exchared a new the Freduced a new the CoBL/HGSO based on Higorithm (SOA) [21], Group Counselling Optimization proposed a SVR-base of Algorithm (GCO) [22], Social Learning optimization (Optimization Aigorithm (SOA) [20], Exchange Market (OBL/HOSO) based on inversel
Algorithm (GCO) [22], Group Counselling Optimization proposed a SVR-based pred
Algorithm (GCO) [22], Social Learning optimization (SLO) Solubi Algorithm (EMA) [21], Group Counselling Optimization proposed a SVK-based p

Algorithm (GCO) [22], Social Learning optimization (SLO) Solubility optimization Algorithm (CEA) [24], Volleyball

Support vector regression in
 Algorithm (GCO) [22], Social Learning optimization (SLO)

[23], Cultural Evolution Algorithm (CEA) [24], Volleyball support vector regression mention

Premier League Algorithm (VPL) [25].

The problems by using physical a [23], Cutural Evolution Algorithm (CEA) [24], Volleyball
Premier League Algorithm (VPL) [25].
Physics and chemistry based algorithms focus on solving
problems by using physical and chemical principles to
simulate the beha multiple and chemistry based algorithm (VPL) [25].

The range to form a parameter poly (PA) to get the same time updating

bblems by using physical and chemical principles to the same time updating

mulate the behaviour an Physics and chemistry based algorithms focus on solving

problems by using physical and chemical principles to the same time updating the

simulate the behaviour and change of a material system

parameters by PAs and H

th problems by using physical and conemical principles to

increding the permaneters by PAs and HC

direct develoption and change of a material system

increding through computer programming. These algorithms are

performance simulate the benaviour and change of a material system

through computer programming. These algorithms are serformance. Davood Moha

usually used to compute problems in the fields of physics, new scheme from quantum

chemi through computer programming. These algorithms are perrormance. Davoot Monamir

usually used to compute problems in the fields of physics, new scheme from quantum the

chemistry, engineering and some of the more popular ea

usually used to complue problems in the lieds of physics,

enew scheme from quantum

chemistry, engineering and some of the more popular

algorithms are: Simulated Annealing (SA) [26], the exploration performan

Gravitatio chemistry, engineering and some of the more popular
algorithms are: Simulated Amealing (SA) [26], the exploration performational Local Search (GLSA) [27], Big-bang named QHGSO.
Big-Crunch (BBBC) [28], Gravitational Search algorithms are: Simulated Annealing (SA) [20], the exploration performance
Gravitational Local Search (GLSA) [27], Big-bang med QHGSO.
Big-Crunch (BBBC) [28], Gravitational Search Algorithm HGSO algorithm exhibits
(GSA) [2 Gravitational Local Seren (GLSA) [27], Big-onig named QrtGSO.

Big-Crunch (BBBC) [28], Gravitational Search Algorithm HGSO algorithm exhibits

(GSA) [29], Central Force Optimization (CFO) [30], across various fields; howe Big-Crimen (BBBC) [28], Gravitational Search Algorithm FIGSO algorithm exhibits (GSA) [30], Central Force Optimization (CFO) [30], across various fields; however Direction Algorithm (GbSA) [31], Flow challenges including s (USA) [29], Central Force Optimization (CFO) [30], across various fielas; noweve
Glaax)-based-Search Algorithm (GbSA) [31], Flow challenges including susception
Direction Algorithm [32]. sluggish convergence speed.
It is w Granday-based-search Angorium (GoSA) [31], Frow challenges inculting subseque specified in the state of the state optimization algorithm capable of perfectly solving all types increasing increasing optimization algorithm c borecom Algorium [32].

It is widely achowledged that there is no universal

optimization algorithm capable of perfectly solving all types

algorithm often leads to

of optimization problems. Because the characteristics a It is widely acknowledged that there is no unversal

of optimization algorithm capable of perfectly solving all types

of optimization problems. Because the characteristics and

of optimization problems. Because the chara optimization aigorithm capable of perrectly solving all types

algorithm orten leads to gas

complexity of different problems vary significantly. With

complexity of different problems vary significantly. With

the rapid a or optimization problems. Because the characteristics and premature convergence
complexity of different problems vary significantly. With progresse, this interact
exponential growth in the volume of data generated across i complexity of different problems vary signincantly. With rapid and free complexity of different of technology has led to an exponential growth in the volume of data generated across impacting the algor various domains, acc the rapid advancement of technology has led to an
exponential growth in the volume of data generated across impacting
various domains, accompanied by increasing complexity proposes
and diversity of the data. However, chall ponential grown in the volume of data generated across

impactung the algorithmic

irolus diversity of the data. However, challenges such as data

HGSO by creating a nee

dundancy and excessively long modeling times have
 various domains, accompanied by increasing complexity proposes tiree strategies to
and diversity of the data. However, challenges such as data recosion and the study of the data we gostion update formula, and
become signi and alwestiy of the data. However, challengs such as data

redundancy and excessively long modeling times have

become significant obstacles to effective data analysis. To

mechanism for Lévy flig

address these pressing redundancy and excessively long modeling times have
become significant obstacles the pressure of effective data analysis. To
mechanism for Lévy flights
increasing need for optimization algorithms that can handle
review of

become significant obstacles to effective data analysis. To
mechanism for Levy fight
address these pressing issues more efficiently, there is no increasing need for optimization algorithms that can handle
beth continuous a address these pressing issues more erriclently, there is an
increasing need for optimization algorithms that can handle
both continuous and discrete optimization problems HGSO algorithm along
simultaneously. The HGSO algor mereasure all or optimization algorithms in an analysis of the existing in the signal discrete optimization problems with manifestic products of this student in simultaneously. The HGSO algorithm is an attractive motivatio both continuous and discrete optimization problems

simultaneously. The HGSO algorithm is an attractive motivation of this study. Section

algorithm owing to the fact that equilibrium exploration and algorithm E HGSO secti simultaneously. The HOSO algorithm is an attractive motivation of this study. Section play pivotal role fact that equilibrium exploration and algorithm E_HGSO. Section that makes HGSO suitable for solving complex optimiza algorium owing to the act that equilibrium exploration and
exploitation physical role in the algorith, a property
fund means that makes HGSO suitable for solving complex optimization
problems with many locally optimal solu explotation play protal role in the algoritm, a property

that makes HGSO suitable for solving complex optimization

problems with many locally optimal solutions.

Henry's law is a fundamental principle of physical

corro the method sum alternative behavior and compares them with more and the may locally optimal solutions.

Henry's law is a fundamental principle of physical our modified algorithm to chemistry, proposed in 1803 during the st From the may locally optimal solutions.

Henry's law is a fundamental principle of physical Section VI discusse

chemistry, proposed in 1803 during the study of gas

solubility in liquids. It can be expressed as: at consta The state of research is a munder of physical section VI discusses and conducted solubility in liquids. It can be expressed as: at constant II. BASIC PRINCIPLE OF 1 temperature and pressure, the solubility of a volatile so chemistry, proposed in 1805 during the study of gas
solubility in liquids. It can be expressed as: at constant
temperature and pressure, the solubility of a volatile solute
in a solution is proportional to the equilibrium solubiny in industs. It can be expressed as: at constant

temperature and pressure, the solubility of a volatile solution in a solution is proportional to the equilibrium partial

pressure of that solute above the liquid s Emperature and pressure, the solubility of a volatile solute

in a solution is proportional to the equilibrium partial

pressure of that solute above the liquid surface. The novel

meta-heuristic algorithm for Henry's Gas all a solution is proportional to the equilibrium partial

pressure of that solute above the liquid surface. The novel

meta-heuristic algorithm for Henry's Gas Solubility In this section, the concept

Optimization (HGSO) pressure of mat solute above the liquid surface. The novel
meta-heuristic algorithm for Henry's Gas Solubility
Depimization (HGSO) is inspired by the principles of Dytimization Algorithm
Henry's law, and it mimics the beha mean-neutristic algorithm for Ferry's Gas Solubility optimization Algorithm (HGSO) is inspired by the principles of Henry's law, and it mimics the behavior governed by this algorithm is inspired by the fundamental physical

Example 1

Solution improves the speed of convergence, solves real

engineering optimization problems, and obtains the optimal

variable in mechanical design and manufacturing

optimization problems. Fatma A. Hashim et al. Explorering provides the speed of convergence, solves real
engineering optimization problems, and obtains the optimal
variable in mechanical design and manufacturing
optimization problems. Fatma A. Hashim et al. [35]
propo Figure 1.

1. **Letters**

1. The improves the speed of convergence, solves real

1. engineering optimization problems, and obtains the optimal

1. proposed an improved Henry's Gas Solubility optimization

1. [35]

1. propos **Exercise 15 Exercise 15 Exercise 15 Exercise 16 Exerc Exercise 1998**
 Exercise 1998
 Exercise and the speed of convergence, solves real

engineering optimization problems, and obtains the optimal

variable in mechanical design and manufacturing

optimization problems. Fa (**Letters**

which improves the speed of convergence, solves real

engineering optimization problems, and obtains the optimal

variable in mechanical design and manufacturing

optimization problems. Fatma A. Hashim et al. [**Example 19 Example 19 Example 10**

which improves the speed of convergence, solves real

engineering optimization problems, and obtains the optimal

variable in mechanical design and manufacturing

optimization problems. **Exercise 15 Exercise 15 Exercise 15 Exercise 15 Exercise 16 Exercise 16 Exercise models in mechanical design and manufacturing optimization problems. Fatma A. Hashim et al. [35] proposed an improved Henry's Gas Solubility Exercise 15 Exercise Solution**

which improves the speed of convergence, solves real

engineering optimization problems, and obtains the optimal

variable in mechanical design and manufacturing

optimization problems. Fat (**Letters**

which improves the speed of convergence, solves real

engineering optimization problems, and obtains the optimal

variable in mechanical design and manufacturing

optimization problems. Fatma A. Hashim et al. [which improves the speed of convergence, solves real
engineering optimization problems, and obtains the optimal
variable in mechanical design and manufacturing
optimization problems. Fatma A. Hashim et al. [35]
proposed an which improves the speed of convergence, solves real
engineering optimization problems, and obtains the optimal
variable in mechanical design and manufacturing
optimization problems. Fatma A. Hashim et al. [35]
proposed an which improves the speed of convergence, solves real
engineering optimization problems, and obtains the optimal
variable in mechanical design and manufacturing
optimization problems. Fatma A. Hashim et al. [35]
proposed an which improves the speed of convergence, solves real
engineering optimization problems, and obtains the optimal
variable in mechanical design and manufacturing
optimization roblems. Fatma A. Hashim et al. [35]
proposed an engineering optimization problems, and obtains the optimal
variable in mechanical design and manufacturing
optimization problems. Fatma A. Hashim et al. [35]
proposed an improved Henry's Gas Solubility optimization
(MHGSO) variable in mechanical design and manufacturing
optimization problems. Fatma A. Hashim et al. [35]
proposed an improved Henry's Gas Solubility optimization
(MHGSO) algorithm for the discovery of functional motifs
in DNA ge parameters by PAs and HGSO is get the escal portocol
pharmameter (MHGSO) algorithm for the discovery of functional motifs
(MHGSO) algorithm for the discovery of functional motifs
detecting the target modality. Serdar Ekinc proposed an improved Henry's Gas Solubility optimization
(MHGSO) algorithm for the discovery of functional motifs
in DNA genome sequences, which is capable of accurately
detecting the target modality. Serdar Ekinci et al. (MHGSO) algorithm for the discovery of functional motifs
in DNA genome sequences, which is capable of accurately
detecting the target modality. Serdar Ekinci et al. [36]
introduced a new the Henry's Gas Solubility Optimisa in DNA genome sequences, which is capable of accurately
detecting the target modality. Serdar Ekinci et al. [36]
introduced a new the Henry's Gas Solubility Optimisation
(OBL/HGSO) based on inverse learning. Cao et al. [37 detecting the target modality. Serdar Ekinci et al. [36]
introduced a new the Henry's Gas Solubility Optimisation
(OBL/HGSO) based on inverse learning. Cao et al. [37]
groposed a SVR-based prediction method, Henry
Solubili Introduced a new the Henry's Gas Solubility
(OBL/HGSO) based on inverse learning. C
proposed a SVR-based prediction method
Solubility optimization Algorithm, by randon
support vector regression machine parameter
range to f HBL/HGSO) based on inverse learning. Cao et al. [37]
oposed a SVR-based prediction method, Henry Gas
ububility optimization Algorithm, by randomly generating
propri vector regression machine parameters in a certain
oper to proposed a SVR-based prediction method, Henry Gas
Solubility optimization Algorithm, by randomly generating
support vector regression machine parameters in a certain
range to form a parameter population, the prediction
acc Solubility optimization Algorithm, by randomly generating
support vector regression machine parameters in a certain
range to form a parameter population, the prediction
accuracy (PA) to get the population and SVR used, and support vector regression macnine parameters in a certain
range to form a parameter population, the prediction
accuracy (PA) to get the population and SVR wased, and at
parameters by PAs and HGSO to get the best overall
pe

range to form a parameter population, the prediction
accuracy (PA) to get the population and SVR used, and at
the same time updating the population and the optimal SVR
parameters by PAs and HGSO to get the best overall
per accuracy (PA) to get the population and SVK used, and at
the same time updating the population and the optimal SVR
parameters by PAs and HGSO to get the best overall
performance. Davood Mohammadi et al. [38,39] borrowed a
 the same time updating the population and the optimal SVR
parameters by PAs and HGSO to get the best overall
performance. Davood Mohammadi et al. [38,39] borrowed a
new scheme from quantum theory to update the position of
 parameters by PAs and HGSO to get the best overall
performance. Davood Mohammadi et al. [38,39] borrowed a
new scheme from quantum theory to update the position of
each solution, improving the original algorithm to improve performance. Davood Mohammadi et al. [38,39] borrowed a
new scheme from quantum theory to update the position of
each solution, improving the original algorithm to improve
the exploration performance to explore the search new scheme from quantum theory to update the position of
each solution, improving the original algorithm to improve
the exploration performance to explore the search space,
named QHGSO.
HGSO algorithm exhibits a wide range each solution, improving the original algorithm to improve
the exploration performance to explore the search space,
named QHGSO.
HGSO algorithm exhibits a wide range of applications
across various fields; however, it still the exploration performance to explore the search space,

HGSO algorithm exhibits a wide range of applications

across various fields; however, it still encounters certain

challenges including susceptibility to local opti named QHGSO.

HGSO algorithm exhibits a wide range of applications

across various fields; however, it still encounters certain

challenges including susceptibility to local optima, and

sluggish convergence speed. During HGSO algorithm exhibits a wide range of applications
across various fields; however, it still encounters certain
challenges including susceptibility to local optima, and
sluggish convergence speed. During the initial stage ross various rietas; nowever, it still encounters certain
allenges including susceptibility to local optima, and
alggish convergence speed. During the initial stage of
paper in the interaction among gases in the HGSO
gorit chailenges moluding susceptibility to local oplima, and
sluggish convergence speed. During the initial stage of
iteration, the interaction among gases in the HGSO
algorithm often leads to gas cluster agregation, resulting suggish convergence speed. During the mital stage of
iteration, the interaction among gases in the HGSO
algorithm often leads to gas cluster agregation, resulting in
promature convergence. However, as the iteration
progres nteration, the interaction among gases in the HGSO
algorithm often leads to gas cluster aggregation, resulting in
premature convergence. However, as the iteration
facilitating individuals to escape from local optima, there

algorithm often leads to gas cluster aggregation, resulting in
progresses, this interaction becomes less effective in
facilitating individuals to exape from local optima, thereby
facilitating individuals to exape form loca premature convergence. However, as the iteration
progresses, this interaction becomes less effective in
facilitating individuals to escape from local optima, thereby
impacting the algorithm's accuracy. Therefore, this pape progresses, this interaction becomes less errective in
facilitating individuals to escape from local optima, thereby
impacting the algorithm's accuracy. Therefore, this paper
proposes three strategies to address the shortc Tracturating individuals to escape from local optima, thereby

impacting the algorithm's accuracy. Therefore, this paper

proposes three strategies to address the shortcomings of

HGSO by creating a new grouping search for mpacung the algorithm's accuracy. Interestore, this paper
proposes three strategies to address the shortcomings of
HGSO by creating a new grouping search formula, a new
position update formula, and the introduction of a gr Solony creating a new grouping search formula, a new
tion update formula, and the introduction of a grouping
hanism for Lévy flights.
Hence paper is structured as follows: Section I gives a
sew of the existing literature; sting literature; Section II describes the base

um along with the shortcomings and

is study. Section III presents the improved

GSO and analyses the experimental results

em with other algorithms. Section V applies

lgor The paper is structured as follows: Section I givity
view of the existing literature; Section II describes the
GSO algorithm along with the shortcomings
otivation of this study. Section III presents the impr
gorithm E_HGSO SISO algorithm along with the shortcomings and
activation of this study. Section III presents the improved
broton of this study. Section III presents the improved
gorithm E_HGSO. Section IV gives the experimental
tup of th The

Horizon anglem and the simulation of this study. Section III presents the improved

algorithm E_HGSO and analyses the experimental results

and compares them with other algorithms. Section V applies

our modified alg

meanware of the Henry's the experimental
algorithm E HGSO. Section IV gives the experimental results
and compares them with other algorithms. Section V applies
our modified algorithm to feature selection and finally,
Sect setup of the E_HGSO and analyses the experimental results
and compares them with other algorithms. Section V applies
our modified algorithm to feature selection and finally,
Section VI discusses and concludes the study.
II and compares them with other algorithms. Section V applies
our modified algorithm to feature selection and finally,
Section VI discusses and concludes the study.
II. BASIC PRINCIPLE OF HENRY'S GAS SOLUBILITY
oPTIMIZATION A our modified algorithm to feature selection and finally,
Section VI discusses and concludes the study.
II. BASIC PRINCIPLE OF HENRY'S GAS SOLUBILITY
OPTIMIZATION ALGORITHM
A. Henry's law
In this section, the concept of the is a Henry's das Solubility

H. BASIC PRINCIPLE OF HENRY'S GAS SOLUBILITY

OPTIMIZATION ALGORITHM

A. Henry's law

In this section, the concept of the Henry's Gas Solubility

stimization Algorithm (HGSO) will be introduced II. BASIC PRINCIPLE OF HENRY'S GAS SOLUBILITY

OPTIMIZATION ALGORITHM

A. Henry's law

In this section, the concept of the Henry's Gas Solubility

Optimization Algorithm (HGSO) will be introduced. The

algorithm is inspire

II. BASIC PRINCIPLE OF HENRY'S GAS SOLUBILITY

OPTIMIZATION ALGORITHM
 A. Henry's law

In this section, the concept of the Henry's Gas Solubility

Optimization Algorithm (HGSO) will be introduced. The

algorithm is inspi OPTIMIZATION ALGORTHIM
 A. Henry's law

In this section, the concept of the Henry's Gas Solubility

Optimization Algorithm (HGSO) will be introduced. The

algorithm is inspired by the famous Henry's law. Simulating

the A. Henry's law
In this section, the concept of the Henry's Gas Solubility
Optimization Algorithm (HGSO) will be introduced. The
algorithm is inspired by the famous Henry's law. Simulating
the cumulative behaviour of natura In this section, the concept of the Henry's Gas Solubility
Optimization Algorithm (HGSO) will be introduced. The
algorithm is inspired by the famous Henry's law. Simulating
the cumulative behaviour of natural gas, the HGSO relationship:

$$
S_g = H \times P_g \tag{1}
$$

i g $S_g = H \times P_g$ (1) equilibrium from other gases of the same ty
then ranked to find the best gas in the entired stand and P_g is the partial pressure of **a i ly duating of Henry's coefficient: The I are updated Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gases of

Where *H* is Henry's constant and P_g is the partial pressure of

the gas. *H* gives a good indication of the amount of gas

dissolved, strictly spea **Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gases of

where *H* is Henry's constant and P_g is the partial pressure of

the gas. *H* gives a good indication of the amount of gas

dissolved, strictly spea **Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gases of

then ranked to find the best gas

Where *H* is Henry's constant and P_g is the partial pressure of

the gas. *H* gives a good indication of the amoun **Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gases

then ranked to find the best g

Where *H* is Henry's constant and P_g is the partial pressure of

the gas. *H* gives a good indication of the amount of **Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gas

Where *H* is Henry's constant and P_g is the partial pressure of

the gas. *H* gives a good indication of the annount of gas

altissolved, strictly speaki **Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gases

then ranked to find the best gas.

Where *H* is Henry's constant and P_g is the partial pressure of

the gas. *H* gives a good indication of the amount pressure. $S_g = H \times P_g$ (1) equilibrium from other gases of

here *H* is Henry's constant and P_g is the partial pressure of
 ϵ gas. *H* gives a good indication of the amount of gas

solved, strictly speaking, Henry's law is only $S_g = H \times P_g$ (1) equilibrium from other gase

then ranked to find the best

Updating of Henry's constant and P_g is the partial pressure of

the gas. H gives a good indication of the amount of gas

dissolved, strictly spea $S_g = H \times P_g$ (1) equilibrium from other gases of

then ranked to find the best gas

Where *H* is Henry's constant and P_g is the partial pressure of

the gas. *H* gives a good indication of the amount of gas

approximate l $S_g = H \times P_g$ (1) equilibrium then ranked the gas. *H* gives a good indication of the amount of gas dissolved, strictly speaking, Henry's law is only an approximate law and cannot be applied to systems with higher pressures. **Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gases of the s

then ranked to find the best gas in the

updating of Henry's coefficient:

(ood indication of the amount of gas

greaking. Henry's law is only a **Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gases of the ranked to find the best gas in

constant and P_g is the partial pressure of

good indication of the amount of gas in the best gas in

good indicat **Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gases of the same type

then ranked to find the best gas in the entire

constant and P_g is the partial pressure of

are updated applying the following equatio **Engineering Letters**
 $S_g = H \times P_g$ (1) equilibrium from other gases of the same type. The then ranked to find the best gas in the entire group

y's constant and P_g is the partial pressure of **the same updated applying th** $S_g = H \times P_g$ (1) equilibrium from other gases of the same type. The gases in the center of gases in the cent

$$
\frac{d \ln H}{d(1/T)} = \frac{-\nabla_{sol}E}{R}
$$
 (2) follow

$$
H(T) = \exp(B/T) \times A \tag{3}
$$

a function of temperature and has orbing to do with

The Henry's coefficient varies with temperature, and as

the temperature increases, the volatility of the volatile solute of the enthalpy's coefficient increases, which **PRESSURE ART INTERT AND THE GAS CONSTRANT CONTROLLED THE GAS CONSTRANT IN THE GAS CONSTRANT IN THE GAS CONSTRANT AND ARE SCHOOLS THE GAS CONSTRANT AND A BASE CONSTRANT AND A BASE CONSTRANT AND A** and *H* and *H* are the The Henry's coefficient varies with temperature, and as
the temperature increases, the volatility of the volatile solute
increases and the Henry's coefficient increases, which can be
described by the van't Hoff equation a increases and the Henry's coefficient increases, which can be

described by the van't Hoff equation as follows:
 $\frac{d \ln H}{d(1/T)} = \frac{-\nabla_{sol}E}{R}$ (2)
 $H(T) = \exp(B/T) \times A$ (3)

Where $\nabla_{sol}E$ is the enthalpy of dissolution, the *B.* $H(T) = \exp(B/T) \times A$ (3)

here $\nabla_{sol}E$ is the enthalpy of dissolution, the gas constant wis the gas constant, and *A* and *B* are the two parameters of p relationship between *H* and *T*. *H* is a function of is rameters

$$
H(T) = \exp(-C \times (1/T - 1/T^{\theta})) \times H^{\theta}
$$
 (4)

 $H(I) = \exp(B/I) \times A$ (3)

here $\nabla_{so}E$ is the enthalpy of dissolution, the gas constant

is the gas constant, and A and B are the two parameters of partial pressure of the g

e relationship between H and T. H is a function of Where $\nabla_{sol}E$ is the enthalpy of dissolution, the gas constant
 R is the gas constant, and *A* and *B* are the two parameters of partial pressure of the g

the relationship between *H* and *T*. *H* is a function of is Where $\nabla_{sol}E$ is the enthalpy of dissolution, the gas constant
 R is the gas constant, and *A* and *B* are the two parameters of

parameters of

the relationship between *H* and *T*. *H* is a constant is is a constant R is the gas constant, and A and B are the two parameters of

the relationship between H and T. H is a function of

parameters A and B.

Position update: The valuation is valid when $\nabla_{sol}E$ is a constants:
 $H(T) = \exp(-C \times ($ the relationship between *H* and *T*. *H* is a function of
parameters *A* and *B*.
Position update: The way in
cluster gas is updated:
 $H(T) = \exp(-C \times (1/T - 1/T^{\theta})) \times H^{\theta}$ (4)
 $K_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \alpha \times (S_i$
HGSO mathemati parameters A and B.
 Position update: The way

van's Hoff equation is valid when $\nabla_{sol}E$ is a constants:
 $H(T) = \exp(-C \times (1/T - 1/T^{\theta})) \times H^{\theta}$ (4)
 $\int_{F \times r \times \alpha} f(F) + F \times r \times \alpha$

B. HGSO mathematical model

HGSO is characteriz Van's Hoff equation is valid when $\nabla_{so}E$ is a constants:
 $H(T) = \exp(-C \times (1/T - 1/T^{\theta})) \times H^{\theta}$ (4)
 $\frac{X_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \alpha \times (S^2)}{+F \times r \times \alpha \times (S^2)}$

B. HGSO is characterized by several fundamental structural

compone $H(T) = \exp(-C \times (1/T - 1/T^{\theta})) \times H^{\theta}$ (4) $K_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \alpha$
 B . HGSO mathematical model

HGSO is characterized by several fundamental structural

components, including the initialization of candidate

solutions, the $H(T) = \exp(-C \times (1/T - 1/T^{\theta})) \times H^{\theta}$ (4)

B. HGSO mathematical model

HGSO is characterized by several fundamental structural

components, including the initialization of candidate

solutions, the iterative refinement of those $H(Y) = \exp(-C \times (1/T - 1/T)) \times H$ (4)
 $+F \times r \times a \times (5/T)$

HGSO is characterized by several fundamental structural

mponents, including the initialization of candidate

alutions, the terrative refinement of those solutions, the aluti B. HGSO mathematical model

HGSO is characterized by several fundamental structural

components, including the initialization of candidate

solutions, the iterative refinement of those solutions, the In Eq

evaluation of *B. HGSO mathematical model* $\gamma = \beta \times e$

HGSO is characterized by several fundamental structural

mponents, including the initialization of candidate

lutions, the iterative refinement of those solutions, the In Eqs. 10 a For the interactions with *N* gas particles is initialized with the culture of the pole of the pole of the solutions, the interactions of candidate solutions, the iterative refinement of those solutions, the *i*n Eqs. 10 rich is including the initialization of candidate

components, including the initialization of candidate

solutions, the iterative refinement of those solutions, the In Eqs. 10 and 11, $X_{i,j}$

evaluation of their fitness components, including the initialization of candidate

solutions, the iterative refinement of those solutions, the

solution of their fitness, and the selection of the optimal

solution. It maintains a population of candi

solutions, the iterative remement of those solutions, the in Eqs. 10 and 11, $X_{(i,j)}$ is u

solution. It maintains a population of candidate solutions in

solution. It maintains a population of candidate solutions in

the **Example 10** is a mumber of the Figure of the Figure of the The cluster *j*, *r* is a ranoom number of interaction of the form of gas particles dissolved in a given liquid. The cluster *j*, and X_{best} is the best propert solution. It infiniting a population of cannot expectively, and the component phase stations in a given liquid. The propulation, we
approperties of these gas particles dissolved in a given liquid. The population, we
repro **Example 1.1** The *X*(*i*) denotes the interaction of candidate in the whole population, resolutions with *N* gas particles is initialised with the used to guide the direction or relationship between the number of gases a **Note that the set is a random** in the window of the gases that the window is a random number of gases *i*, the value of the gases, as well as the number of gases *i*, the value of the problem of falling into a local in t Example the positions where χ_{ij} and χ_{mkl} is the positions of the gases, as well as the number of gases and the positions **Escape from local op** of the gases, as well as the number of gases *i*, the value of proble

$$
X_i(t+1) = X_{\min} + r \cdot (X_{\max} - X_{\min})
$$
 (5)

$$
H_j(t) = l_1 \times rand(0,1), P_{i,j} = l_2 \times rand(0,1), C_j = l_3 \times rand(0,1)
$$
 (6)

For the gases, as well as the number of gases *i*, the value of the gases, as well as the number of gases *i*, the value of the best
in the cluster *j*, and the value of the $\nabla_{so}E/R$ constant $j(C_i)$, worst a_i respecti Example 1. The proposition of the same of the same value of the same the same of the solution of Henry's constant $j(H(t))$, the partial pressure $P_{i,j}$ of the gas in the b the b in the cluster *j*, and the value of the \nab

Aggregation and evaluation: The population agent is
 $\begin{array}{ll}\n\text{MSE} & \text{MSE} \\
\text{MSE} & \text{MSE} \\
\text{MSE$ divided into an evidation: The population agent is

divided into an equal number of clusters based on the type of
 $H_j(t) = l_1 \times rand(0,1), P_{i,j} = l_2 \times rand(0,1), C_j = l_3 \times rand(0,1)$ (5)

Where N is the population size

where $X_{(i)}$ denot $K_i(t+1) = X_{min} + r \cdot (X_{max} - X_{min})$
 $H_j(t) = I_i \times rand(0,1), P_{i,j} = I_2 \times rand(0,1), C_j = I_3 \times rand(0,1)$ (5)

Where *N* is the population

where $X_{(i)}$ denotes the position of the *i*th gas among all gases

Where *N* is the population

where $X_{(i$ $X_i(t+1) = X_{min} + r \cdot (X_{max} - X_{min})$ (5)
 $H_j(t) = l_1 \times rand(0,1), P_{i,j} = l_2 \times rand(0,1), C_j = l_3 \times rand(0,1)$ (6) Where *N* is the population

Where $X_{(i)}$ denotes the position of the *i*th gas among all gases

Where $X_{(i)}$ is a random number bet $X_i(t+1) = X_{min} + r \cdot (X_{max} - X_{min})$ (5)
 $H_j(t) = l_1 \times rand(0,1), P_{i,j} = l_2 \times rand(0,1), C_j = l_3 \times rand(0,1)$ (6) Where *N* is the population

where $X_{(i)}$ denotes the position of the *i*th gas among all gases

where $X_{(i)}$ denotes the position o

Explicit Content of the same type. The gases are
equilibrium from other gases of the same type. The gases are
then ranked to find the best gas in the entire group.
Updating of Henry's coefficient: The Henry coefficients
ar then ranked to find the best gas of the same type. The gases are
then ranked to find the best gas in the entire group.
Updating of Henry's coefficient: The Henry coefficients
are updated applying the following equation: **Letters**
 Updating of Henry's coefficient: The gases are
 Updating of Henry's coefficient: The Henry coefficients
 Updating of Henry's coefficient: The Henry coefficients
 $H_i(t+1) = H_i(t) \times \exp(-C_i \times (\frac{1}{\pi(s)} - \frac{1}{\pi(t)})$

Letters
equilibrium from other gases of the same type. The gases are then ranked to find the best gas in the entire group.
Updating of Henry's coefficient: The Henry coefficients are updated applying the following equation:
$H_j(t+1) = H_j(t) \times \exp(-C_j \times (\frac{1}{T(t)} - \frac{1}{T^{\theta}}))$
$T(t) = \exp(-t / iter)$
Where H_j is the Henry's coefficient of the <i>j</i> th cluster, <i>T</i> is the temperature, T^{θ} is a constant with a constant value of 289.15 and <i>iter</i> is the maximum number of iterations.
Solubility update: At the <i>t</i> th iteration, the solubility of the <i>i</i> th gas particle in the <i>j</i> th cluster is updated using the following equation:

$$
I'(t) = \exp(-t / iter)
$$
 (8)

temperature, T^{θ} is a constant with a const

the *i*th gas particle in the *j*th cluster is updated using the following equation: other gases of the same type. The gases are

d the best gas in the entire group.
 EVALUATE: The Henry coefficients

ing the following equation:
 $T_j(t) \times \exp(-C_j \times (\frac{1}{T(t)} - \frac{1}{T^{\theta}}))$ (7)
 $T(t) = \exp(-t / iter)$ (8)

[enry's coeffi equilibrium from other gases of the same type. The gases are
then ranked to find the best gas in the entire group.
 Updating of Henry's coefficient: The Henry coefficients

are updated applying the following equation:
 Solubility update: At the *tale syperation* of $H_j(t+1) = H_j(t) \times \exp(-C_j \times (\frac{1}{T(t)} - \frac{1}{T^{\theta}}))$ (7)
 $H_j(t+1) = H_j(t) \times \exp(-C_j \times (\frac{1}{T(t)} - \frac{1}{T^{\theta}}))$ (7)
 $T(t) = \exp(-t / iter)$ (8)

there H_j is the Henry's coefficient of the *j*th cluste the *ⁱ*th gas particle in the *^j*th cluster is updated using the Following equation:
 $H_j(t+1) = H_j(t) \times \exp(-C_j \times (\frac{1}{T(t)} - \frac{1}{T(t)}))$
 $T(t) = \exp(-t / iter)$

Where H_j is the Henry's coefficient of the *j*th clust

temperature, T^{θ} is a constant with a constant valu

and *iter* is the maximum nu the following equation:
 t \times \times \times $p(-C_j \times (\frac{1}{T(t)} - \frac{1}{T^{\theta}}))$ (7)
 t) = $\exp(-t / iter)$ (8)
 t 's coefficient of the *j*th cluster, *T* is the

onstant with a constant value of 289.15

um number of iterations.
 $:$ ther gases of the same type. The gases are
the best gas in the entire group.
ii *i* **j s coefficient:** The Henry coefficients
g the following equation:
 $(i) \times \exp(-C_j \times (\frac{1}{T(i)} - \frac{1}{T^{\theta}}))$ (7)
 $(i) = \exp(-t / iter)$ (8)
ary's co $T(t) = \exp(-t / iter)$ (8)

Where *H_j* is the Henry's coefficient of the *j*th cluster, *T* is the

temperature, *T*^{*i*} is a constant with a constant value of 289.15

solubility **update**: At the *t*th iteration, the solubility *I* (*t*) = exp($-i$ *l ter*) (8)

Where *H_j* is the Henry's coefficient of the *j*th cluster, *T* is the

temperature, *T*^{*g*} is a constant with a constant value of 289.15

and *iter* is the maximum number of iterat Where H_j is the Henry's coefficient of the *j*th cluster
temperature, T^{θ} is a constant with a constant value o
and *iter* is the maximum number of iterations.
Solubility update: At the *t*th iteration, the solu
t here *H_j* is the Henry's coefficient of the *j*th cluster, *T* is the
mperature, *T⁰* is a constant with a constant value of 289.15
d *iter* is the maximum number of iterations.
Solubility update: At the *t*th itera temperature, T^{θ} is a constant with a constant value of 289.15
and *iter* is the maximum number of iterations.
Solubility update: At the *t*th iteration, the solubility of
the *i*th gas particle in the *j*th cluster

$$
S_{i,j}^t = K \times H_j^{t+1} \times P_{i,j}^t \tag{9}
$$

\n The
$$
0
$$
 is a 0 and 0 and 0 is a 0 and 0 .\n

\n\n The $H_j(t+1) = H_j(t) \times \exp(-C_j \times (\frac{1}{T(t)} - \frac{1}{T^{\theta}}))$ (7) and 0 (8) are the H_j is the Henry's coefficient of the j th cluster, T is the H_j is a constant with a constant value of 289.15, and 0 is 0 is the maximum number of iterations.\n

\n\n Solubility update: At the t th iteration, the solubility of t in the t th cluster is updated using the 0 is a particle in the j th cluster is updated using the $S_{i,j} = K \times H_j^{t+1} \times P_{i,j}^t$ (9) have $S_{i,j} = K \times H_j^{t+1} \times P_{i,j}^t$ (9) have $S_{i,j} = K \times H_j^{t+1} \times P_{i,j}^t$ (9) have $S_{i,j} = K \times H_j^{t+1} \times P_{i,j}^t$ (10) have a constant, the 0 is a constant

min max min (1) () *X t X r X X ⁱ* (5) ¹ , 2 ³ () (0,1), (0,1), (0,1) *H t l rand P l rand C l rand ^j i j ^j* (6) $\frac{1}{f} \times (\frac{1}{T(t)} - \frac{1}{T^{\theta}}))$ (7)
 (iter) (8)
 (iter) (8)

to f the *j*th cluster, *T* is the

a constant value of 289.15

fi iterations.

iteration, the solubility of

ster is updated using the
 $\lim_{t \to \infty} P_{i,j}^t$ $-C_j \times (\frac{1}{T(t)} - \frac{1}{T^{\theta}})$ (7)
 $(-t / iter)$ (8)

Sient of the *j*th cluster, *T* is the

tih a constant value of 289.15

fer of iterations.

cluster is updated using the
 $H_j^{t+1} \times P_{i,j}^t$ (9)

bility of the gas, $P_{i,j}$ is partial pressure of the gas in the *j*th cluster of the gas, and *K*

is a constant therein.
 Position update: The way in which the position of the *j*th

cluster gas is updated:
 $X_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \gamma \times (X_{i,best}(t)$ is a constant therein.
 Position update: The way in which the position of the *j*th

cluster gas is updated:
 $X_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \gamma \times (X_{i,best}(t) - X_{i,j}(t))$ (10)
 $+ F \times r \times \alpha \times (S_{i,j}(t) \times X_{best}(t) - X_{i,j}(t))$
 $\gamma = \beta \times \exp(-\frac{F_{$ **Position update:** The way in which the position of the *j*th

cluster gas is updated:
 $X_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \gamma \times (X_{i,best}(t) - X_{i,j}(t))$ (10)
 $+ F \times r \times \alpha \times (S_{i,j}(t) \times X_{best}(t) - X_{i,j}(t))$
 $\gamma = \beta \times \exp(-\frac{F_{best}(t) + \varepsilon}{F_{i,j}(t) + \varepsilon})$ cluster gas is updated:
 $X_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \gamma \times (X_{i,best}(t) - X_{i,j}(t))$ (10)
 $+ F \times r \times \alpha \times (S_{i,j}(t) \times X_{best}(t) - X_{i,j}(t))$
 $\gamma = \beta \times \exp(-\frac{F_{best}(t) + \varepsilon}{F_{i,j}(t) + \varepsilon})$, $\varepsilon = 0.05$ (11)

In Eqs. 10 and 11, $X_{(i,j)}$ is used to deno $X_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \gamma \times (X_{i,best}(t) - X_{i,j}(t))$
 $+ F \times r \times \alpha \times (S_{i,j}(t) \times X_{best}(t) - X_{i,j}(t))$
 $\gamma = \beta \times \exp(-\frac{F_{best}(t) + \varepsilon}{F_{i,j}(t) + \varepsilon}), \varepsilon = 0.05$ (11)

In Eqs. 10 and 11, $X_{(i,j)}$ is used to denote the position of gas
 i in cl $X_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \gamma \times (X_{i,best}(t) - X_{i,j}(t))$
 $+ F \times r \times \alpha \times (S_{i,j}(t) \times X_{best}(t) - X_{i,j}(t))$
 $\gamma = \beta \times \exp(-\frac{F_{best}(t) + \varepsilon}{F_{i,j}(t) + \varepsilon}), \varepsilon = 0.05$ (11)

In Eqs. 10 and 11, $X_{(i,j)}$ is used to denote the position of gas
 i in cl $+F \times r \times \alpha \times (S_{i,j}(t) \times X_{best}(t) - X_{i,j}(t))$
 $\gamma = \beta \times \exp(-\frac{F_{best}(t) + \varepsilon}{F_{i,j}(t) + \varepsilon})$, $\varepsilon = 0.05$ (11)

In Eqs. 10 and 11, $X_{(i,j)}$ is used to denote the position of gas
 i in cluster *j*, *r* is a random number, *t* represen $\gamma = \beta \times \exp(-\frac{F_{best}(t) + \varepsilon}{F_{i,j}(t) + \varepsilon})$, $\varepsilon = 0.05$ (11)

In Eqs. 10 and 11, $X_{(i,j)}$ is used to denote the position of gas
 i in cluster *j*, *r* is a random number, *t* represents the current

number of iterations, $\gamma = \beta \times \exp(-\frac{F_{best}(t) + \varepsilon}{F_{i,j}(t) + \varepsilon})$, $\varepsilon = 0.05$ (11)
In Eqs. 10 and 11, $X_{(i,j)}$ is used to denote the position of gas
i in cluster *j*, *r* is a random number, *t* represents the current
number of iterations, $X_{$ $y = p \times \exp(-\frac{p}{F_{i,j}}(t) + \varepsilon), \varepsilon = 0.05$ (11)

In Eqs. 10 and 11, $X_{(i,j)}$ is used to denote the position of gas
 i in cluster *j*, *r* is a random number, *t* represents the current

number of iterations, $X_{(i,best)}$ is t In Eqs. 10 and 11, $X_{(i,j)}$ is used to denote the position of gas
n cluster *j*, *r* is a random number, *t* represents the current
mber of iterations, $X(i_{i,bes})$ is the best position of gas *i* in
uster *j*, and X_{best} is In Eqs. 10 and 11, $X_{(i,j)}$ is used to denote the position of gas
 i in cluster *j*, *r* is a random number, *t* represents the current

number of iterations, $X_{(i,bex)}$ is the best position of gas *i* in

cluster *j*, a in Eqs. 10 and 11, $X(i_0)$ is used to denote the position of gas
 i in cluster *j*, *r* is a random number, *t* represents the current

number of iterations, $X(i_0k_{\text{est}})$ is the best position of gas *i* in

cluster *j t* in cluster *j*, *r* is a random number, *t* represents the current number of iterations, $X(i, b_{est})$ is the best position of gas *i* in cluster *j*, and X_{best} is the best position of gas *i* in the whole population, w s a constant therem.
 Position update: The way in which the position of the *j*th

Luster gas is updated:
 $X_{i,j}(t+1) = X_{i,j}(t) + F \times r \times \gamma \times (X_{i,bin}(t) - X_{i,j}(t))$ (10)
 $+ F \times r \times \alpha \times (S_{i,j}(t) \times X_{i,bin}(t) - X_{i,j}(t))$
 $\gamma = \beta \times \exp(-\frac{F_{best$ gases in cluster *i*, *a* denotes the effect of other gas particles
on the *i*th particle, and β is a constant. $F_{(i,j)}$ and F_{best} denote
the fitness of gas *i* in cluster *j* and the fitness of the best gas
in the wh In Eqs. 10 and 11, $X_{(i,j)}$ is used to denote the position of gas
cluster *j*, *r* is a random number, *r* represents the current
ther of iterations, $X_{(b, bce)}$ is the best position of gas *i* in
teter *j*, and X_{bext} is

on the *i*th particle, and β is a constant. $F_{(i,j)}$ and F_{best} denote
the fitness of gas *i* in cluster *j* and the fitness of the best gas
in the whole population, respectively, and the value of *F* is
used to guide the whole population, respectively, and the value of *F* is
ed to guide the direction of gas movement.
Escape from local optimum: In order to solve the
oblem of falling into a local optimum during the search for
best ga used to guide the direction of gas movement.
 Escape from local optimum: In order to solve the problem of falling into a local optimum during the search fo

the best gas, the HSGO algorithm uses Eq. 12 to update the wor

$$
Nw = N \times (rand(c_2 - c_1) + c_1), c_1 = 0.1, c_2 = 0.2 \quad (12)
$$

respectively.

$$
G_{(i,j)} = G_{\min(i,j)} + r \times (G_{\max(i,j)} - G_{\min(i,j)}) \tag{13}
$$

Nw = *N* × (*rand*($c_2 - c_1$) + c_1), $c_1 = 0.1$, $c_2 = 0.2$ (12)
Where *N* is the population size, *rand* is a random number
between [0, 1], c_1 , c_2 are constants with values 0.1, 0.2
respectively.
Update the p *Nw* = *N* × (*rand*($c_2 - c_1$) + c_1), c_1 = 0.1, c_2 = 0.2 (12)
Where *N* is the population size, *rand* is a random number
between [0, 1], *ct*, *c*₂ are constants with values 0.1, 0.2
respectively.
Update th Where *N* is the population size, *rand* is a random number
between [0, 1], *c₁*, *c₂* are constants with values 0.1, 0.2
respectively.
Update the position of the worst individual: Position
update for the worst agen

Engineering Letters
III. THE PROPOSED E_HGSO ALGORITHM
pasic HGSO has the disadvantages of slowly
ence and falling into local optimal solutions. In
solve this drawback, this paper carries out three If the gas *i* satisfi **Engineering Letters**
III. THE PROPOSED E_HGSO ALGORITHM
The basic HGSO has the disadvantages of slowly
nvergence and falling into local optimal solutions. In
der to solve this drawback, this paper carries out three
provem **Engineering Letters**

III. THE PROPOSED E_HGSO ALGORITHM

The basic HGSO has the disadvantages of slowly

convergence and falling into local optimal solutions. In

order to solve this drawback, this paper carries out thr **Engineering Letters**

III. THE PROPOSED E_HGSO ALGORITHM

The basic HGSO has the disadvantages of slowly

convergence and falling into local optimal solutions. In

order to solve this drawback, this paper carries out thre **Engineering Letters**

III. THE PROPOSED E_HGSO ALGORITHM

The basic HGSO has the disadvantages of slowly

convergence and falling into local optimal solutions. In

order to solve this drawback, this paper carries out thre III. THE PROPOSED E_HGSO ALGO
The basic HGSO has the disadvantag
convergence and falling into local optima
order to solve this drawback, this paper ca
improvements on the basis of the original alg
are as follows:
A. Creati **Engineering Lette**

III. THE PROPOSED E_HGSO ALGORITHM

The basic HGSO has the disadvantages of slowly

invergence and falling into local optimal solutions. In

der to solve this drawback, this paper carries out three

pr **Engineering Letters**

III. THE PROPOSED E_HGSO ALGORITHM

The basic HGSO has the disadvantages of slowly

nevergence and falling into local optimal solutions. In

the rosolve this drawback, this paper carries out three

Engineering Letters

III. THE PROPOSED E_HGSO ALGORITHM

The basic HGSO has the disadvantages of slowly

convergence and falling into local optimal solutions. In

order to solve this drawback, this paper carries out thr III. THE PROPOSED E_HGSO ALGORITHM

The basic HGSO has the disadvantages of slowly

convergence and falling into local optimal solutions. In

order to solve this drawback, this paper carries out three

improvements on the III. THE PROPOSED E_HGSO ALGORITHM

The basic HGSO has the disadvantages of slowly

convergence and falling into local optimal solutions. In

order to solve this drawback, this paper carries out three

intra-group search III. THE PROPOSED E_HGSO ALGORITHM

The basic HGSO has the disadvantages of slowly

convergence and falling into local optimal solutions. In

order to solve this drawback, this paper carries out three

improvements on the The basic HGSO has the disadvantages of slowly
convergence and falling into local optimal solutions. In
order to solve this drawback, this paper carries out three
improvements on the basis of the original algorithm, which The basic HGSO has the disadvantages of slowly
convergence and falling into local optimal solutions. In
order to solve this drawback, this paper carries out three
improvements on the basis of the original algorithm, whic **Engineering Letters**

copose E_HGSO ALGORITHM

O has the disadvantages of slowly

dling into local optimal solutions. In

drawback, this paper carries out three

the gas *i* satisfies Ex

be basis of the original algorit

r (14)

$$
r < \mu e^{-\frac{t}{T_{\text{max}}}} \tag{15}
$$

Engineering Letters

stab E_HGSO ALGORITHM

as the disadvantages of slowly

into local optimal solutions. In

base, this paper carries out three

intra-group scarch will be performed, otherwise, this paper carries out t *r* < $\mu e^{-\frac{t}{T_{\text{max}}}}$ (15)

8. 14 and 15 at the same time, the

be performed, otherwise the

carried out, in which λ and μ are

et manually. *tan*h is a hyperbolic

s characterised by the fact that it

brigin, w **Example 18 and** $r < \mu e^{-\frac{t}{T_{\text{max}}}}$ **(15)**
If the gas *i* satisfies Eqs. 14 and 15 at the same time, the
tra-group search will be performed, otherwise the
ter-group search will be carried out, in which λ and μ are
 intered in the gas *i* satisfies Eqs. 14 and 15 at the same time, the intra-group search will be performed, otherwise the inter-group search will be carried out, in which λ and μ are constants that need to be set ma **i**
 i $r < \mu e^{-\frac{t}{T_{\text{max}}}}$ (15)

If the gas *i* satisfies Eqs. 14 and 15 at the same time, the

intra-group search will be performed, otherwise the

inter-group search will be carried out, in which λ and μ are
 constants that need to be set manually. *tan* **constants that need to be set manually.** *tan***h** is a hyperbolic that is a hyperbolic that is a hyperbolic that is a hyperbolic that need to be set manually. *tan***h** is a the sum of the gas *i* satisfies Eqs. 14 and 15 at the same time, the intra-group search will be performed, otherwise the inter-group search will be performed, otherwise the inter-group search will be carried out, in whic the value of $r < \mu e^{-\frac{t}{T_{\text{max}}}}$ (15)

If the gas *i* satisfies Eqs. 14 and 15 at the same time, the intra-group search will be performed, otherwise the inter-group search will be carried out, in which λ and μ are $r < \mu e^{-\frac{t}{T_{\text{max}}}}$ (15)
If the gas *i* satisfies Eqs. 14 and 15 at the same time, the
intra-group search will be performed, otherwise the
inter-group search will be carried out, in which λ and μ are
constants tha *F* < $\mu e^{-\frac{t}{T_{\text{max}}}}$ (15)
If the gas *i* satisfies Eqs. 14 and 15 at the same time, the
ra-group search will be performed, otherwise the
ter-group search will be carried out, in which λ and μ are
nstants that n $r < \mu e^{-\frac{t}{T_{\text{max}}}}$ (15)
If the gas *i* satisfies Eqs. 14 and 15 at the same time, the
ra-group search will be performed, otherwise the
energroup search will be carried out, in which λ and μ are
nstants that need $r < \mu e^{-T_{\text{max}}}$ (15)

If the gas *i* satisfies Eqs. 14 and 15 at the same time, the

intra-group search will be errformed, otherwise the

inter-group search will be carried out, in which *i* a rad μ are

constants that If the gas *i* satisfies Eqs. 14 and 15 at the same time, the intra-group search will be performed, otherwise the inter-group search will be carried out, in which λ and μ are constants that need to be set manually. If the gas *i* satisfies Eqs. 14 and 15 at the same time, the intra-group search will be performed, otherwise the inter-group search will be carried out, in which λ and μ are constants that need to be set manually. If the gas *i* satisfies Eqs. 14 and 15 at the same time, the intra-group search will be performed, otherwise the inter-group search will be carried out, in which λ and μ are constants that need to be set manually. **Engineering Letters**

RETHM

RES of slowly

ses of slowly

ses of slowly

ses of slowly

in the set of the gas *i* satisfies Eqs. 14 and 15 at the same time, the

rerise out three group search will be performed, otherwis **EXERCUAS (** 1) $r < \mu e^{-\frac{t}{Im\omega}}$ (15)

SO has the disultantiages of slowly $r < \mu e^{-\frac{t}{Im\omega}}$ (15)

fielling into local optimal solutions i. If the gas *i* satisfies Eqs. 14 and 15 at the same time, the distance local opt **Example 2.1 Example 2.1 The Example 2.1 The CONDITER CONDITED** (15) falling into total optimal solutions. In

its drawback, this paper curries out lotting 2.1 **The gas** *i* satisfies Figs. 14 and 15 at the same tim **Engineering Letters**

In the same interesting the same time, the souties of the same time, the souties of the same inter-group search will be performed, one-wise the inter-group search will be performed, one-wise the int **Engineering Letters**

SEED FI_HGSO AT GORTITIM

IDENTIFY (15)

IDENTIFY (15)

SEED AT GORTITIM solutions. In

whole, this paper carries out three groups search will be performed, otherwise the

seasof the original algori

two stochastic gases, adding diversity and randomness to the search, as shown in equation (16). intra-group search will be performed, otherwise the
inter-group search will be carried out, in which λ and μ are
constants that need to be set manually. *tan*h is a hyperbolic
tangent function, which is characterise inter-group search will be carried out, in which λ and μ are
constants that need to be set manually. *tan*h is a hyperbolic
tangent function, which is characterised by the fact that it
takes the value of 0 at the or while speeding up convergence, also leads to a rapid loss of
population diversity in the algorithm, and the algorithm
tends to fall into a local optimum. For this disadvantage, this
paper designs a new prey encircling for

However, the electricity of the work at the same time, to avoid
\nthe local optimal. Meanwhile, we introduce the search factor
\n*α, β,* to improve the accuracy:

\nThen, while speeding up convergence, also leads to a rapid loss of
\npopulation diversity in the algorithm, and the algorithm
\ntends to fall into a local optimum. For this disadvantage, this
\n
$$
r < -\tanh(\lambda \times \frac{T_{\text{max}} - t}{T_{\text{max}}})
$$
\n(14)

\nThere are the unequal random numbers.

\nWhere *rr*₁, *rr*₂ are three unequal random numbers.

\nC. *New formula for updating the worst gas*

\nC. *New formula for updating the worst gas*

\nThe position renewal process in the HGSO algorithm tends to fall into a local optimum. For this disadvantage, this paper designs a new prey encircling formula that introduces two stochastic gases, adding diversity and randomness to the search, as shown in equation (16).

\nWhere *rr*₁, *rr*₂ are three unequal random numbers.

\nC. *New formula for updating the worst gas*

\nThe position renewal process in the HGSO algorithm is charged. In performing the sensitivity analysis, we select
\nanallysed. In performing the sensitivity analysis, we select
\nthe algorithm several times with different
\nthe algorithm several times with different

B, to improve the accuracy:
 $r < -\tanh(\lambda \times \frac{T_{\text{max}} - t}{T_{\text{max}}})$ (14) paper designs a two stochastic gase at two stochastic gases at two stochastic gases at two stochastic gas search, as shown
 $X_{i,j}(t+1) = X_{rr1}(t) + \left[\left(\frac{T_{\$ $r < -\tanh(\lambda \times \frac{T_{\text{max}} - t}{T_{\text{max}}})$ (14) paper designs a new prey encire

two stochastic gases, adding div

search, as shown in equation (1
 $X_{i,j}(t+1) = X_{r1}(t) + [(\frac{T_{\text{max}} - 0.5t}{T_{\text{max}}})^2 \cos(2\pi r) \gamma \times X_{best}(t) - (1 + S_{i,j}(t))]$

here $r < -\tanh(\lambda \times \frac{T_{\text{max}} - t}{T_{\text{max}}})$ (14) paper designs a new prey encontrol to the different transition of the state of the shown in equation of the state patt $X_{i,j}(t+1) = X_{r+1}(t) + \left[\frac{T_{\text{max}}}{T_{\text{max}}}\right]^2 \cos(2\pi r) \gamma \times X_{best}(t) - (1 + S_{i,j}(t))$

Where rr_1 , rr_2 are three unequal random numbers.

C. *New formula for updating the worst gas*

the sensitivity of these two analysed. In perfo search, as shown in equat

search, as shown in equat
 $X_{i,j}(t+1) = X_{r1}(t) + \left[\frac{T_{\text{max}} - 0.5t}{T_{\text{max}}}\right]^2 \cos\left(2\pi r\right) \gamma \times X_{best}(t) - (1 + \frac{1}{2})^2 \cos\left(2\pi r\right) \gamma \times X_{best}(t) - (1 + \frac{1}{2})^2 \cos\left(2\pi r\right) \gamma \times X_{best}(t) - (1 + \frac{1}{2})^2 \cos\left(2\pi r\right) \gamma$ $X_{i,j}(t+1) = X_{r,1}(t) + \left[\left(\frac{T_{\text{max}} - 0.5t}{T_{\text{max}}}\right)^2 \cos\left(2\pi r\right) \gamma \times X_{best}(t) - (1 + S_{i,j})\right]$

Where rr_1 , rr_2 are three unequal random numbers.

C. *New formula for updating the worst gas*

The search pattern of the HGSO alg $X_{i,j}(t+1) = X_{r1}(t) + \left[\left(\frac{T_{\text{max}} - 0.5t}{T_{\text{max}}} \right)^2 \cos(2\pi r) \gamma \times X_{\text{best}}(t) - (1 + T_{\text{max}})$

Where rr_1 , rr_2 are three unequal random numbers.

C. *New formula for updating the worst gas* analysed. In performing

The sear $X_{i,j}(t+1) = X_{r+1}(t) + \left[\left(\frac{T_{\text{max}} - 0.5t}{T_{\text{max}}}\right)^2 \cos\left(2\pi r\right) \gamma \times X_{best}(t) - (1 + S_{i.}) \right]$

Where *rr*₁, *rr*₂ are three unequal random numbers.

C. *New formula for updating the worst gas* the sensitivity of these two $A_{i,j}(t+1) = A_{r1}(t) + [(1 - \frac{1}{T_{\text{max}}}) \cos(\frac{2\pi r}{\gamma}) \times A_{best}(t) - (1 + A_{i}) \cos(\frac{2\pi r}{\gamma})]$

Where *rr*, *rr* are three unequal random numbers.

C. *New formula for updating the worst gas* the sensitivity of these to analysed. In per Where rr_1 , rr_2 are three unequal random numbers.

C. New formula for updating the worst gas

the sensitivity of these

convergent pattern of the HGSO algorithm is

different types of functionarctized by its simplicity Where rr_1 , rr_2 are three unequal random numbers.

C. New formula for updating the worst gas

the sensitivity of these tanget direct and yead. In performing the

towards the target during each search. However, this dif Where rr_1 , rr_2 are three unequal random numbers.

C. New formula for updating the worst gas

The search pattern of the HGSO algorithm is

different types of functions the search pattern of the HGSO algorithm is

diffe algorithm. $r < - \tanh(\lambda \frac{T_{\text{rms}} - t}{T_{\text{max}}})$

(14) peach design into a local optimization, therefore, the space of the thereby diminishing its local search capability. To tackle this

challenge, we have introduced a novel formula for updating

the position of the worst gas agent and incorporated the Lévy

from Fig. 1, it can be s

flight challengie, we have introduced a novel formula for updating

flight mechanism. By updating the position of the worst

flight mechanism. By updating the position of the worst

agent, the algorithm can converge more rapidly the position of the worst gas agent and incorpor
flight mechanism. By updating the position
agent, the algorithm can converge more rap
better solutions. This optimization not only
time but also improves the overall effici Experience in an experiment of the difference of E HGSO and

Better solutions. This optimization not only saves search

time but also improves the overall efficiency of the
 $X_{i,j}(t) = \frac{1}{3}[X_{r1}(t) + X_{r2}(t) + X_{r3}(t) + le'vy]$ (

$$
X_{i,j}(t) = \frac{1}{3} [X_{r1}(t) + X_{r2}(t) + X_{r3}(t) + le'vy] \tag{17}
$$

a. But also improves the overall efficiency of
 A. $A_{i,j}(t) = \frac{1}{3} [X_{r1}(t) + X_{r2}(t) + X_{r3}(t) + le'vy]$ (1)

there Lévy is a D-dimensional vector generated by

there Lévy is a D-dimensional vector generated by
 A. Benchmark $X_{i,j}(t) = \frac{1}{3}[X_{r1}(t) + X_{r2}(t) + X_{r3}(t) + le'vy]$ (17) To compare the HGSO and

unlitative analysis of the

convergence characteristics und the composite function

Lévy flight operator, rr_1 , rr_2 and rr_3 are three unequa $X_{i,j}(t) = \frac{1}{3}[X_{r1}(t) + X_{r2}(t) + X_{r3}(t) + le'vy]$ (17) unditative analysis of the HGSO and
convergence characteristics users of the composite function
and the composite function surface that the composite function
and the com $A_{i,j}(t) = \frac{1}{3} [A_{m1}(t) + A_{m2}(t) + A_{m3}(t) + te^{ij}]$ qualitative analysis
convergence character
and the composite function suite. Popula
Lévy flight operator, rr_1 , rr_2 and rr_3 are three unequal
performance of optin
andom Where Lévy is a D-dimensional vector generated by the

Lévy flight operator, rr_1 , rr_2 and rr_3 are three unequal

Lévy flight operator, rr_1 , rr_2 and rr_3 are three unequal

The CEC of optimizary and mumbers.

IV Where Lévy is a D-dimensional vector generated by the

Lévy flight operator, rr_1 , rr_2 and rr_3 are three unequal

performance of optimization

random numbers.

IV. RESULTS OF EXPERIMENT AND STATISTICAL ANALYSIS

4. B where Levy is a D-dimensional vector generated by the

Lévy flight operator, rr_1 , rr_2 and rr_3 are three unequal

algorithm's ability to

random numbers.

IV. RESULTS OF EXPERIMENT AND STATISTICAL ANALYSIS

IV. RESUL Levy flight operator, rr_1 , rr_2 and rr_3 are three unequal pro-

random numbers.

IV. RESULTS OF EXPERIMENT AND STATISTICAL ANALYSIS quered to verify and evaluate the performance of E_HGSO and

its comparison algorith *B. Sensitivity analysis of E_HGSO*
 B. Sensitivity and evaluate the performance of E_HGSO and
 B. Sensity and evaluate the performance of E_HGSO and

comparison algorithms. Different types of functions can

evaluate From the description of the E_HGSO, *α* and *β* affect both

this group and between-group search. In this space, CEC2017 benchmark functions [41] are

duo verify and evaluate the performance of E_HGSO and

comparison algo *A. Benchmark functions*

In this paper, CEC2017 benchmark functions [41] are

used to verify and evaluate the performance of E_HGSO and

its comparison algorithms. Different types of functions can

effectively check the

population diversity in the algorithm, and the algorithm
tends to fall into a local optimum. For this disadvantage, this
paper designs a new prey encircling formula that introduces
two stochastic gases, adding diversity a tends to fall into a local optimum. For this disadvantage, this
paper designs a new prey encircling formula that introduces
two stochastic gases, adding diversity and randomness to the
search, as shown in equation (16).
paper designs a new prey encircling formula that introduces
two stochastic gases, adding diversity and randomness to the
search, as shown in equation (16).
 $(2\pi r) \gamma \times X_{best}(t) - (1 + S_{i,j}(t) \times X_{r/2}(t))]$ (16)
the sensitivity of t two stochastic gases, adding diversity and randomness to the
search, as shown in equation (16).
 $2\pi r \gamma \gamma \times X_{best}(t) - (1 + S_{i,j}(t) \times X_{r/2}(t))]$ (16)
the sensitivity of these two parameters of E_HGSO is
analysed. In performing the search, as shown in equation (16).
 $(2\pi r)\gamma \times X_{best}(t) - (1 + S_{i,j}(t) \times X_{r/2}(t))]$ (16)

the sensitivity of these two parameters of E_HGSO is

analysed. In performing the sensitivity analysis, we select

different types of functi $(2\pi r) \gamma \times X_{best}(t) - (1 + S_{i,j}(t) \times X_{rr2}(t))]$ (16)
the sensitivity of these two parameters of E_HGSO is
analysed. In performing the sensitivity analysis, we select
different types of functions from CEC2017 as evaluation
metrics $(2\pi r)\gamma \times X_{best}(t) - (1 + S_{i,j}(t) \times X_{rr2}(t))]$
the sensitivity of these two parameters of E_H(
analysed. In performing the sensitivity analysis, we
different types of functions from CEC2017 as eva
metrics and run the algorithm sev r) $\gamma \times X_{best}(t) - (1 + S_{i,j}(t) \times X_{rr2}(t))]$ (16)

E sensitivity of these two parameters of E_HGSO is

alysed. In performing the sensitivity analysis, we select

fferent types of functions from CEC2017 as evaluation

trics and ru performance of E_HGSO under the Values of analysed.

the sensitivity of these two parameters of E_HGSO is

analysed. In performing the sensitivity analysis, we select

different types of functions from CEC2017 as evaluati the sensitivity of these two parameters of *E_HGSO* is
analysed. In performing the sensitivity analysis, we select
different types of functions from CEC2017 as evaluation
metrics and run the algorithm several times with d the sensitivity of these two parameters of E_HGSO is
analysed. In performing the sensitivity analysis, we select
different types of functions from CEC2017 as evaluation
metrics and run the algorithm several times with dif *E.* sensitivity of these two parameters of E_HGSO is alysed. In performing the sensitivity analysis, we select fferent types of functions from CEC2017 as evaluation etrics and run the algorithm several times with differe fferent types of functions from CEC2017 as evaluation
trics and run the algorithm several times with different
rameter combinations. The combination of α and β
rameters with the best overall performance was selected

E_HGSO

To compare the HGSO and E_HGSO, we will perform a
qualitative analysis of their population diversity and E HGSO
 $E = HGSO$
 $E = HGSO$
 $E = HGSO$

To compare the HGSO and

convergence characteristics used

there Lévy is a D-dimensional vector generated by the

there Lévy is a D-dimensional vector generated by the

there inciton sub metrics and run the algorithm several times with different
parameter combinations. The combination of α and β
parameters with the best overall performance was selected
as the initial parameters of E_HGSO. This metho parameter combinations. The combination of α and β
parameters with the best overall performance was selected
as the initial parameters of E_HGSO. This method is often
used in many studies.
From Fig.1, it can be seen parameters with the best overall performance was selected
as the initial parameters of E_HGSO. This method is often
used in many studies.
From Fig.1, it can be seen that the comprehensive
performance of E_HGSO under the P as the initial parameters of E_HGSO. This method is often
used in many studies.
From Fig.1, it can be seen that the comprehensive
performance of E_HGSO under the P31 parameter
combination is the best. Therefore, the value used in many studies.

From Fig.1, it can be seen that the comprehensive

performance of E_HGSO under the P31 parameter

combination is the best. Therefore, the values of α and β in

this paper are set to 4 and 0.4, From Fig.1, it can be seen that the comprehensive
performance of E_HGSO under the P31 parameter
combination is the best. Therefore, the values of α and β in
this paper are set to 4 and 0.4, respectively.
C. Qualitat performance of E_HGSO under the P31 parameter
combination is the best. Therefore, the values of α and β in
this paper are set to 4 and 0.4, respectively.
C. Qualitative comparison between HGSO and
E_HGSO
To co combination is the best. Therefore, the values of α and β in
this paper are set to 4 and 0.4, respectively.
C. Qualitative comparison between HGSO and
E_HGSO
To compare the HGSO and E_HGSO, we will perform a
qualita of these two parameters of E_HGSO is
forming the sensitivity analysis, we select
of functions from CEC2017 as evaluation
the algorithm several times with different
intations. The combination of α and β
the best over ensitivity of these two parameters of E_HGSO is
estal. In performing the sensitivity analysis, we select
ent types of functions from CEC2017 as evaluation
cs and run the algorithm several times with different
er combinati To compare the HGSO and E_HGSO, we will perform a
qualitative analysis of their population diversity and
convergence characteristics using the unimodal function f_3
and the composite function f_{10} from the CEC2017 te qualitative analysis of their population diversity and
convergence characteristics using the unimodal function f_3
and the composite function f_{10} from the CEC2017 test
function suite. Population diversity is a cruci on diversity and
imodal function f_3
the CEC2017 test
rucial factor in the
as it reflects the
space and avoid
diversity can be
 f) – X^g ||) (18)
tion, $X_i(t)$ denotes
 g denotes the best
on are defined as: convergence characteristics using the unimodal function j_3
and the composite function f_{10} from the CEC2017 test
function suite. Population diversity is a crucial factor in the
performance of optimization algorithms d the composite function f_{10} from the CEC2017 test
nction suite. Population diversity is a crucial factor in the
formance of optimization algorithms, as it reflects the
gorithm's ability to explore the search space an it can be seen that the comprehensive
f E-HGSO under the P31 parameter
the best. Therefore, the values of α and β in
t to 4 and 0.4, respectively.
we *comparison between HGSO and*
he HGSO and E_HGSO, we will perform HGSO under the P31 parameter

st. Therefore, the values of α and β in

and 0.4, respectively.

parison between HGSO and

SSO and E_HGSO, we will perform a

of their population diversity and

of their population dive the cost: network, the valuate of the damage of the to 4 and 0.4, respectively.
 ie comparison between HGSO and
 ie From Fig.1, it can be seen that the comprehensive

frommate of E_HGSO under the P31 parameter

fromation is the best. Therefore, the values of *a* and *f* in

is paper are set to 4 and 0.4, respectively.
 E_HGSO
 D co *dis* is paper are set to 4 and 0.4, respectively.
 dis paper are set to 4 and 0.4, respectively.
 C. Qualitative comparison between HGSO and
 E_HGSO
 C. Qualitative comparison between HGSO and
 d d E -HGSO
 sized in many studies.

From Fig.1, it can be seen that the comprehensive

From Fig.1, it can be seen that the comprehensive

corpoformance of E_HGSO under the P31 parameter

combination is the best. Therefore, the values

$$
Diversity(t) = \frac{1}{N}sqrt(\sum_{i=1}^{N} ||X_i(t) - X^g||) \quad (18)
$$

$$
\begin{cases}\nExploration(t) = \frac{div(t)}{\max(div)} \times 100 \\
Explosition(t) = \left| \frac{div(t) - \max(div)}{\max(div)} \right| \times 100\n\end{cases} (19)
$$

Engineering Letters Engineering Eccuers

Example 1
TABLE I
SUSED FOR PARAMETER SELECTION
 $f(x)$
 f_1 **Engineering Letters**

TABLE I

DIMENSION OF FUNCTIONS USED FOR PARAMETER SELECTION

Type *f*(*x*) Dimension
 *f*₁ 20

all functions *f*₁ **Engineering Letters**

TABLE I

DIMENSION OF FUNCTIONS USED FOR PARAMETER SELECTION

Type
 $f(x)$ Dimension

Unimodal functions
 f_1 20
 f_2 10

multimodal functions
 f_3 20
 f_4 10 Engineering Le

TABLE I

DIMENSION OF FUNCTIONS USED FOR PA

Type

Unimodal functions

multimodal functions

Utchesid functions f_2 10 *f*³ 20 *f⁴* 10 *f⁵* 10 TABLE I

Type

Type

Inimodal functions

ultimodal functions

Hybrid functions

Hybrid functions *f⁶* 20 *f⁷* 20 *f⁸* 20 Type
Unimodal functions
multimodal functions
Hybrid functions
Composition functions
TARI F II *f⁹* 10 *f*₁₀ 10 *f*¹¹ 20 *f¹²* 20 f_s
 f_s
 f_s
 f_s
 f_s
 f_s
 f_0
 f_{10}
 f_{11}
 f_{12}

TABLE II

TER COMBINATION OF E_HGSO

TER COMBINATION OF E_HGSO ms f_7
 f_8 20
 f_9 10

tions f_{10} 10
 f_{11} 20
 f_{12} 20

TABLE II

DIFFERENT PARAMETER COMBINATION OF E_HGSO

Different parameter combinations

3

4

5

6

7

8 $\begin{array}{c|c}\n & f_3 \\
f_6 \\
f_7 \\
f_8 \\
f_9\n\end{array}$
 $\begin{array}{c|c}\n & f_9 \\
 & f_{10} \\
 & f_{11} \\
 & f_{12}\n\end{array}$

TABLE II

INT PARAMETER COMBINATION OF E_HGSO

Different parameter combinations

3

4

5

6

7

P3

P4

P5

P6

P7 *From the discretions*
 g g
 g fg
 g 20
 *g***
** *g***
** *g***
** *g***
** *g***

EXECU**
 EXECU
 EXECU

	TABLE I		
		I OF FUNCTIONS USED FOR PARAMETER SELF	

0.7 1934 1950 1286 1191 1067 913 1105 993 1164

0.8 1845 1794 1204 1068 985 1229 1127 1187 1115 168

1822 1719 1487 1487 1488 1374 1487 1115 1487 1289 1374 1487 1487 1

1 2 3 4 5 6 7 8 9 1

1 12 12 1187 1198 1487 1487 148 **1794** 1204 1068 985 1229 1127 1187 1115
 1898 1845 1794 1204 1068 985 1229 1127 1187 1115
 1898 1922 1719 1487 1487 1487 1289 1374 1487 1289 1374 1487 1289 1374 1487 1289 1374 1487 1289 1374 1487 1289 1374 1487 1289 0.8 1845 1794 1204 1068 985 1229 1127 1187 1115

0.9 1922 1719 1487 1477 1488 1367 1229 1374 1487

1229 1374 **1922** 1719 1487 1487 1487 1488 1367 1289 1374 1489 1374 1483 1374 1483 1374 1483 1374 1483 14 2 3 4 5 6 7 8 Fig.1. The sensitivity analysis results of E_HGSO for different types of The observations made from Fig.2 and 3 ^{0.9} ¹⁹²² ¹⁷¹⁹ ¹⁴⁸⁷ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹

Fig.1. The sensitivity analysis results of E_HGSO for different types of fun

The observations made from Fig.2 and 3 highlight notable more dominant, which co

differences between the

accuracy. Based on in-depth analysis of the convergence
accuracy. Based on in-depth analysis of the convergence
accuracy. Based on in-depth analysis of the convergence
accuracy. Based on in-depth analysis of the convergenc ²⁶⁰

³⁶⁰

³⁶⁷

¹¹⁰⁵

¹¹⁰⁵

¹¹⁰⁶

¹¹⁰⁷

¹¹⁸⁷

¹¹¹⁵

¹⁰⁰⁰

¹⁰⁰⁰
 913 1105 993 1164

1229 1127 1187 1115

1367 1289 1374 1487 1115

6 7 8 9

HGSO for different types of function

more dominant, which contributes to improved convergence

accuracy. Based on in-depth analysis of the converg 913 1105 993 1164

1229 1127 1187 1115

1367 1289 1374 1487

6 7 8 9

HGSO for different types of function

more dominant, which contributes to improved convergence

accuracy. Based on in-depth analysis of the convergence 1229 1127 1187 1115

1387 1289 1374 1487 1115

6 7 8 9 1600

HGSO for different types of function

1600

16 1229 1127 1187 1115

1367 1289 1374 1487 1115

6 7 8 9

HGSO for different types of function

more dominant, which contributes to improved convergence

accuracy. Based on in-depth analysis of the convergence

curves, we f 1367 1289 1374 1487 160

6 7 8 9

HGSO for different types of function

more dominant, which contributes to improved convergence

accuracy. Based on in-depth analysis of the convergence

curves, we found that the E_HGSO al ¹³⁶⁷ ¹²⁸⁹ ¹³⁷⁴ ¹⁴⁸⁷ **1487 1600**

6 ⁷ 8 9

HGSO for different types of function

more dominant, which contributes to improved convergence

accuracy. Based on in-depth analysis of the convergence

curves, we fou 6 7 8 9

HGSO for different types of function

more dominant, which contributes to improved convergene

accuracy. Based on in-depth analysis of the convergene

curves, we found that the E_HGSO algorithm exhibit

superior

Volume 32, Issue 10, October 2024, Pages 2023-2040

Engineering Letters Engineering Eccuers

GHGSO

E_HGSO
 E _HGSO
 p -value

The analysis of the convergence accuracy cur

that although the final outcomes are generally com

closer examination through the zoomed-in graph re

the results of the E_HGSO exhibit gr

shown

7.8276

3.2069

1.4138

1.0728e-32

D. Compare to other algorithms

To verify the performance of the E_HGSO algorithm, we

compared it with the HGSO and QHGSO algorithms, as well

as six other popular algorithms on 7.8276
3.2069
1.4138
1.0728e-32
D. Compare to other algorithms
To verify the performance of the E_HGSO algorithm, we
compared it with the HGSO and QHGSO algorithms, as well
as six other popular algorithms on the CEC2017 3.2069

1.4138

1.0728e-32

D. Compare to other algorithms

To verify the performance of the E_HGSO algorithm, we

compared it with the HGSO and QHGSO algorithms, as well

as six other popular algorithms on the CEC2017 ben

					Engineering Letters					
					TABLE IV					
							RESULTS OF COMPARING ALGORITHMS ON THE CEC2017 BENCHMARK FUNCTION (D=50)			
f(x)	Index	TS22	HBA	FDA	AHA	SO	BWO	HGSO	QHGSO	E HGSO
f_I	Mean	5.0467E+07	4.0720E+06	1.3641E+09	1.9665E+05	8.9469E+05	$1.0045E+11$	4.2407E+10	4.3082E+03	3.8899E+03
	Std	1.3110E+07	2.3629E+06	5.3791E+08	2.6273E+05	1.1299E+06	3.8826E+09	7.1478E+09	$6.3049E+03$	3.5388E+03
	Best	3.1725E+07	1.5259E+06	5.7839E+08	4.4219E+04	4.0069E+04	9.1458E+10	2.7898E+10	$1.0051E+02$	5.6110E+02
	Rank	6	5	τ	3	$\overline{4}$	9	8	2	1
fз	Mean	$1.0903E + 05$	1.2964E+05	6.7132E+04	3.8944E+04	1.2831E+05	1.9604E+05	1.4848E+05	4.3568E+04	4.4604E+04
	Std	1.3495E+04	$1.6664E + 04$	1.3571E+04	8.9288E+03	1.2966E+04	1.7387E+04	8.2908E+03	$1.1641E+04$	$1.1351E+04$
	Best	8.2552E+04	$1.0461E + 05$	3.9045E+04	2.1757E+04	9.6936E+04	1.6306E+05	1.2890E+05	2.5138E+04	2.6585E+04
	Rank	5	7	4	1	6	9	8	2	3
f4	Mean	5.7336E+02	5.5927E+02	6.7770E+02	5.5229E+02	5.6634E+02	2.9846E+04	8.9138E+03	5.2109E+02	5.0436E+02
	Std	2.2978E+01	5.1383E+01	4.7657E+01	5.1601E+01	5.2665E+01	2.4544E+03	1.9489E+03	3.7593E+01	5.4080E+01
	Best	5.0061E+02	4.7269E+02	5.7918E+02	4.4995E+02	4.2917E+02	2.6155E+04	5.5490E+03	4.7525E+02	4.2277E+02
	Rank	6	$\overline{4}$	7	3	5	9	8	$\mathfrak{2}$	1
f5	Mean	8.0126E+02	7.1736E+02	8.0796E+02	7.9673E+02	6.3588E+02	$1.1693E+03$	$1.0697E + 03$	6.3275E+02	5.5655E+02
	Std	2.7971E+01	3.0554E+01	5.4872E+01	3.1221E+01	2.0849E+01	2.2951E+01	2.1705E+01	5.6397E+01	1.4449E+01
	Best	7.3971E+02	6.4211E+02	7.0205E+02	7.3979E+02	5.7611E+02	1.1064E+03	$1.0172E + 03$	5.9651E+02	5.3283E+02
	Rank	6	$\overline{4}$	7	5	3	9	8	2	1
f6	Mean	6.2790E+02 6.5889E+00	$6.1063E+02$	6.6336E+02 5.7539E+00	6.1031E+02	6.0578E+02	6.9883E+02	6.8211E+02 6.7293E+00	6.0069E+02	$6.0007E + 02$
	Std		$6.5621E+00$		9.9865E+00	3.1244E+00	3.3280E+00		5.7897E-01	1.1680E-01
	Best	6.1620E+02	$6.0124E+02$	6.5001E+02	$6.0044E + 02$	6.0127E+02	6.8612E+02 9	6.6606E+02	$6.0016E+02$	$6.0001E+02$
	Rank	6 1.1945E+03	5 1.0522E+03	τ 1.1964E+03	4 1.2991E+03	3 9.0583E+02	1.9156E+03	8 1.7023E+03	2 9.3761E+02	1 8.0530E+02
f7	Mean	5.6633E+01	5.6900E+01	7.0695E+01	1.3064E+02	3.6210E+01	4.5012E+01	9.4896E+01	6.4798E+01	1.2994E+01
	Std	1.0868E+03	9.8468E+02	1.0877E+03	1.1607E+03	8.4510E+02	1.8338E+03	1.4963E+03	8.4211E+02	7.8365E+02
	Best Rank	5	$\overline{4}$	6	7	\overline{c}	9	8	3	1
	Mean	$1.1237E + 03$	$1.0441E+03$	1.1086E+03	1.1267E+03	9.4128E+02	1.4837E+03	1.4109E+03	9.3797E+02	8.5976E+02
f8	Std	2.9783E+01	6.0920E+01	4.9144E+01	3.9253E+01	1.9572E+01	2.4079E+01	2.2455E+01	2.5914E+01	$1.1804E + 01$
		1.0718E+03	9.5292E+02	1.0348E+03	1.0516E+03	8.9883E+02	1.4228E+03	1.3630E+03	9.0008E+02	8.3781E+02
	Best Rank	6	4	5	τ	3	9	8	2	1
		1.5959E+04	9.5070E+03	1.0826E+04	1.0608E+04	1.9005E+03	3.6806E+04	2.8414E+04	1.3676E+03	$9.1268E + 02$
f9.	Mean Std	$1.8104E + 03$	$3.2895E+03$	$4.0149E + 03$	$2.4563E+03$	6.8929E+02	$2.0277E + 03$	$2.6945E+03$	5.1135E+02	1.5790E+01
	Best	$1.1115E + 04$	$4.5223E+03$	$5.9037E + 03$	$6.1102E + 03$	1.3813E+03	$3.1611E+04$	2.4197E+04	9.8130E+02	$9.0054E + 02$
	Rank	7	$\overline{4}$	6	5	$\overline{3}$	9	8	$\overline{2}$	$\mathbf{1}$
f_{10}	Mean	7.2256E+03	7.4491E+03	$9.4600E + 03$	$6.2099E+03$	5.4231E+03	1.4494E+04	$1.3883E + 04$	$1.3844E+04$	$6.7160E + 03$
	Std	5.9467E+02	2.4416E+03	8.5528E+02	8.7344E+02	$1.6821E + 03$	4.4110E+02	5.3178E+02	7.5078E+02	$1.0808E + 03$
	Best	$6.1812E+03$	5.4022E+03	7.7380E+03	$5.0095E + 03$	$4.0029E+03$	1.3116E+04	$1.2337E + 04$	1.1158E+04	$3.9975E + 03$
	Rank	$\overline{4}$	5	6	2	\blacksquare	9	8	7	3
f_{II}	Mean	$1.6119E+03$	$1.4165E+03$	$1.5641E+03$	$1.2671E + 03$	1.3785E+03	$2.0002E + 04$	$7.1146E + 03$	$1.1948E + 03$	1.1717E+03
	Std	$1.9972E+02$	7.6492E+01	$1.1658E+02$	$4.1564E + 01$	1.0099E+02	$2.1222E+03$	$1.1032E + 03$	$4.6367E + 01$	$2.4690E+01$
	Best	$1.3658E + 03$	$1.2991E+03$	$1.3134E+03$	$1.2102E + 03$	$1.2314E + 03$	1.4481E+04	5.1589E+03	$1.1514E+03$	$1.1352E+03$
	Rank	$\overline{7}$	$5\overline{)}$	6	$\overline{3}$	$\overline{4}$	9	8	$\overline{2}$	\blacksquare
f_{12}	Mean	1.6116E+07	7.5670E+06	$4.6460E+07$	4.6598E+06	4.1380E+06	$5.1212E+10$	$1.3160E+10$	$1.4403E + 06$	$3.2523E + 06$
	Std	$6.1552E + 06$	$4.6226E + 06$	$2.0397E+07$	$2.0030E + 06$	2.6387E+06	8.2247E+09	$3.7722E + 09$	$9.0879E + 05$	1.5757E+06
	Best	$5.0264E + 06$	2.2004E+06	1.3216E+07	$1.3912E + 06$	1.4595E+06	$3.1126E+10$	$9.0912E + 09$	$4.5131E+05$	$1.0010E + 06$
	Rank	6	5	7	$\overline{4}$	$\overline{3}$	9	8	$\overline{1}$	2
f_{13}	Mean	2.5835E+04	2.8813E+04	$4.6295E+04$	1.0763E+04	$3.0548E + 04$	$2.8835E+10$	3.2579E+09	$4.9576E+03$	5.7924E+03
	Std	$6.5788E + 03$	2.2694E+04	2.8280E+04	1.0165E+04	$2.3626E + 04$	$6.0997E+09$	7.9992E+08	$4.3371E+03$	$2.5089E + 03$
	Best	$1.4169E + 04$	3.7233E+03	1.4894E+04	$2.5306E+03$	8.2222E+03	$1.3706E+10$	$1.8047E + 09$	$1.4265E+03$	$3.2132E + 03$
	Rank	4	5	7	$\mathbf{3}$	$6\overline{6}$	9	8	\blacksquare	2
f_{14}	Mean	8.4709E+05	1.4273E+05	$6.3328E+04$	1.3600E+05	6.3258E+04	$3.2999E+07$	4.4556E+06	8.9367E+04	9.2519E+04
	Std	5.3562E+05	8.6058E+04	$6.1835E+04$	1.0280E+05	5.5343E+04	1.4235E+07	$1.1044E + 06$	$4.6108E + 04$	6.3578E+04
	Best	$4.2088E + 04$	2.7848E+04	$3.0987E + 03$	7.0458E+03	$5.0904E + 03$	$1.0471E+07$	$2.4029E + 06$	$2.1208E + 04$	1.3495E+04
	Rank	$7\overline{ }$	6	2	5	\blacksquare	9	8	3	4
f_{15}	Mean	8.3284E+03	$1.6451E+04$	$1.2670E + 04$	1.3815E+04	$1.0058E + 04$	4.5098E+09	$4.4602E + 08$	$5.3096E+03$	7.7054E+03
	Std	4.5195E+03	1.5976E+04	$6.3548E+03$	$6.4991E+03$	5.6581E+03	$1.0091E + 09$	$1.6977E + 08$	$4.2685E+03$	$3.9065E+03$
	Best	$2.8049E+03$	2.9758E+03	$2.7942E+03$	2.1588E+03	3.7998E+03	2.8857E+09	$1.6782E + 08$	$1.5836E+03$	$2.0484E+03$
	Rank	$\mathbf{3}$	$7\overline{ }$	5	6	$\overline{4}$	9	8	-1	2
f_{16}	Mean	$3.1906E + 03$	3.8253E+03	$3.5006E+03$	$3.2990E+03$	2.8448E+03	7.9349E+03	$5.5097E+03$	$2.9038E + 03$	$2.6354E+03$
	Std	3.1995E+02	$1.0916E + 03$	$4.7662E+02$	$3.6932E+02$	$2.6655E+02$	5.5200E+02	$1.9917E+02$	$6.3660E+02$	$3.6722E+02$
						2.3230E+03 2.6676E+03 2.4691E+03	$6.1835E+03$	$4.8928E + 03$	$2.0434E + 03$	$2.1466E+03$

Volume 32, Issue 10, October 2024, Pages 2023-2040

						Engineering Letters				
						TABLE V				
							RESULTS OF COMPARING ALGORITHMS ON THE CEC2017 BENCHMARK FUNCTION (D=100)			
f(x)	Index	TS22	HBA	FDA	AHA	_{SO}	BWO	HGSO	QHGSO	E HGSO
f_I	Mean	1.7726E+09	3.5173E+09	2.2732E+10	2.4507E+08	1.2680E+07	2.6722E+11	$1.6462E+11$	5.3570E+04	3.9760E+04
	Std	2.1151E+08	1.7941E+09	3.8859E+09	1.0235E+09	7.4599E+06	6.3959E+09	1.7326E+10	1.2800E+05	1.1985E+04
	Best	1.3219E+09	1.1495E+09	$1.6677E+10$	2.1467E+07	3.6474E+06	2.4629E+11	1.2459E+11	2.9385E+03	1.9781E+04
	Rank	5	6	τ	4	3	9	8	\overline{c}	1
\int 3	Mean	3.0394E+05	4.0491E+05	2.5760E+05	1.9383E+05	3.1806E+05	4.5509E+05	3.2674E+05	3.3068E+05	3.3940E+05
	Std	1.3798E+04 2.7413E+05	5.6939E+04 3.2543E+05	2.8372E+04 2.0468E+05	1.5861E+04 1.5905E+05	2.1759E+04 2.2964E+05	1.4224E+05 3.4811E+05	1.3648E+04 2.9964E+05	3.7037E+04 2.6598E+05	4.3430E+04 2.2158E+05
	Best Rank	3	8	$\overline{2}$	1	4	9	5	6	7
f_4	Mean	1.0839E+03	1.2651E+03	2.2510E+03	$1.0215E + 03$	7.5159E+02	1.0895E+05	3.2301E+04	7.3367E+02	6.9432E+02
	Std	4.6361E+01	1.1842E+02	4.1669E+02	9.2692E+01	5.4313E+01	7.6207E+03	6.4003E+03	4.3995E+01	5.1198E+01
	Best	9.7748E+02	$1.0201E+03$	1.4717E+03	8.7738E+02	6.8254E+02	8.9847E+04	1.9248E+04	6.4728E+02	5.5317E+02
	Rank	5	6	7	4	3	9	8	$\mathfrak{2}$	1
f5	Mean	1.4484E+03	1.2212E+03	1.3723E+03	1.3094E+03	8.3998E+02	2.1507E+03	1.8997E+03	9.7710E+02	6.7716E+02
	Std	4.7078E+01	5.8395E+01	1.0722E+02	$6.2002E+01$	3.4476E+01	2.9606E+01	4.3962E+01	1.2702E+02	3.0084E+01
	Best	1.3085E+03	1.1248E+03	1.1912E+03	1.1551E+03	7.5311E+02	2.0824E+03	1.8102E+03	8.0335E+02	$6.0649E+02$
	Rank	τ	4	6	5	\overline{c}	9	8	3	1
f6	Mean	6.5688E+02	6.3517E+02	6.7298E+02	6.2679E+02	6.1938E+02	7.1548E+02	6.9998E+02	6.0755E+02	$6.0021E+02$
	Std	4.4501E+00	7.4057E+00	4.5269E+00	9.6939E+00	3.6834E+00	2.5224E+00	3.5140E+00	1.7970E+00	2.4678E-01
	Best	6.4716E+02	$6.2015E+02$	6.6298E+02	$6.1012E + 02$	6.1099E+02	7.1099E+02	6.9066E+02	6.0353E+02	$6.0006E + 02$
	Rank	6	5	7	4	3	9	8	2	1
f_7	Mean	2.6060E+03	2.2256E+03	2.5479E+03	$2.6046E + 03$	1.2477E+03	3.9613E+03	3.4275E+03	1.4678E+03	9.8848E+02
	Std	1.3071E+02	2.1272E+02	1.8786E+02	3.3353E+02	6.3119E+01	6.4586E+01	1.7519E+02	$1.1702E+02$	3.1311E+01
	Best	2.4371E+03	1.8074E+03	2.1711E+03	2.0511E+03	1.1732E+03	3.8064E+03	3.0191E+03	1.1790E+03	9.1796E+02
	Rank	τ	4	5	6	\overline{c}	9	8	3	1
f8	Mean	1.8343E+03	1.5253E+03	1.7015E+03	1.6966E+03	1.1408E+03	2.6506E+03	2.2970E+03	1.2690E+03	9.7842E+02
	Std	5.4774E+01	7.5541E+01	1.0187E+02	1.0583E+02	3.7740E+01	4.3042E+01	5.3760E+01	1.2094E+02	3.5206E+01
	Best	$1.6494E+03$	1.4216E+03	1.4869E+03	1.4809E+03	1.0692E+03	2.5130E+03	2.1761E+03	$1.1044E+03$	9.2141E+02
	Rank	7	4	6	5	2	9	8	3	1
f9	Mean	4.8013E+04	5.2471E+04	4.1744E+04	2.4169E+04	7.0573E+03	8.4510E+04	7.1145E+04	1.8151E+04	$1.0400E + 03$
	Std	$2.2842E+03$	7.0270E+03	$6.3714E+03$	$9.9671E+02$	1.9728E+03	3.5847E+03	$4.2620E + 03$	$1.2408E + 04$	$1.1433E+02$
	Best	4.4275E+04	3.8119E+04	2.5576E+04	2.1215E+04	4.7179E+03	7.7406E+04	$6.2679E + 04$	5.1367E+03	9.2627E+02
	Rank	6	7	5	$\overline{4}$	2	9	8	3	1
f_{10}	Mean	1.8675E+04	2.4699E+04	2.1400E+04 $1.2156E + 03$	1.4678E+04	2.6690E+04	3.3222E+04	2.8846E+04	$3.1308E + 04$	$1.3945E+04$
	Std Best	$9.6106E + 02$ $1.7126E + 04$	4.5190E+03 $1.6571E+04$	1.8908E+04	1.5798E+03 $1.0915E+04$	2.7706E+03 2.2147E+04	6.7858E+02 3.1759E+04	$1.0260E + 03$ $2.7002E + 04$	5.6450E+02 $3.0306E + 04$	$1.6036E + 03$ $1.0113E + 04$
	Rank	3	5	$\overline{4}$	$\overline{2}$	6	9	$7\overline{ }$	8	1
f_{II}	Mean	$2.5026E + 04$	$4.6736E + 04$	3.2442E+04	2.8238E+04	3.0672E+04	$4.6012E + 05$	1.3934E+05	7.8204E+03	$3.0208E + 03$
	Std	$6.5551E+03$	9.5768E+03	$7.2024E + 03$	$1.1408E + 04$	7.8230E+03	1.4909E+05	1.2970E+04	$4.5285E+03$	5.3217E+02
	Best	$1.2777E + 04$	3.5583E+04	$2.1162E + 04$	1.1397E+04	1.5406E+04	$3.1723E + 05$	$1.0192E + 05$	$3.1920E+03$	$2.2823E+03$
	Rank	3	τ	6	$\overline{4}$	5 ⁵	9	8	$\overline{2}$	$\mathbf{1}$
f_{12}	Mean	3.2149E+08	$2.2163E + 08$	1.7624E+09	6.3639E+07	$9.6005E + 07$	2.1173E+11	$6.7385E+10$	1.4993E+07	2.2154E+07
	Std	7.5053E+07	$5.2044E+07$	$4.7361E + 08$	$3.3909E+07$	4.2567E+07	$1.1253E+10$	1.4989E+10	5.4846E+06	7.9968E+06
	Best	$2.1656E + 08$	$1.3043E + 08$	$1.0374E + 09$	2.0765E+07	2.2066E+07	$1.9005E+11$	$3.3262E+10$	4.1786E+06	$1.0128E + 07$
	Rank	6	5	7	$\mathbf{3}$	$\overline{4}$	9	8	\blacksquare	2
f_{13}	Mean	8.5973E+05	$1.0463E + 05$	$1.1096E+07$	3.7974E+04	$6.6382E+04$	$4.8257E+10$	$9.9903E + 09$	$5.4165E+03$	1.2775E+04
	Std	$2.5913E+05$	$3.3862E + 05$	8.7010E+06	$2.4206E + 04$	6.5433E+04	4.3388E+09	$2.8021E+09$	3.7229E+03	$2.9283E+03$
	Best	4.8839E+05	$6.6599E+03$	1.3589E+06	$9.0915E+03$	$2.0203E + 04$	$3.4646E+10$	5.2612E+09	$1.7174E + 03$	8.4317E+03
	Rank	6	5	7	\mathfrak{Z}	$\overline{4}$	9	8	\blacksquare	2
f_{14}	Mean	$3.6613E + 06$	$2.0243E + 06$	$1.6768E + 06$	1.4545E+06	1.5570E+06	$1.0032E + 08$	$2.1829E+07$	$1.1659E + 06$	$9.6420E + 05$
	Std	8.2599E+05	7.3598E+05	9.4981E+05	$6.3300E + 05$	7.1287E+05	2.9933E+07	$4.4292E + 06$	$4.9469E+05$	$2.5516E+05$
	Best	$1.4239E + 06$	8.6491E+05	7.1055E+05	5.7804E+05	4.8115E+05	$3.6724E+07$	1.3871E+07	$5.3021E+05$	$4.6235E + 05$
	Rank	$7\overline{ }$	6	5 ⁵	$\mathbf{3}$	$\overline{4}$	9	8	2	$\mathbf{1}$
f_{15}	Mean	5.1989E+04	1.2810E+04	$1.0310E + 05$	7.5219E+03	1.9898E+04	$2.5784E+10$	2.7497E+09	$3.7161E+03$	$4.7152E + 03$
	Std	1.3390E+04	$1.1944E + 04$	5.5101E+04	5.9482E+03	2.0820E+04	$3.2482E+09$	$8.0343E + 08$	$2.9103E+03$	1.2172E+03
	Best	$2.0434E + 04$	2.7659E+03	1.9195E+04	2.1367E+03	6.4179E+03	$1.5241E+10$	$1.0984E + 09$	1.7239E+03	$3.1211E+03$
	Rank	6	$\overline{4}$	$7\overline{ }$	$\mathbf{3}$	5 ⁵	9	8	$\mathbf{1}$	$\overline{2}$
f_{16}	Mean	5.7828E+03	5.5894E+03	$6.8122E+03$	5.6335E+03	5.7068E+03	2.4343E+04	$1.3527E + 04$	7.3350E+03	$4.8470E + 03$
	Std	3.9898E+02	7.8154E+02	$4.3684E+02$	$6.2622E+02$	1.5711E+03	2.3693E+03	9.2290E+02	$2.0435E+03$	$6.0997E+02$
	Best	$4.9386E+03$	$3.9835E+03$	5.5973E+03	$4.3265E+03$	3.9297E+03		1.8888E+04 1.2046E+04	$4.3045E+03$	$3.4979E + 03$

Volume 32, Issue 10, October 2024, Pages 2023-2040

		TS22	HBA	FDA	CONTINUED TABLE V AHA	_{SO}	BWO	HGSO	QHGSO	E HGSO
f(x)	Index Rank	5	2	6	3	$\overline{4}$	9	8	τ	$\mathbf{1}$
f_{17}	Mean	$5.1413E+03$	5.3263E+03	5.6631E+03	5.1050E+03	4.4345E+03	1.1590E+07	2.1449E+04	5.6181E+03	$4.1470E + 03$
	Std	4.1836E+02	4.7711E+02	7.2421E+02	$5.1426E+02$	4.4748E+02	5.7951E+06	$6.8468E+03$	$1.1997E+03$	4.2745E+02
	Best	4.3593E+03	4.5342E+03	3.9741E+03	$4.3004E+03$	3.7082E+03	3.5977E+06	$1.0315E + 04$	$3.6412E + 03$	$3.3026E + 03$
	Rank	4	5	7	3	2	9	8	6	1
f_{18}	Mean	3.3650E+06	5.1964E+06	2.5429E+06	2.3641E+06	3.8067E+06	3.0654E+08	3.1638E+07	5.0683E+06	$1.5032E + 06$
	Std	9.3784E+05	2.4934E+06	$1.2266E+06$	1.1118E+06	$1.6241E + 06$	$1.1982E+08$	$6.7661E + 06$	2.7180E+06	$6.5392E+05$
	Best	$2.0190E + 06$	$2.6301E + 06$	5.6205E+05	$9.5083E + 05$	1.4691E+06	1.1891E+08	$1.6461E+07$	8.5633E+05	6.4898E+05
	Rank	$\overline{4}$	7	3	$\overline{2}$	5	9	8	6	1
f_{I9}	Mean	$6.7948E + 04$	7.5914E+03	5.6672E+05	6.4181E+04	2.9208E+04	2.5525E+10	2.7179E+09	$4.5156E+03$	$3.4420E + 03$
	Std	$2.6280E + 04$	5.8269E+03	3.0382E+05	2.9799E+05	3.3815E+04	2.8809E+09	8.4608E+08	2.7326E+03	9.5555E+02
	Best	1.9517E+04	2.8294E+03	$1.6119E+05$	$2.6697E+03$	$2.6824E+03$	$1.9871E+10$	$1.1205E+09$	$1.9995E+03$	2.4817E+03
	Rank	6	3	7	5	$\overline{4}$	9	8	2	1
f_{20}	Mean	5.0845E+03	5.1537E+03	5.8457E+03	5.3403E+03	5.8916E+03	8.1957E+03	7.2190E+03	7.0476E+03	4.3539E+03
	Std	3.5569E+02	7.2627E+02	5.5335E+02	5.8969E+02	$1.0532E+03$	3.1273E+02	3.5415E+02	8.4330E+02	4.5727E+02
	Best	4.2581E+03	$4.2233E+03$	5.0135E+03	$4.0012E+03$	3.9208E+03	7.3360E+03	$6.4405E+03$	$3.5074E+03$	$3.5120E + 03$
	Rank	2	3	5	4	6	9	8	7	1
	Mean	3.4825E+03	$3.0111E+03$	3.2226E+03	$3.0095E+03$	2.7252E+03	4.9805E+03	4.1528E+03	2.7529E+03	$2.4914E+03$
f_{21}	Std	1.1089E+02	$6.4004E+01$	$1.1747E+02$	$1.0591E+02$	$3.9652E + 01$	$9.2243E+01$	1.2150E+02	9.4975E+01	$2.3382E + 01$
	Best	$3.1481E + 03$	2.9124E+03	2.9688E+03	$2.8333E+03$	$2.5964E+03$	4.8466E+03	3.9085E+03	2.5447E+03	2.4459E+03
	Rank	τ	5	6	4	2	9	8	3	$\mathbf{1}$
	Mean	2.2198E+04	2.6029E+04	2.4321E+04	1.8954E+04	2.6926E+04	3.5759E+04	3.2324E+04	3.3746E+04	$1.6135E + 04$
	Std	$1.0250E + 03$	3.9443E+03	1.4889E+03	$1.8456E+03$	5.1805E+03	$5.0026E + 02$	7.5458E+02	7.8877E+02	$1.6242E + 03$
	Best	$2.0381E + 04$	$1.8461E+04$	2.1234E+04	1.4953E+04	1.3887E+04	3.4771E+04	$3.0450E + 04$	$3.1804E+04$	$1.2001E + 04$
	Rank	3	5	4	2	6	9	7	8	1
	Mean	$3.8890E + 03$	3.5714E+03	$3.7993E+03$	$3.3552E+03$	$3.3612E+03$	$6.3120E+03$	$5.8992E + 03$	$3.2211E+03$	$3.0301E + 03$
	Std	$1.0514E + 02$	$4.6237E+02$	$1.3075E+02$	7.7857E+01	7.6539E+01	2.2757E+02	$1.9533E+02$	$8.0582E + 01$	$4.6852E+01$
	Best	$3.7367E + 03$	3.3091E+03	$3.6207E + 03$	$3.1957E+03$	3.2346E+03	5.7097E+03	5.5277E+03	3.1011E+03	$2.9434E + 03$
	Rank	7	5	6	3	$\overline{4}$	9	8	2	$\mathbf{1}$
	Mean	$4.6043E+03$	5.7436E+03	$4.5666E+03$	$4.2651E+03$	$4.0243E+03$	$1.0048E + 04$	8.5517E+03	$3.6864E + 03$	3.4739E+03
	Std	$1.3620E + 02$	$2.6233E+03$	1.9387E+02	$1.2696E+02$	8.3001E+01	$6.9047E+02$	$5.7942E+02$	9.7917E+01	$6.8061E+01$
		$4.3165E+03$						7.5678E+03		
	Best Rank	6	$3.8663E+03$ τ	4.1474E+03 5	$4.0076E+03$ 4	3.8627E+03 3	8.4398E+03 9	8	$3.5423E+03$ $\overline{2}$	$3.3600E + 03$ 1
	Mean	3.7796E+03	3.9589E+03	4.8135E+03	$3.6619E + 03$	3.4806E+03	2.9258E+04	1.4307E+04	3.3751E+03	3.3422E+03
				3.8537E+02	9.1837E+01	5.9667E+01	1.4089E+03			
	Std	$6.5351E+01$ $3.6672E + 03$	$1.6883E+02$					$1.1628E + 03$ $1.1919E + 04$	$6.0355E+01$ 3.2731E+03	$5.0269E + 01$
	Best	5 ⁵	$3.7204E + 03$ 6	$4.1093E+03$ $7\overline{ }$	$3.5024E+03$ $\overline{4}$	$3.3632E + 03$ 3 ¹	2.5937E+04 9	8	2	$3.2453E + 03$ -1
	Rank			1.9250E+04						
	Mean	$6.6174E + 03$	$1.5536E + 04$		1.8556E+04	1.2427E+04	5.2073E+04	$3.6299E + 04$	$1.0164E + 04$	8.3507E+03
	Std	3.5888E+03	$9.7665E+03$	1.7691E+03 1.5960E+04	6.9410E+03	7.9055E+02	1.1669E+03	$2.5906E+03$	8.4197E+02	$9.6413E+02$ $6.9578E + 03$
	Best	$5.0745E + 03$	1.1930E+04		$4.5742E+03$	$1.0609E + 04$	$5.0036E + 04$	$3.1551E + 04$	$8.0833E + 03$	
	Rank	\blacksquare	5	$7\overline{ }$	6	$\overline{4}$	9	8	$\mathbf{3}$	2
	Mean	3.7339E+03	4.6181E+03	4.1877E+03	$3.8974E+03$	3.7520E+03	$1.3273E + 04$	8.9646E+03	$3.5951E+03$	3.5317E+03
	Std	8.2458E+01	$1.7103E+03$	2.1511E+02	$1.1643E+02$	8.5377E+01	9.4258E+02	$8.6002E + 02$	$6.9604E+01$	7.8054E+01
	Best	$3.5744E + 03$	3.5136E+03	3.7237E+03	$3.6722E+03$	$3.6040E + 03$	$1.0945E + 04$	$7.1254E + 03$	$3.4406E+03$	$3.4310E + 03$
	Rank	$\mathbf{3}$	$7\overline{ }$	6	5	$\overline{4}$	9	8	$\overline{2}$	$\mathbf{1}$
	Mean	3.8725E+03	4.3229E+03	$6.3023E+03$	$3.9012E + 03$	$3.6506E+03$	2.8698E+04	$2.0340E + 04$	$3.5100E+03$	$3.5193E+03$
	Std	$6.5058E+01$	$2.9966E+02$	7.7313E+02	$2.2291E+02$	$4.3363E+01$	$1.0727E + 03$	$2.1194E+03$	3.4814E+01	$3.0408E + 01$
	Best	$3.7453E + 03$	3.8311E+03	$5.0351E+03$	$3.6507E + 03$	3.5358E+03	$2.6477E + 04$	1.4376E+04	3.4498E+03	$3.4406E+03$
	Rank	4	6	7	5	3	9	8	$\mathbf{1}$	2
	Mean	$7.5663E + 03$	$6.8469E+03$	9.2789E+03	7.0654E+03	6.9978E+03	8.0198E+05	$2.0022E + 04$	$6.2503E+03$	$5.0244E + 03$
	Std	3.3960E+02	$3.9495E+02$	8.3390E+02	7.3917E+02	5.5059E+02	$3.2353E + 05$	3.2784E+03	$6.7028E+02$	$6.4296E+02$
	Best	$6.8225E+03$	$6.1911E+03$	7.7768E+03	$5.6073E + 03$	$5.6149E+03$	$2.1847E + 05$	1.4217E+04	$5.0007E + 03$	$3.9643E+03$
	Rank	6	$\mathbf{3}$	7	5	4	9	8	$\overline{2}$	1
	Mean	$3.0198E + 06$	$3.6023E + 05$	2.3943E+07	3.3790E+05	4.8637E+05	$4.3833E+10$	8.7692E+09	2.7390E+04	$9.9690E + 04$
	Std	$5.6612E + 05$	2.0417E+05	1.1861E+07	$2.1903E + 05$	$2.6730E + 05$	4.1187E+09	2.9267E+09	1.9346E+04	$4.0134E + 04$
	Best	$1.8714E + 06$	$1.2271E+05$	8.0270E+06	6.3376E+04	$1.5702E + 05$	$3.0248E+10$	$5.2394E+09$	8.3717E+03	4.7054E+04
	Rank	6	4	τ	3	5	9	8	1	2
	Total Rank	- 146	149	171	109	108	261	227	93	41
	Final Rank	5	6	τ	4	3	9	8	2	1

Volume 32, Issue 10, October 2024, Pages 2023-2040

				TABLE VIII	MEAN VALUES OF WILCOXON SIGNED RANK TEST ON CEC2017 BENCHMARK FUNCTIONS.				
E HGSO			50		Dimension 100				
VS	p -Value	$R+$	$R-$	$+/-/$	p -Value	$R+$	$R-$	$+/-/$	
TS22	6.82E-03	54.72	410.28	26/2/1	9.20E-06	26.66	438.34	28/0/1	
HBA	4.57E-02	122.00	343.00	24/3/2	9.33E-04	42.31	422.69	27/0/2	
FDA	6.82E-03	54.72	410.28	26/2/1	9.20E-06	26.66	438.34	28/0/1	
AHA	2.21E-02	137.86	327.14	19/5/5	3.38E-03	74.90	390.10	26/1/2	
_{SO}	$1.00E-01$	144.38	320.62	19/7/3	2.59E-03	59.17	405.83	26/1/2	
BWO	1.73E-06	0.00	465.00	29/0/0	2.49E-06	4.83	460.17	29/0/0	
HGSO	1.75E-06	1.03	463.97	29/0/0	3.23E-03	14.14	450.86	28/1/0	
OHGSO	1.51E-01	221.14	243.86	12/8/9	3.94E-02	169.62	295.38	19/5/5	
Mean Value	4.16E-02	91.98	373.02	23/3.4/2.6	6.19E-03	52.29	412.71	26.4/1/1.6	

TABLE VIII

SO 1.00E-01 144.38 320.62 19/7/3 2.59E-03

BWO 1.75E-06 0.00 465.00 29/0/0 2.49E-06

HGSO 1.75E-06 1.03 463.97 29/0/0 3.23E-03

QHGSO 1.51E-01 221.14 243.86 12/8/9 3.94E-02 1

Mean Value 4.16E-02 91.98 373.02 23/3.4/2.6 6. BWO 1.73E-06 0.00 465.00 29/0/0 2.49E-06 4.83

HGSO 1.75E-06 1.03 463.97 29/0/0 3.23E-03 14.14

QHGSO 1.51E-01 221.14 243.86 12/8/9 3.94E-02 169.62

Mean Value 4.16E-02 91.98 373.02 23/3.42.6 6.19E-03 52.29

According to t HGSO 1.75E-06 1.03 463.97 29/0/0 3.23E-03 14.14

QHGSO 1.51E-01 221.14 243.86 12/8/9 3.94E-02 169.62

Mean Value 4.16E-02 91.98 373.02 23/3.4/2.6 6.19E-03 52.29

According to the data presented in Tables IV and V, the Feat QHGSO 1.51E-01 221.14 2

Mean Value 4.16E-02 91.98 3

Theory of the data presented in Tables IV

E_HGSO demonstrated superior performand

dimension of 50, the E_HGSO achieved the b

16 out of the tested functions, and the Mean Value $4.16E-02$ 91.98 373.02 $23/3.4/2.6$ $6.19E-03$ 52.29
According to the data presented in Tables IV and V, the Feature selection is an im
HGSO demonstrated superior performance. For the classification, reg The main value of the data presented in Tables IV and V, the

E-HGSO demonstrated superior performance. For the

E-HGSO demonstrated superior performance. For the

16 out of the tested functions, and the second-best resul According to the data presented in Tables IV and V, the

E_HGSO demonstrated superior performance. For the

classification, regression, and of

dimension of 50, the E_HGSO achieved the best results in

as it helps to avoi According to the data presented in 1 ables IV and V, the

E-HGSO demonstrated superior performance. For the classification, regression, and

dimension of 50, the E-HGSO achieved the best results in as it helps to avoid the E_HOSO demonstrated superior performance. For the classistication, regression, and

dimension of 50, the E_HGSO achieved the best result in 8 and inconsistent features on n

other functions. For the dimension of 100, the

dependent of the test of comparison of 30, the E-HOSO achieved the best result in 8 at ineps to avoid the accord-best comparison of 100, the E_HGSO was combinatorical optimized the best performer in 22 functions and the se 16 out of me resident unconsolations, and the second-obset sesual in 8 and inconsistent leatures on meta-
the functions. For the dimension of 100, the E_HGSO was combinatorial optimization
the best proformer in 22 function other functions. For the dimension of 100, the E_HGSO was

the best performer in 22 functions and the second-best in 6

through methods of the E_HGSO at the higher dimension. Importantly, the

E_HGSO exhibited the best ove best performare in 22 tunctions and the second-best in 6

employed metanceusions. This indicates an even greater overall advantage

relevant features, with the aimstractions.

The EHGSO exhibited the best overall results a The E-HGSO at the higher dimensions. This matted is the higher dimension. Importantly, the the endity of high-dimension of the E-HGSO exhibited the best overall results across both employing a wide range of da problem dime of the E-HOSO at the migher dimension. Importantly, the the quality of nigh-dimensions evently are problem dimensions. A visual comparison of the above algorithms in 50 and the methods tend to the comparison of the above a E_HOSO exinoted the best overall results across both employing a wate range of data

roblems dimensions.

The much dimensions is given in Table VI. E_HGSO always these methods tend to ustiff

100 dimensions is given in Ta

proonen amensions.

A visual comparison of the above algorithms in 50 and

100 dimensions is given in Table VI. E HGSO always study, we propose a nev

significantly outperforms the other algorithms and there is

to improve A visual comparison of the above algorithms in 5 using throbens is a to the significantly outperforms the other algorithms and there is significantly improved the performance of HGSO always study, we propose a features usi 100 dimensions is given in 1able VI. E_HGSO always

singificantly outpreforms the other algorithms and three is to improve classification accur

singificantly improved the performance of HGSO. The The choice of feature sel signincantly outperforms the other algorithms and there is to improve classification

no worst result, indicating that the improved strategy has features using the HGSO.

significantly improved the performance of HGSO. The no worst result, indicating that the improved strategy has

significantly improved the performance of HGSO. The choice of feature sells

or expectific proposed strategy

in the E_HGSO algorithm is more helpful in improving signincantly improved the performance of HOSO. The the choice of reactive selections in the E_HGSO algorithm is more helpful in improving the computational resources aver
formance of HGSO in high dimensional space. genera results of comparative tests show that the proposed strategy

in the E_HGSO algorithm is more helpful in improving the

proposed strategy

proving the computational resources awe

proformance of HGSO in high dimensional sp in the E_HGSO algorithm is more nelptul in improving the

performance of HGSO in high dimensional space.

Table VII shows the results of the Friedman test for all the

algorithms. The p-values for 50 and 100 dimensions are romance of HOSO in high dimensional space.

Table VII shows the results of the Friedman test for all the exact interactions. Wrap

gorithms. The p-values for 50 and 100 dimensions are explore the feature space at

3399e-34 Table VII all p-values are found the reference interventions. Wrap

algorithms. The p-values for 50 and 100 dimensions are explore the feature space are applicant. The average rank of the Friedman

T.4399e-34 and 1.0728e-3 argoritms. Ine p-values for 50 and 100 dimensions are

7.4399e-34 and 1.0728e-32, respectively. Since the p-values feature space and

are much less than 0.05, we consider the statistical results to methods offer a balance Considerable advantage of E_HGSO algorithm in both 50-

are much statistical results of the Statistical results of the Statistical results of the Statistical results these that of the E_HGSO is 1.7241 and 1.4138, respecti and 10.03, we consider the statistical results of methods of the model train

be statistically significant. The average rank of the Friedman

be statistically significant which is better than the other compared algorithms. be statistically significant I ne average rank of the Firedman

tection winnin the model trat

test for the E_HGSO is 1.7241 and 14.4138, respectively,

which is better than the other compared algorithms. In

data set are

test for the E_HGSO is 1./241 and 1.4138, respectively, when solved
which is better than the other compared algorithms. In data set are
contrast, the mean ranks of the HGSO algorithm are 8.0000 features are
and 7.8276, res The mean ranks of the HGSO algorithm are 8.0000

Teatures are released and ranks of the HGSO algorithm. This suggests that the irrelevant features in

e. of the EHGSO algorithm. This suggests that the irrelevant features poposed enhancement strategy greatly improves the larger content. Selectir
formance of the original HGSO algorithm.
In Table VIII, all p-values are found to be less than 0.05, process that aims to fin
gegesting that the st Proformance of the original HGSO algorithm.

In Table VIII, all p-values are found to be less than 0.05,

reproformance of the Wilcoxon signed rank test demonstrate a

results of the Wilcoxon signed rank test demonstrate a In Table VIII, all p-values are found to be less than 0.05,

suggesting that the statistical results are significant. The

considerable advantage of E-HGSO algorithm in both 50-

considerable advantage of E-HGSO algorithm

SELECTION of 2N - 1.

suggesting that the statistical results are significant. The

results of the Wilcoxon signed rank test demonstrate a

considerable advantage of E_HGSO algorithm in both 50-

and 100-dimensional test functions. Thus, it can results of the Wilcoxon signed rank test demonstrate a

considerable advantage of E_HGSO algorithm in both 50-

ceatures are unselected.

and 100-dimensional test functions. Thus, it can be

concluded that E_HGSO signific considerable advantage of E-HGSO algorithm in both 50-

and 100-dimensional test functions. Thus, it can be

concluded that E-HGSO significantly outperforms the

comparison algorithms, with statistical significance.

W. T and 100-dimensional test functions. Thus, it can be

concluded that E_HGSO significantly outperforms the

comparison algorithms, with statistical significance.

V. APPLICATION OF E_HGSO FOR FEATURE

SELECTION

SELECTION
 concluded that E_HGSO significantly outperforms the
comparison algorithms, with statistical significance.
V. APPLICATION OF E_HGSO FOR FEATURE
SELECTION
Feature selection is also called Feature Subset Selection
(FS) [42].

9.20E-06 26.66 438.34 28/0/1

3.38E-03 74.90 390.10 26/1/2

2.59E-03 59.17 405.83 26/1/2

2.49E-06 4.83 460.17 29/00

3.23E-03 14.14 450.86 28/1/0

3.94E-02 169.62 295.38 19/5/5

6.19E-03 52.29 412.71 26.4/1/1.6

Feature 3.38E-03 74.90 390.10 $26/1/2$

2.59E-03 59.17 405.83 $26/1/2$

2.49E-06 4.83 460.17 $29/00$

3.23E-03 14.14 450.86 $28/1/0$

3.94E-02 169.62 295.38 19/5/5

6.19E-03 52.29 412.71 $26.4/1/1.6$

Feature selection is an im 2.59E-03 59.17 405.83 $261/2$

2.49E-06 4.83 460.17 $29/0/0$

3.23E-03 14.14 450.86 $28/1/0$

3.94E-02 169.62 295.38 19/5/5

6.19E-03 52.29 412.71 $26.4/1/1.6$

Feature selection is an important pre-processing step in
 2.49E-06 4.83 460.17 29/00
3.23E-03 14.14 450.86 28/1/0
3.94E-02 169.62 295.38 19/5/5
6 6.19E-03 52.29 412.71 26.4/1/1.6
Feature selection is an important pre-processing step in
classification, regression, and other data 3.23E-03 14.14 450.86 28/1/0
3.94E-02 169.62 295.38 19/5/5
6 6.19E-03 52.29 412.71 26.4/1/1.6
Feature selection is an important pre-processing step in
classification, regression, and other data mining applications,
as it 3.94E-02 169.62 295.38 19/5/5

6.19E-03 52.29 412.71 26.4/1/1.6

Feature selection is an important pre-processing step in

classification, regression, and other data mining applications,

as it helps to avoid the adverse $6.19E-03$ 52.29 412.71 $26.4/1/1.6$

Feature selection is an important pre-processing step in

classification, regression, and other data mining applications,

as it helps to avoid the adverse effects of noisy, misle Feature selection is an important pre-processing step in
classification, regression, and other data mining applications,
as it helps to avoid the adverse effects of noisy, misleading,
and inconsistent features on model pe Feature selection is an important pre-processing step in
classification, regression, and other data mining applications,
as it helps to avoid the adverse effects of noisy, misleading,
and inconsistent features on model per Fracture selection is an important pre-processing step
classification, regression, and other data mining applicati
as it helps to avoid the adverse effects of noisy, misleadi
and inconsistent features on model performance. issimication, regression, and other data mining applications,
it helps to avoid the adverse effects of noisy, misleading,
misloarding of inconsistent features on model performance. As a global
mohinatorial optimization pro as it neips to avoid the adverse effects of noisy, misleading,
and inconsistent features on model performance. As a global
combinatorial optimization problem, researchers have
employed metaleuristic algorithms to select th and mconsistent leatures on model performance. As a globat
combinatorial optimization problem, researchers have
employed metaheuristic algorithms to select the most
relevant features, with the aim of simplifying and improv combinatorial optimization problem, researchers have
employed metaheuristic algorithms to select the most
relevant features, with the aim of simplifying and improving
the quality of high-dimensional datasets. However, when

employed metaneuristic algorithms to select the most
relevant features, with the aim of simplifying and improving
the quality of high-dimensional datasets. However, when
employing a wide range of datasets with large featur relevant reatures, with the aim of simplifying and improving
the quality of high-dimensional datasets. However, when
employing a wide range of datasets with large feature sizes,
these methods tend to suffer from local opti the quality of mgn-dimensional datasets. However, when
employing a wide range of datasets with large feature sizes,
these methods tend to suffer from local optimization
problems due to the considerable solution space. In t employing a wide range or datasets with large reature sizes,
these methods tend to suffer from local optimization
problems due to the considerable solution space. In this
study, we propose a new dimensionality reduction ap mese mentoas tend to surier from local optimization
problems due to the considerable solution space. In this
study, we propose a new dimensionality reduction approach
to improve classification accuracy by selecting signifi bolems due to the considerable solution space. In this
idy, we propose a new dimensionality reduction approach
improve classification accuracy by selecting significant
tures using the HGSO.
The choice of feature selection study, we propose a new dimensionality reduction approach
to improve classification accuracy by selecting significant
features using the HGSO.
The choice of feature selection method depends on the
specific problem, the cha from the contraction accuracy by selecting signineant
features using the HGSO.
The choice of feature selection method depends on the
specific problem, the characteristics of the dataset, and the
computational resources ava reatures using the HOSO.
The choice of feature selection method depends on the
specific problem, the characteristics of the dataset, and the
computational resources available. Filter methods are
generally faster and simple

Ine choice of reature selection method depends on the
specific problem, the characteristics of the dataset, and the
computational resources available. Filter methods are
generally faster and simpler, but may not capture co specific problem, the characteristics of the dataset, and the computational resources available. Filter methods are complex feature interactions. Wrapper methods can effectively explore the feature invarianty features, but computational resources available. Filter methods are
generally faster and simpler, but may not capture complex
feature interactions. Wrapper methods can effectively
explore the feature space and identify the most relevant generally laster and simpler, but may not capture complex
feature interactions. Wrapper methods can effectively
explore the feature space and identify the most relevant
features, but can be computationally intensive. Embed reautre mieractions. Wrapper methods can eliectively
explore the feature space and identify the most relevant
features, but can be computationally intensive. Embedded
methods offer a balance between the two, integrating fe explore the reature space and identity the most relevant
features, but can be computationally intensive. Embedded
methods offer a balance between the two, integrating feature
selection within the model training process.
Wh reatures, but can be computationally intensive. E
methods offer a balance between the two, integratir
selection within the model training process.
When solving classification problems, not all fea
data set are relevant, an entions of the model training process.

When solving classification problems, not all features in a

When solving classification problems, not all features in a

ta set are relevant, and often only a small number of

tatur selection within the model training process.

When solving classification problems, not all features in a

data set are relevant, and often only a small number of

features are relevant and can help determine the

classifi when solving classification problems, not all reatures in a
data set are relevant, and often only a small number of
features are relevant and can help determine the
classification goal. In the era of big data, these worthl data set are relevant, and otien only a small number of

features are relevant and can help determine the

classification goal. In the era of big data, these worthless

irrelevant features present in huge datasets usually reatures are relevant and can neip determine the
classification goal. In the era of big data, these worthless
irrelevant features present in huge datasets usually take up a
subst of features is the best
solution to the abo classification goal. In the era of big data, the irrelevant features present in huge datasets usu larger content. Selecting a subset of feature solution to the above problems. Feature sprocess that aims to find a subset o elevant leatures present in nige datasets usuarly take up a
ger content. Selecting a subset of features is the best
dution to the above problems. Feature selection is a
occess that aims to find a subset of relevant feature

arger content. Selecting a stubset of leatures is the best
solution to the above problems. Feature selection is a
process that aims to find a subset of relevant features from
the original set. It can be seen that the subse

solution to the above problems. Feature selection is a
process that aims to find a subset of relevant features from
the original set. It can be seen that the subset of relevant
features contains all the selected features a process inal alms to that a subset of retevant leatures from
the original set. It can be seen that the subset of relevant
features contains all the selected features and the remaining
features are unselected.
Therefore, fo the original set. It can be seen that the subset of relevant
features contains all the selected features and the remaining
features are unselected.
Therefore, for each feature, there are two possibilities, "1"
for selected reatures contains all the selected reatures and the remaining
features are unselected.
Therefore, for each feature, there are two possibilities, "1"
for selected feature and "0" for unselected feature. The
number of featur reatures are unselected.

Therefore, for each feature, there are two possibilities, "1"

for selected feature and "0" for unselected feature. The

number of feature subsets is 2N - 1 when the feature space is

N. This prob Fraction problem and "0" for unselected feature. Then the mumber of feature and "0" for unselected feature. The number of feature subsets is $2N - 1$ when the feature space is N . This problem has long ben shown to be NPproblem.

Engineering Letters
Objective 1: Feature subset size. Based on the number of
" in the statistics set, we can get the number of currently
lected features, so the first measure is shown in Equation
: **Engineering Letters**

Objective 1: Feature subset size. Based on the number of

"1" in the statistics set, we can get the number of currently

selected features, so the first measure is shown in Equation

18: **Engineering Letters**

Objective 1: Feature subset size. Based on the number of

"1" in the statistics set, we can get the number of currently

selected features, so the first measure is shown in Equation *fitness* =

18: 18: Objective 1: Feature subset size. Based on the number of

"1" in the statistics set, we can get the number of currently

selected features, so the first measure is shown in Equation

18:
 $f_1(X) = \sum_{1}^{D} x_i$ (18)

Where $\$ Objective 1: Feature subset size. Based on the number of

"1" in the statistics set, we can get the number of currently

selected features, so the first measure is shown in Equation
 $f_1(X) = \sum_{1}^{D} x_i$ (18) Where $\Delta_R(D)$

$$
f_1(X) = \sum_{1}^{D} x_i
$$
 (18)

$$
f_2(X) = \frac{1}{n} \sum_{1}^{n} \frac{Nerr}{Nall}
$$
 (19)

"1" in the statistics set, we can get the number of curr
selected features, so the first measure is shown in Equ
18:
 $f_1(X) = \sum_{1}^{D} x_i$
 $f_2(X) = \frac{1}{n} \sum_{1}^{n} \frac{Nerr}{Nall}$
Where Nerr denotes the number of classification erro is external the first measure is shown in Equation
 $f_1(X) = \sum_{1}^{D} x_i$ (18) Where $\Delta_R(D)$ denotes the number
 $f_2(X) = \frac{1}{n} \sum_{1}^{n} \frac{Nerr}{Nall}$ (19) E_HGSO algorithm,

here Nerr denotes the number of classification errors; 18:
 $f_1(X) = \sum_{1}^{D} x_i$ (18) Where $\Delta_R(D)$ denotes the

Nearest Neighbours (KN)

denotes the number of $f_2(X) = \frac{1}{n} \sum_{1}^{n} \frac{Nerr}{Nall}$ (19) E_HGSO algorithm, |*Tz*| de

where *Nerr* denotes the number of classification e $f_1(X) = \sum_{1}^{D} x_i$ (18) Where $\Delta_R(D)$ denotes the number
 $f_2(X) = \frac{1}{n} \sum_{1}^{n} \frac{Nerr}{Nall}$ (19) E_HGSO algorithm,

Where Nerr denotes the number of classification errors; Nall contained in the curr

where Nerr denotes the $f_1(X) = \sum_{1}^{D} x_i$ (18) Where $\Delta_R(D)$ denotes the

Nearest Neighbours (KN
 $f_2(X) = \frac{1}{n} \sum_{1}^{n} \frac{Nerr}{Nall}$ (19) E_HGSO algorithms, |

Where Nerr denotes the number of classification errors; Nall

where Nerr denotes the n $f_1(X) = \sum_{1} x_i$ (18)
 $f_2(X) = \frac{1}{n} \sum_{1}^{n} \frac{Nerr}{Nall}$ (19)

Where *Nerr* denotes the number of classification errors; *Nall*

denotes the number of all classified samples. *n* denotes the

cross-validation Parameters.

T $f_2(X) = \frac{1}{n} \sum_{1}^{n} \frac{Nerr}{Nall}$
here *Nerr* denotes the number of classification ernotes the number of all classified samples. *n* de
oss-validation Parameters.
The use of simple and easy-to-implement clas
gorithms in wr

 $J_2(A) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{Nall}$ contained in the current datas

where Nerr denotes the number of classification errors; Nall

contained in the current datas

where Nerr denotes the number of all classified samples. *n* Where Nerr denotes the number of classification errors; Nall

to the classification error rate

denotes the number of all classified samples. *n* denotes the

cross-validation Parameters.

The use of simple and easy-to-im Where *Nerr* denotes the number of classification errors; *Nall* Ψ =1.

denotes the number of all classified samples. *n* denotes the

cross-validation Parameters.

The capacity of the use of simple and easy-to-impleme where *Nerr* denotes the number of classification errors; *Nall* ϵ *R. Data sets and pecons-validation Parameters.* The use of simple and easy-to-implement classification the capacity of the capacity of the use of simp denotes the number of all cassined samples. *n* denotes the

cross-validation Parameters.

The capacity of the EHG

cross-validation Parameters.

The use of simple and easy-to-implement classification

of feature selectio Cross-vantation praimeters.

The use of simple and easy-to-implement classification

and algorithms in wrapping methods can result in a good subset

on 8 standard datasets obt

of features that are also applicable to comp The use of simple and easy-to-implement classification

algorithms in wrapping methods can result in a good subset

of features that are also applicable to complex classification

of features that are also applicable to c algorithms in wrapping memots can result in a good subset
of features that are also applicable to complex classification
algorithms. Therefore, this paper introduces the *K-NN* are presented in Table IX. For
method as a c of leatures that are also applicable to complex classification

algorithms. Therefore, this paper introduces the *K-NN* are presented in Table IX. For

method as a classifice [44].
 A. Model building

from the perspecti algorithms. Interfore, this paper introduces the $A-N/N$ are presented an another and the mange [0, 1]. S

method as a classifier [44].

From the perspective of intelligent optimization, the divided into training and tes

f memon as a classinier particularly and the material scaled to the range [0, 1].

And *a louiding* scaled to the range [0, 1].

From the perspective of intelligent optimization, the divided into training and

feature selec A. Model building to the light optimization, the simulation training in From the perspective of intelligent optimization, the divided into training if eature selection problem is to obtain a solution that minimises the co From the perspective of intelligent optimization, the

feature selection problem is to obtain a solution that

minimizies the subset of features and maximises the

evolution for a family of solution vectors whose dimensio reature seection problem is to obtain a solution that constant we
classification accuracy through the process of population
classification accuracy through the process of population
 L Nearest Neighbors (KNN) c
classi minimises the subset of leatures and maxi-
classification accuracy through the process of
evolution for a family of solution vectors whose c
are the number of features of the problem, repres
and 1. When solving the feature

$$
fitness = \xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_Z|} \tag{20}
$$

Engineering Letters

bbset size. Based on the number of

ve can get the number of currently

dirst measure is shown in Equation

(*X*) = $\sum_{1}^{D} x_i$ (18)

(18)

(18)

(18)

(19)
 $\frac{1}{n} \sum_{1}^{n} \frac{Nerr}{Nall}$ (19)
 $\frac{1}{$ Where $\Delta_R(D)$ denotes the classification error rate using K *ⁱ f X x* (18) denotes the number of feature subsets selected by the E HGSO algorithm, $|T_z|$ denotes the total number of features **Engineering Letters**

Engineering Letters

e subset size. Based on the number of

i, we can get the number of currently

in Equation
 $f_1(X) = \sum_{i=1}^{D} x_i$ (18)

Where $\Delta_R(D)$ denotes the classific

denotes the number of **Engineering Letters**

are subset size. Based on the number of

ret, we can get the number of currently

the first measure is shown in Equation
 $f_1(X) = \sum_{i=1}^{D} x_i$ (18)

Merre $\Delta_R(D)$ denotes the classis
 $f_2(X) = \frac{1}{n}$ **Engineering Letters**

set size. Based on the number of

can get the number of currently

in measure is shown in Equation
 $Y = \sum_{i=1}^{p} x_i$ (18) Where $\Delta_R(D)$ denotes the classification error rate using K
 $Y = \sum_{i=1}^{p} x_i$ $(D) + \psi \cdot \frac{|Y|}{|T_Z|}$ (20)
sification error rate using K
classification error rate, |Y|
re subsets selected by the
st the total number of features
t. and ξ is a parameter related $_R(D) + \psi \cdot \frac{|Y|}{|T_Z|}$ (20)

assification error rate using K

classification error rate, |*Y*|

ture subsets selected by the

tes the total number of features

et, and ζ is a parameter related

whichts ζ *W* = [0, *fitness* = $\xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_Z|}$ (20)

denotes the classification error rate using K

thbours (KNN) classification error rate, |Y|

number of feature subsets selected by the

prithm, |Tz| denotes the total number o = $\xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_Z|}$ (20)

s the classification error rate using K

(KNN) classification error rate, |Y|

of feature subsets selected by the Frances $\int f$ *f iness* = $\xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_Z|}$ (20)

Where $\Delta_R(D)$ denotes the classification error rate using K

Nearest Neighbours (KNN) classification error rate, |*Y*|

denotes the number of feature subsets sel Francestockey \int *fitness* = $\xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_z|}$ (20)

Where $\Delta_R(D)$ denotes the classification error rate using K

Nearest Neighbours (KNN) classification error rate, |*Y*|

denotes the number of feature subset **Example 18 (A)** $\text{fitness} = \xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_Z|}$ (20)

Where $\Delta_R(D)$ denotes the classification error rate using K

Nearest Neighbours (KNN) classification error rate, |Y|

denotes the number of feature subsets selected Fitness = $\xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_Z|}$ (20)

Where $\Delta_R(D)$ denotes the classification error rate using K

Nearest Neighbours (KNN) classification error rate, |*Y*|

denotes the number of feature subsets selected by the

E_ *fitness* = $\xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_z|}$ (20)

Where $\Delta_R(D)$ denotes the classification error rate using K

Nearest Neighbours (KNN) classification error rate, |Y|

denotes the number of feature subsets selected by the

E_ *fitness* = ξ ⋅ Δ_R(D) + Ψ ⋅ $\frac{|Y|}{|T_z|}$ (20)

Where Δ_R(D) denotes the classification error rate using K

Nearest Neighbours (KNN) classification error rate, |Y|

denotes the number of feature subsets selected by t *fitness* = $\xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_z|}$ (20)

Where $\Delta_R(D)$ denotes the classification error rate using K

Nearest Neighbours (KNN) classification error rate, |*Y*|

denotes the number of feature subsets selected by the
 fitness = $\xi \cdot \Delta_R(D) + \psi \cdot \frac{|Y|}{|T_Z|}$ (20)

here $\Delta_R(D)$ denotes the classification error rate using K

carest Neighbours (KNN) classification error rate, |*Y*|

notes the number of feature subsets selected by the

HGSO *fitness* = $\xi \cdot \Delta_R(D) + \psi \cdot \frac{1}{|T_Z|}$ (20)

Where $\Delta_R(D)$ denotes the classification error rate using K

Nearest Neighbours (KNN) classification error rate, |Y|

denotes the number of feature subsets selected by the

E_H ¹ I_Z |

Where $\Delta_R(D)$ denotes the classification error rate using K

Nearest Neighbours (KNN) classification error rate, |*Y*|

denotes the number of feature subsets selected by the

E_HGSO algorithm, |*Tz*| denotes t

 $f_2(X) = \frac{1}{n} \sum_{i=1}^{n} \frac{Nerr}{Nall}$ (19) E HGSO algorithm, $|Tz|$ denot

to the classification errors; Nall the current datase

to the classification error at the current datase

to the classification error at the current Where $\Delta_R(D)$ denotes the classification error rate using K
Nearest Neighbours (KNN) classification error rate, |*Y*|
denotes the number of feature subsets selected by the
E_HGSO algorithm, |*Tz*| denotes the total number Where $\Delta_R(D)$ denotes the classification error rate using K
Nearest Neighbours (KNN) classification error rate, |*Y*|
denotes the number of feature subsets selected by the
E_HGSO algorithm, |*Tz*| denotes the total number Nearest Neighbours (KNN) classification error rate, |*Y*|
denotes the number of feature subsets selected by the
E_HGSO algorithm, |*Tz*| denotes the total number of features
contained in the current dataset, and ξ is a SCREE TRESS ALTER THE SCREET NET THE ENCORDING THE ENGS of the number of feature subsets selected by the E-HGSO algorithm, $|Tz|$ denotes the total number of features contained in the current dataset, and ζ is a param denotes the miniber of readile slosses selected by the E-HGSO algorithm, $|Tz|$ denotes the total number of features contained in the current dataset, and ξ is a parameter related to the classification error rate weigh $E_$ INGSO algorium, $|Iz|$ denotes the total number of reatures
contained in the current dataset, and ξ is a parameter related
to the classification error rate weights, ξ , $\Psi \in [0, 1]$, and $\xi +$
 $\Psi = 1$.
B. Data s contained in the curient dataset, and ζ is a parameter related
to the classification error rate weights, ξ , $\Psi \in [0, 1]$, and $\xi + \Psi = 1$.
B. Data sets and performance metrics
The capacity of the E_HGSO algorithm to In this case, we will continue to use the same 8 algorithm of the same as TD and a meta-
In the capacity of the E-HGSO algorithm to perform
The capacity of the E-HGSO algorithm to perform
ature selection was evaluated by $F=1$.
 B. Data sets and performance metrics

The capacity of the E_HGSO algorithm to perform

feature selection was evaluated by conducting experiments

on 8 standard datasets obtained from the UCI Machine

Learning Re B. Data sets ana performance metrics
The capacity of the E_HGSO algorithm to perform
feature selection was evaluated by conducting experiments
form the UCI Machine
Dearning Repository. The specific details of these datase Ine capacity of the E_HGSO algorithm to perform
feature selection was evaluated by conducting experiments
on 8 standard datasets obtained from the UCI Machine
Learning Repository. The specific details of these dataset
sar reautre setection was evaluated by conducting experiments
on 8 standard datasets obtained from the UCI Machine
Learning Repository. The specific details of these dataset
underwent max-min normalization, whereby the data we

on 8 standard datasets obtained from the UCI Machine
Learning Repository. The specific details of these datasets
are presented in Table IX. For the evaluation, each dataset
underwent max-min normalization, whereby the data Learning Repository. The specific details of these datasets
are presented in Table IX. For the evaluation, each dataset
underwent max-min normalization, whereby the data were
scaled to the range [0, 1]. Subsequently, each are presented in Table IX. For the evaluation, each dataset
underwent max-min normalization, whereby the data were
scaled to the range [0, 1]. Subsequently, each dataset was
divided into training and test subsets. The feat underwent max-min normailzation, whereby the data were
scaled to the range [0, 1]. Subsequently, each dataset was
divided into training and test subsets. The feature subsets
botaned for each individual were then classified scaled to the range [0, 1]. Subsequently, each dataset was
divided into training and test subsets. The feature subsets
obtained for each individual were then classified using the
K-Nearest Neighbors (KNN) classifier.
In th divided mot training and test subsets. The leadure subsets
obtained for each individual were then classified using the
K-Nearest Neighbors (KNN) classifier.
In this case, we will continue to use the same 8 algorithms
as t obtained for each mutvidual were then classified using the K-Nearest Neighbors (KNN) classifier.
In this case, we will continue to use the same 8 algorithms
as the comparative algorithms, with all their parameters set
the K-Nearest Neignbors (KNN) classiner.

In this case, we will continue to use the same 8 algorithms

as the comparative algorithms, with all their parameters set

the same as in the previous experiments. The E_HGSO

algorit In this case, we will continue to use the same 8 algorithms
as the comparative algorithms, with all their parameters set
the same as in the previous experiments. The E_HGSO
algorithm is initialized randomly, with a popula

[41]:

$$
AvgAcc = \frac{1}{Q} \sum_{i=1}^{Q} Acc_i
$$
 (21) large the value
unstable. The sta

⁷

⁸ cylinder-bands ⁵¹²

Average accuracy: The average accuracy is the average Where *fitness_i* denotes the option of the classification accuracies of the optimization algorithm in the *i*th run.

when performing **between runder of the classification** accuracy: The average accuracy is the average Where *fitness_i* denoted of the classification accuracies of the optimization algorithm in the *i*th run.

When performing feature sel **Example accuracy:** The average accuracy is the average Where *fitness_i* denotes the optimization accuracies of the optimization algorithm in the *i*th run.

When performing feature selection and is defined as follows **Average accuracy:** The average accuracy is the average Where *fitness_i* denotes the open of the classification accuracies of the optimization algorithm in the *i*th run.

When performing feature selection and is define **Example and Solution** Average accuracy: The average accuracy is the average where *Jithesis* denotes the optimization accuracies of the optimization algorithm in the *kh* in the KNN classification and is defined as follo of the classification accuraces of the optimization algorithm

when performing feature selection and is defined as follows

magnitude of volatility of the standard deviation of fitne

magnitude of volatility of the standa follows: Where *Q* denotes the number of times the algorithm has

been run, *Acc_i* denotes the optimal solution of classification

accuracy obtained by the *i*th run of the algorithm, and the

larger the value of *k* in the KNN where μ _{sed} is the number of descriptors, and *ACC*_{cv5} is the precision of the other algorithm, and the state of *k* in the KNN classifier was set to 5 during the Table X presents the results experimental analysis. been run, *Acci* denotes the optimal solution of class
accuracy obtained by the *i*th run of the algorithm,
larger the value of *AvgAcc*, the better the classificat
value of *k* in the KNN classifier was set to 5 du
exper

$$
fitness = \frac{0.95}{ACCcv5} + \frac{0.05 \times n_{sel}}{N_{tot}}
$$
 (22) terms of fitness values, a
algorithm performance. Up
evident that the E HGSO s

Experimental analysis. So the adaptation is expressed as

follows:

follows:

follows:

for the mast and standard devotional sumber of eaching the mean and standard devotional

optimal value. The best results in all eight fiteness = $\frac{0.95}{\Lambda C C c v 5} + \frac{0.05 \times n_{sel}}{N_{tot}}$ (22) terms optima

where n_{sel} is the number of selected descriptors, N_{tot} is the the best

total number of descriptors, and $\Lambda C C_{c v 5}$ is the precision of the beh

t

$$
AvgSize = \frac{1}{Q} \sum_{i=1}^{Q} \frac{size_i}{D}
$$
 (23) E_HGSO not
also exhibits
results. This

total number of descriptors, and AC_{co5} is the precision of
the five-fold cross-validation.
the five-fold cross-validation.
of feature selection number: The average number
of feature selections is the average of the n the ive-told cross-validation.
 Average from Average number: The average number

of feature selections is the average of the number of features

selected by the optimal solution obtained in Q runs of the

algorithm over **Average teature selection number:** The average number

of features of the number of features

selected by the optimal solution obtained in Q runs of the

algorithm over the total number of selectures in the dataset,

whi of reature selections is the average of the number of leatures

selected by the orginal solution obtained in Q runs of the

algorithm over the total number of features in the dataset,

undependently ten times of

which is selected by the optimal solution obtained in *Q* runs of the
algorithm over the total number of features in the dataset,
which is expressed as follows Eq 23:
selection is the probability to the data. From the data in the algorithm over the total number of teatures in
which is expressed as follows Eq 23:
 $AvgSize = \frac{1}{Q} \sum_{i=1}^{Q} \frac{size_i}{D}$
Where size_i denotes the number of features sele
optimal solution in the *i*th run, *D* is the total
feat **AvgSize** = $\frac{1}{Q}$ = $\frac{1}{\sqrt{Q}} \sum_{i=1}^{Q} \frac{size_i}{D}$ = $\frac{1}{\sqrt{Q}} \sum_{i=1}^{Q} \frac{size_i}{D}$ = $\frac{1}{\sqrt{Q}} \sum_{i=1}^{Q} \frac{size_i}{D}$ = HGSO not only achieves his expected by the exact of the data. From the *i*m all solution in the *i AvgSize* = $\frac{1}{Q} \sum_{i=1}^{Q} \frac{size_i}{D}$ (23) also exhibits fewer outliers his consistents in the original solution in the *ift* number of features selected by the E_HGSO. The consistent his fewer outliers from the origina

algorithm.

$$
AvgAve = \frac{1}{Q} \sum_{i=1}^{Q} fitness_i
$$
 (24) Fig.6

569 32

351 34

208 60

512 39

Where *fitness_i* denotes the optimal solution fitness obtained

in the *i*th run.
 Standard deviation of fitness: The variance indicates the

magnitude of volatility of the solution, th Where *fitness_i* denotes the optimal solution fitness obtained
in the *i*th run.
Standard deviation of fitness: The variance indicates the
magnitude of volatility of the solution, the smaller its value,
the more the a the *i*th run.
 Standard deviation of fitness: The variance indicates the ganitude of volatility of the solution, the smaller its value, e more the algorithm can converge to the same value; the ger the value, the more

$$
AvgStd = \sqrt{\frac{1}{Q} \sum_{i=1}^{Q} (fitness_i - Ave)^2}
$$
 (25)

fiteness ACCcv N Example of $Avg.$ and an or the agorithm over the telection of the selection of λ and λ an angle to value of *k* in the KNN classifier was set to 5 during the reachable X presents the experimental analysis. So the adaptation is expressed as a delight comparison all expressed to the mean and standard deptitions: selected by the optimal solution obtained in *^Q* runs of the *C* $\frac{Q}{4\pi i}$

the number of times the algorithm has

tooks the opinual solution of classification

by the fitti more that algorithm, and the
 size Avg Stal = $\sqrt{\frac{1}{Q}} \sum_{i=1}^{Q} (fitness_i - Ave_i^2)$
 Avg Acc, the better t **Example 1.1** and **and deviation of fitness:** The variance indicates the magnitude of volatility of the solution, the smaller its value, the more the algorithm can converge to the same value; the larger the value, the mor magnitude of volatility of the solution, the smaller its value,
the more the algorithm can converge to the same value; the
larger the value, the more the algorithm is volatile and
unstable. The standard deviation is defin the more the algorithm can converge to the same value; the
larger the value, the more the algorithm is volatile and
larger the value, the more the algorithm is volatile and
unstable. The standard deviation is defined as:
 the mean environment of the E-HGSO algorithm is volatile and
larger the value, the more the algorithm is volatile and
unstable. The standard deviation is defined as:
 $AvgStd = \sqrt{\frac{1}{Q} \sum_{i=1}^{Q} (fitness_i - Ave)^2}$ (25)
Where Ave denotes algorithm performance and exist of the results, the vertex states of the results.

Where Ave denotes the average adaptation.

Table X presents the results of the E_HGSO algorithm

and eight comparison algorithms for 8 dat *AvgStd* = $\sqrt{\frac{1}{Q} \sum_{i=1}^{Q} (fitness_i - Ave)^2}$ (25)
Where *Ave* denotes the average adaptation.
Table X presents the results of the E_HGSO algorithm
and eight comparison algorithms for 8 datasets, including
the mean and standar *AvgStd* = $\sqrt{\frac{1}{Q} \sum_{i=1}^{Q} (fitness_i - Ave)^2}$ (25)

Where *Ave* denotes the average adaptation.

Table X presents the results of the E_HGSO algorithm

and eight comparison algorithms for 8 datasets, including

the mean and sta $AvgStd = \sqrt{\frac{1}{Q} \sum_{i=1}^{Q} (fitness_i - Ave)^2}$ (25)

Where *Ave* denotes the average adaptation.

Table X presents the results of the E_HGSO algorithm

and eight comparison algorithms for 8 datasets, including

the mean and standard de The other algorithms.

The other algorithm and eight comparison algorithms for 8 datasets, including

the mean and standard deviation of the E-HGSO algorithm

and eight comparison algorithms for 8 datasets, including

the Where Ave denotes the average adaptation.

Table X presents the results of the E_HGSO algorithm

and eight comparison algorithms for 8 datasets, including

the mean and standard deviation of the fitness values and the

op Where Ave denotes the average adaptation.

Table X presents the results of the E_HGSO algorithm

and eight comparison algorithms for 8 datasets, including

the mean and standard deviation of the fitness values and the

op Trable X presents the average adaptation.

Table X presents the results of the E_HGSO algorithm

d eight comparison algorithms for 8 datasets, including

d eight comparison algorithms for 8 datasets, including

timal valu Table A presents the results of the E-HGSO algorithm
and eight comparison algorithms for 8 datasets, including
the mean and standard deviation of the fitness values and the
optimal value. The best results are highlighted and eight comparison aigorithms for 8 datasets, including
the mean and standard deviation of the fitness values and the
optimal value. The best results are highlighted in bold. In
terms of fitness values, a smaller value i the mean and standard deviation of the itness values and the optimal value. The best results are highlighted in bold. In the middler of fitness values, a smaller value indicates better algorithm performance. Upon reviving

Where *n*_{sel} is the number of selected descriptors, N_{tot} is the

total number of descriptors, and AC_{cs} is the precision of

the other algorithms. These fir

or fired free free contents of feature selection number: T opumal value. The best results are ingningined in bold. In
terms of fitness values, a smaller value indicates better
algorithm performance. Upon reviewing the results, it is
evident that the E_HGSO algorithm consistently a terms or nuness values, a smaller value indicates better
algorithm performance. Upon reviewing the results, it is
evident that the E_HGSO algorithm consistently achieved
the best results in all eight datasets. Additionally algorithm performance. Upon reviewing the results, it is
evident that the E_HGSO algorithm consistently achieved
the best results in all eight datasets. Additionally, the overall
ranking of the E_HGSO algorithm is signific evident that the E_HGSO algorithm consistently achieved
the best results in all eight datasets. Additionally, the overall
ranking of the E_HGSO algorithm is significantly ahead of
the other algorithms. These findings under the best results in all eight datasets. Additionally, the overall ranking of the E_HGSO algorithm is significantly ahead of the other algorithms. These findings underscore the superior performance and effectiveness of the ranking of the E_HGSO algorithm is significantly anead of
the other algorithms. These findings underscore the superior
performance and effectiveness of the E_HGSO algorithm in
comparison to the alternative algorithms.
Fig Formance and effectiveness of the E_HGSO algorithm in
mapsion to the alternative algorithms.
In sumpsion to the alternative algorithm in
Fig.5 displays box plots representing the classification
curacies obtained by running performance and effectiveness of the E ₁HGSO algorithm in
comparison to the alternative algorithms.
Fig.5 displays box plots representing the classification
accurates obtained by running the nine algorithms
independent comparison to the atternative argorithms.

Fig.5 displays box plots representing the classification

accuracies obtained by running the nine algorithms

independently ten times on the eight datasets. These box

plots provi rig.5 asplays box plots representing the classification
accuracies obtained by running the nine algorithms
independently ten times on the eight datastes. These box
plots provide a visual representation of the mean and
disp

mumber of selected descriptions, N_{in} is the combine of the E HGSO algorithm is significantly ahead of
descriptors, and $AC_{\text{c},2}$ is the precision of the unkner algorithms. These findings unkner
or respectiven and accuracies obtained by running the nine algorithms
independently ten times on the eight datasets. These box
plots provide a visual representation of the mean and
dispersion of the data. From the figure, it is evident that maependently ten times on the eight datasets. These box
plots provide a visual representation of the mean and
dispersion of the data. From the figure, it is evident that the
E_HGSO not only achieves high fitness on most da plots provide a visual representation of the mean and
dispersion of the data. From the figure, it is evident that the
E-HGSO not only achieves high fitness on most datasets but
also exhibits fewer outliers in the central d dispersion of the data. From the rigure, it is evident that the E_HGSO not only achieves high fitness on most datasets but also exhibits fewer outliers in the central distribution of F_HGSO. The consistent highlights the r E_HGSO not only achieves nigh itmess on most datasets but
also exhibits fewer outliers in the central distribution of
results. This observation highlights the robustness of
E_HGSO. The consistent high performance and reduc also exhibits rewer outliers in the central distributes
results. This observation highlights the robusti
E_HGSO. The consistent high performance and
variability of the E_HGSO further validate its effect.
In summary, our re sults. This observation inginights the robustness of HGSO. The consistent high performance and reduced riability of the E-HGSO further validate its effectiveness. In summary, our research results have conclusively monstrat E_HGSO. The consistent nigh performance and reduced
variability of the E_HGSO further validate its effectiveness.
In summary, our research results have conclusively
demonstrated that the algorithm we proposed exhibits
exce variability of the E_HOSO further validate its effectiveness.

In summary, our research results have conclusively

demonstrated that the algorithm we proposed exhibits

excellent performance in most cases. The algorithm n

Fig.6 illustrates the convergence curves of fitness for

Engineering Letters Engineering Eccuers

Best 1.2064E+00 1.2321E+00 1.2483E+00 1.2305E+00 1.2079E+00 1.2477E+00 1.28

Rank 2 8 7 5 4 6

Final Rank 16 55 61 35 28 49

Final Rank 16 55 61 35 28 49

Final Rank 2 7 8 5 3 6

curves, retaining four representative ones. Final Rank 2 8 7 5 4 6 9

Final Rank 16 55 61 35 28 49 72

Final Rank 16 5 6 1 35 28 49 72

Final Rank 16 5 6 1 35 28 49 72

Einal Rank 16 5 6 1 35 28 49 72

Curves, retaining four representative ones. The results algorith Rank 2 8 7 5 4 6 9

Total Rank 16 55 61 35 28 49 72

Final Rank 2 7 8 5 3 6 9

curves, retaining four representative ones. The results algorithm, specifically designed

clearly indicate that, across the majority of dataset Total Rank 16 55 61 35 28

Final Rank 2 7 8 5 3

Curves, retaining four representative ones. The results algorithm, s

clearly indicate that, across the majority of datasets, the three

of its prede

variants of the E_HGSO in a strongglent problem. The substantial and the Hindustrian in the Hindustrian of the Hindustrian and the Hindustrian and the Hindustrian and the Hindustrian and the Hindustrian of the EHGSO algorithm in the series of th rves, retaining four representative ones. The results
algorithm, specifically designary indicate that, across the majority of datasets, the three
of its predecessor. These I
riants of the E_HGSO algorithm demonstrate nota clearly indicate that, across the majority of datasets, the three

variants of the E_HGSO algorithm demonstrate notably

variants of the E_HGSO algorithm demonstrate notably

notation diversity, vulneral

distance the fea variants of the E_HGSO algorithm demonstrate notably

faster convergence speeds compared to the other algorithms,

sonvergence speed. The

ultimately reaching the lowest fitness values. Furthermore,

focus on addressing th

1.2302E+00 1.2628E+00 1.3500E+00 1.2264E+00 1.2046E+00

2.3308E-02 8.3031E-03 3.1029E-02 9.9729E-03 4.3574E-03

1.2079E+00 1.2477E+00 1.2862E+00 1.2167E+00 1.2021E+00

4 6 9 3 1

28 49 72 31 13

3 6 9 4 1

algorithm, spec 2.3308E-02 8.3031E-03 3.1029E-02 9.9729E-03 4.3574E-03

1.2079E+00 1.2477E+00 1.2862E+00 1.2167E+00 1.2021E+00

4 6 9 3 1

28 49 72 31 13

3 6 9 4 1

algorithm, specifically designed to overcome the limitations

of its pr 1.2079E+00 1.2477E+00 1.2862E+00 1.2167E+00 1.2021E+00

4 6 9 3 1

28 49 72 31 13

3 6 9 4 1

algorithm, specifically designed to overcome the limitations

of its predecessor. These limitations include insufficient

popul 1.20/9E-60 1.24//E-60 1.2602E-60 1.210/E-60 1.2021E-60

4 6 9 3 1

28 49 72 31 13

29 10 11

2010 11

2 4 6 9 9 3 1

28 49 72 31 13

3 6 9 4 1

1 13

1 11

1 11

1 11

1 11

1 11

1 ²⁸ ⁴⁹ ⁷² ³¹ ¹³
³ 6 ⁹ ⁴ ¹ ¹³
**algorithm, specifically designed to overcome the limitations
of its predecessor. These limitations include insufficient
population diversity, vulnerability to local optima,** $\frac{3}{1}$ 6 9 9 4 1
algorithm, specifically designed to overcome the limitations
of its predecessor. These limitations include insufficient
population diversity, vulnerability to local optima, and slow
convergence speed. search effectively, which can better adapt to the search advocines algorithm, specifically designed to overcome the limitations of the propulation diversity, vulnerability to local optima, and slow convergence speed. The i algorithm, specifically designed to overcome the limitations
of its predecessor. These limitations include insufficient
population diversity, vulnerability to local optima, and slow
convergence speed. The improvements made argorium, specincally designed to overcome the imitations
of its predecessor. These limitations include insufficient
population diversity, vulnerability to local optima, and slow
focus on addressing these shortcomings. The or its predecessor. Inese limitations include insurricient
population diversity, vulnerability to local optima, and slow
convergence speed. The improvements made in this study
focus on addressing these shortcomings. The ne population diversity, vulnerability to local optima, and slow
convergence speed. The improvements made in this study
focus on addressing these shortcomings. The new grouped
resulting in improved efficiency and the sality t

Volume 32, Issue 10, October 2024, Pages 2023-2040

algorithm is applied to feature selection concurrently. To antison state is performance in this context, eight datasets with demonstrate that F. HGSO excluding the selection concurrently. To demonstrate that E. HGSO exclu validate its performance in this context, eight datasets with

The stress of the **Example 128**

variable of the size are carefully selected from the size are carefully selected from the size are experimented in the size are expected from the size are carefully selected from the size are experimented i **Example 1988**

Tig.6. Convergence curve of E-HGSO and other algorithms.

Fig.6. Convergence curve of E-HGSO and other algorithms.

In Fig.6. Convergence curve of E-HGSO and other algorithms.

In through Friedman and Wilc 0.985

Fig.6. Convergence curve of E_HGSO and other algorithms.

Fig.6. Convergence curve of E_HGSO and other algorithms.

through Friedman and Wilcoxon signed rank tests, which $\begin{bmatrix} 6 \end{bmatrix}$ J. Zhong, L. Feng and

con Fig.6. Convergence curve of E_HGSO and other algorithms.

Fig.6. Convergence curve of E_HGSO and other algorithms.

through Friedman and Wilcoxon signed rank tests, which $\begin{array}{ll}\n & 6 & 7 & 8 & 9 & 10 & 0 & 1 & 2 & 3 \\
 & \times 10^4 & & & &$ FER FIG.6. Convergence curve of E_HGSO and other algorithms.

through Friedman and Wilcoxon signed rank tests, w

confirm the significant differences between the algorit

and reinforce the finding that E_HGSO consiste

ach Convergence curve of E_HGSO and other algorithms.

Tough Friedman and Wilcoxon signed rank tests, which

inform the significant differences between the algorithms

our of the finding that E_HGSO consistently are algorithm through Friedman and Wilcoxon signed rank tests, which

confirm the significant differences between the algorithms

and reinforce the finding that E_HGSO consistently

and reinforce the finding that E_HGSO consistently
 through Priedman and Wicoxon signed rank tests, which

confirm the significant differences between the algorithms

and reinforce the finding that E_HGSO consistently

and reinforce the finding that E_HGSO consistently

an communing increasing transform interesting that E-HGSO consistent increases between the finding that E-HGSO consistently and application one and reinforce the finding that E-HGSO consistently. To variation would applied t

and reinforce the maint and the HGSO consistentive
algorithm is applied to feature selection concurrently. To adaptation evolution is
algorithm is applied to feature selection concurrently. To computation, vol. 21,
valida analysis superior results. Furthermore, the E_HGO algorithm is applied to feature selection concurrently. To computation overlate its performance in this context, eight datasets with [8] D. Simon, "Biogeography-Bas varying External is applied to reader this control concurrently. To the algorithm is applied to reach the scheme in this computate video to the computate of the scheme of the scheme varying dimensions and sizes are carefully sele validate its performance in this context, eight datasets with

valid and sizes are carefully selected from the

UCI machine learning library. The experimental results

demonstrate that E_HGSO exhibits superior efficiency, problems. more comprehensive analysis and investigation of the

HGSO algorithm. Our objective is to apply the algorithm to

increasingly complex practical engineering problems. We

strive to advance the HGSO algorithm, by combining
 independent tasks on nonidentical processors," Journal of the ACM

Solution: A Javance the HGSO algorithm, by combining

in A Javance, "An evolution problems we to advance the HGSO algorithm, by combining

and its Applica examply complex practical engineering problems. We

e to advance the HGSO algorithm, by combining

prehensive analysis, practical applications, and

retical enhancements, we aim to provide valuable

ths and solutions for a Examples and its Applications, the columns, the comprehensive analysis, practical applications, and [13] L. Sun, J. Li, X. Xiao, theoretical enhancements, we aim to provide valuable insights and solutions for addressing in e to advance the HGSO algorithm,
prehensive analysis, practical appl
retical enhancements, we aim to pro
thts and solutions for addressing intricat
lems.

REFERENCES
O. H. Ibarra and C. E. Kim, "Heuristic algorith
indep comprehensive analysis, practical applications, and [13] L. Sun, J. Li, X. Xiao,

theoretical enhancements, we aim to provide valuable

insights and solutions for addressing intricate optimization

Thickness Prediction N
 retical enhancements, we aim to provide valuable

this and solutions for addressing intricate optimization

ppl462-1469, 2021.

lems.

C. E. Kim, "Heuristic algorithms for scheduling

(JACM), vol. 24, no. 2, pp280-289, 197

REFERENCES

- thts and solutions for addressing intricate opt

lems.

REFERENCES

O. H. Ibarra and C. E. Kim, "Heuristic algorithms for

independent tasks on nonidentical processors," Journal (

(JACM), vol. 24, no. 2, pp280-289, 1977.
 III D. J. Kang, "A fast and Solutions for addressing intricate optimization

[14] D. H. Ibarra and C. E. Kim, "Heuristic algorithms for scheduling

independent tasks on nonidentical processors," Journal of the ACM

[15] J. 14 D. J. Kang, "A fa

28 REFERENCES

29 D. H. Ibarra and C. E. Kim, "Heuristic algorithms for scheduling

independent tasks on nonidentical processors," Journal of the ACM

15 J. Zhang, X. Xie

17 P. A. Habilm, E.

16 (JAC Path

References [15] J. Z

independent tasks on nonidentical processors," Journal of the ACM

Interpendent tasks on nonidentical processors," Journal of the ACM

(JACM), vol. 24, no. 2, pp280-289, 1977.

J. H. Holland, "G EVERENCES [15] J. Zhang, X. Xie a

Butterly Optimized Butters, vol. 30, no.

(JACM), vol. 24, no. 2, pp280-289, 1977.

(JACM) simeland, "Genetic algorithms," Scientific American, vol. 267, no.

1. Holland, "Genetic algorit Butterfly C

O. H. Ibarra and C. E. Kim, "Heuristic algorithms for scheduling

independent tasks on nonidentical processors," Journal of the ACM

[16] F. A. Hash

(JACM), vol. 24, no. 2, pp280-289, 1977.

J. H. Holland, "G
-
-
-
-

-
-
-
-
- 2020.

[10] A. Ghasemi-Marzbali, "A novel nature-inspired meta-heuristic [6] J. Zhong, L. Feng and Y. S. Ong, "Gene expression programming: A
survey," IEEE Computational Intelligence Magazine, vol. 12, no. 3,
pp54-72, 2017.

[7] H. G. Beyer and B. Sendhoff, "Simplify your covariance matrix

ad J. Zhong, L. Feng and Y. S. Ong, "Gene expression programming: A
survey," IEEE Computational Intelligence Magazine, vol. 12, no. 3,
pp54-72, 2017.
H. G. Beyer and B. Sendhoff, "Simplify your covariance matrix
adaptation ev J. Zhong, L. Feng and Y. S. Ong, "Gene expression programming: A
survey," IEEE Computational Intelligence Magazine, vol. 12, no. 3,
PD54-72, 2017.
H. G. Beyer and B. Sendhoff, "Simplify your covariance matrix
adaptation ev survey," IEEE Computational Intelligence Magazine, vol. 12, no. 3,
pp54-72, 2017.
[1] H. G. Beyer and B. Sendhoff, "Simplify your covariance matrix
adaptation evolution strategy," IEEE Transactions on Evolutionary
Computat pp54-72, 2017.

H. G. Beyer and B. Sendhoff, "Simplify your covariance matrix

adaptation evolution strategy," IEEE Transactions on Evolutionary

Computation, vol. 21, no. 5, pp746-759, 2017.

D. Simon, "Biogeography-Based H. G. Beyer and B. Sendhoff, "Simplify your
adaptation evolution strategy," IEEE Transaction
Computation vol. 21, no. 5, pp746-759, 2017.
D. Simon, "Biogeography-Based Optimization," I
Computat, vol. 12, no. 6, pp702-713, adaptation evolution strategy," IEEE Transactions on Evolutionary

Computation, vol. 21, no. 5, pp704-759, 2017.

[8] D. Simon, "Biogeography-Based Optimization," IEEE Trans. Evol.

Computat, vol. 12, no. 6, pp702-713, 200 Computation, vol. 21, no. 5, pp746-759, 2017.

D. Simon, "Biogeography-Based Optimization," IEEE Trans. Evol.

Computat, vol. 12, no. 6, pp702-713, 2008.

H. Sho, "Investigation of Particle Multi-Swarm Optimization with

D
-
-
- D. Simon, "Biogeography-Based Optimization," IEEE Trans. Evol.
Computat, vol. 12, no. 6, pp702-713, 2008.
H. Sho, "Investigation of Particle Multi-Swarm Optimization with
Diversive Curiosity," Engineering Letters, vol. 28, Computat, vol. 12, no. 6, pp702-713, 2008.

[9] H. Sho, "Investigation of Particle Multi-Swarm Optimization with

Diversive Curiosity," Engineering Letters, vol. 28, no. 3, pp960-969,

2020.

[10] A. Ghasemi-Marzbali, "A n H. Sho, "Investigation of Particle Multi-Swarm Optimization with
Diversive Curiosity," Engineering Letters, vol. 28, no. 3, pp960-969,
2020.
A. Ghasemi-Marzbali, "A novel nature-inspired meta-heuristic
algorithm for optimi Diversive Curiosity," Engineering Letters, vol. 28, no. 3, pp960-969,
2020.

2020.

2020.

2020.

2020.

Elementary Aravidinism: bear smell search algorithm," Soft

computing, vol. 24, no. 17, pp13003-13035, 2020.

C. Wang 2020.

A. Ghasemi-Marzbali, "A novel nature-inspired

algorithm for optimization: bear smell search a

computing, vol. 24, no. 17, pp13003-13035, 2020.

C. Wang, P. Shang and L. Liu, "Improved artific

algorithm guided by [10] A. Ghasemi-Marzbali, "A novel nature-inspired meta-heuristic algorithm for optimization: bear smell search algorithm," Soft computing, vol. 24, no. 17, pp13003-13035, 2020.

[11] C. Wang, P. Shang and L. Liu, "Improve algorithm for optimization: bear smell search algorithm," Soft
computing, vol. 24, no. 17, pp13003-13035, 2020.
C. Wang, P. Shang and L. Liu, "Improved artificial bee colony
closes algorithm guided by experience," Engineer computing, vol. 24, no. 17, pp13003-13035, 2020.

[11] C. Wang, P. Shang and L. Liu, "Improved artificial bee colony

algorithm guided by experience," Engineering Letters, vol. 30, no. 1,

pp261-265, 2022.

[12] M. A. Jav C. Wang, P. Shang and L. Ltu, "Improved artificial bee colony
algorithm guided by experience," Engineering Letters, vol. 30, no. 1,
pp261-265, 2022.
M. A. Javarone, "An evolutionary strategy based on partial imitation
for algorithm guided by experience," Engineering Letters, vol. 30, no. 1,
pp261-265, 2022.
M. A. Javarone, "An evolutionary strategy based on partial imitation
for solving optimization problems," Physica A:Statistical Mechanic
-
-
- pp261-265, 2022.

[12] M. A. Javarone, "An evolutionary strategy based on partial imitation

for solving optimization problems," Physica A:Statistical Mechanics

and its Applications, vol. 463, pp262-269, 2016.

[13] L. Su M. A. Javarone, "An evolutionary strategy based on partial inntation
for solving optimization problems," Physica A:Statistical Mechanics
and its Applications, vol. 463, pp262-269, 2016.
L. Sun, J. Li, X. Xiao, L. Zhang and for solving optimization problems," Physica A:Statistical Mechanics

and its Applications, vol. 463, pp262-269, 2016.

L. Sun, J. Li, X. Xiao, L. Zhang and J. Li, "Improved Differential

Gray Wolf Algorithm Optimized Suppo and its Applications, vol. 463, pp262-269, 2016.

L. Sun, J. Li, X. Xiao, L. Zhang and J. Li, "Improved Differential

Gray Wolf Algorithm Optimized Support Vector Regression Strip

ph¹462-1469, 2021.

D. J. Kang, "A fast 13] L. Sun, J. Li, X. Xiao, L. Zhang and J. Li, "Improved Differential

Gray Wolf Algorithm Optimized Support Vector Regression Strip

Thickness Prediction Method," Engineering Letters, vol. 29, no. 4,

pp1462-1469, 2021.
 Gray Wolf Algorithm Optimized Support Vector Regression Strip

Thickness Prediction Method," Engineering Letters, vol. 29, no. 4,

D. J. Kang, "A fast and stable snake algorithm for medical images,"

D. J. Kang, "A fast an Thickness Prediction Method," Engineering Letters, vol. 29, no. 4,
pp1462-1469, 2021.
D. J. Kang, "A fast and stable snake algorithm for medical images,"
D. J. Kang, "A fast and stable snake algorithm for medical images,"
 pp1462-1469, 2021.

D. J. Kang, "A fast and stable snake algorithm for medical images,"

Pattern Recognition Letters, vol. 20, no. 5, pp507-512, 1999.

D. Zhang, X. Xie and M. Wang, "A Hybrid Firefly Algorithm with

Butter [14] D. J. Kang, "A fast and stable snake algorithm for medical images,"

Pattern Recognition Letters, vol. 20, no. 5, pp507-512, 1999.

[15] J. Zhang, X. Xie and M. Wang, "A Hybrid Firefly Algorithm with

Butterfly Optimi Pattern Recognition Letters, vol. 20, no. 5, pp507-512, 1999.

J. Zhang, X. Xie and M. Wang, "A Hybrid Firefly Algorithm with

Butterfly Optimization Algorithm and its Application," Engineering

Eetters, vol. 30, no. 2, pp J. Zhang, X. Xie and M. Wang, "A Hybrid Firefly Algorithm with
Butterfly Optimization Algorithm and its Application," Engineering
Letters, vol. 30, no. 2, pp453-462, 2022.
F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Ma
-
-
- **Engineering Letters**

[19] A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. Li, K. Cheng, S. Wan

algorithm for global optimization inspired by sport championships," [42] J. Li, K. Cheng, S. Wan

Applied Sof
- **Engineering Letters**
A. H. Kashan, "League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships," Liu, "Feat
Applied Soft Computing, vol. 16, pp171-200, 2014. (CSUR), v. C. Da **Engineering Lette**
A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. L
algorithm for global optimization inspired by sport championships," Liu
Applied Soft Computing, vol. 16, pp171-200, 2014. (CS
C. Dai, W. **Engineering Letters**

[19] A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. Li, K. Cheng, s

algorithm for global optimization inspired by sport championships," Liu, "Feature sele

Applied Soft Computing, vo **Engineering Letters**

A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. Li, K. Cheng, algorithm for global optimization inspired by sport championships," Liu, "Feature sel-

Applied Soft Computing, vol. 16, p **Engineering Letters**

A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. Li, K. Cheng, S. Waa

algorithm for global optimization inspired by sport championships," Liu, "Feature selection

Applied Soft Computin **En**
 En

A. H. Kashan, "League Championship Algorithm (LC

algorithm for global optimization inspired by sport champic

Applied Soft Computing, vol. 16, pp171-200, 2014.

C. Dai, W. Chen, Y. Song and Y. Zhu, "Seeker opt **Engineering Letters**

[19] A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. Li, K. Cheng, S. Wa

algorithm for global optimization inspired by sport championships,"

Liu, "Feature selection

(CSUR), vol. 50 **Engineering Letters**

A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. Li, K. Cheng,

algorithm for global optimization inspired by sport championships," Liu, "Feature search applied Soft Computing, vol. 16, Engineering Ectters

A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. Li, K. Chenalgorithm for global optimization inspired by sport championships," Liu, "Feature scheff

Applied Soft Computing, vol. 16, pp17 A. H. Kashan, "League Championship Algorithm (LCA): An [42]
algorithm for global optimization inspired by sport championships,"
Applied Soft Computing, vol. 16, pp171-200, 2014.
C. Dai, W. Chen, Y. Song and Y. Zhu, "Seeker [19] A. H. Kashan, "League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships," Liu, "Feature Applied Soft Computing, vol. 16, pp171-200, 2014. (CSUR), vol. 201 C. Dai, W. Ch A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. L
algorithm for global optimization inspired by sport championships," Liu
Applied Soft Computing, vol. 16, pp171-200, 2014. (CS
C. Dai, W. Chen, Y. Song and Y. [19] A. H. Kashan, "League Championship Algorithm (LCA): An [42] J. Li, K. Chen
algorithm for global optimization inspired by sport championships,"
Applied Soft Computing, vol. 16, pp171-200, 2014.

(CSUR), vol.

a novel s algorithm for global optimization inspired by sport championships,"

Lu, "Feature selection

Applied Soft Computing, vol. 16, pp171-200, 2014.

C. Dai, W. Chen, Y. Song and Y. Zhu, "Secker optimization algorithm: [43] H. D Applied Soft Computing, vol. 16, pp171-200, 20
C. Dai, W. Chen, Y. Song and Y. Zhu, "Seeker op
a novel stochastic search algorithm for
optimization," Journal of Systems Engineering
21, no. 2, pp300-311, 2010.
N. Ghorbani a
- [20] C. Dai, W. Chen, Y. Song and Y. Zhu, "Secker optimization algorithm: [43] H. Dai, W. Wu, J. L.

a novel stochastic stearch algorithm for global numerical

optimization," Journal of Systems Engineering and Electronics a novel stochastic search algorithm for global numerical in the Improved Stack

21, no. 2, pp300-311, 2010.

21, no. 2, pp300-311, 2010.

N. Ghorbani and E. Babaei, "The exchange market algorithm with [44] P. Cunningham an optimization," Journal of Systems Engineering and Electronics, vol.
21, no. 2, pp300-311, 2010.
Norbani and E. Babaei, "The exchange market algorithm with [4
N. Ghorbani and E. Babaei, "The exchange market algorithm with
s
-
-
-
- 21, no. 2, pp300-311, 2010.

[21] N. Ghorbani and E. Babaei, "The exchange market algorithm with [44] P. Cunningham and S.

smart scarching for solving economic dispatch problems," Tucmial," ACM com

International Journal N. Ghorbanı and E. Babaeı, "The exchange market algorithm with [44] P. Cunningham

smart searching for solving economic dispatch problems," Itutorial," ACM

International Journal of Management Science and Engineering 2001. smart searching for solving economic dispatch problems,"

Iutorial," AC

International Journal of Management Science and Engineering 2021.

M. A. Eita and M. M. Fahmy, "Group counseling optimization,"

Applied Soft Computi International Journal of Management Science and Engineerin
Management, vol. 13, no. 3, pp175-187, 2018.
M. A. Eita and M. M. Fahmy, "Group counseling optimization
Applied Soft Computing, vol. 22, pp585-604, 2014.
R. Cheng Management, vol. 13, no. 3, pp175-187, 2018.

[22] M. A. Etita and M. M. Fahmy, "Group counseling optimization,"

Applied Soft Computing, vol. 22, pp585-604, 2014.

[23] R. Cheng and Y. Jin, "A social learning particle sw M. A. Eita and M. M. Fahmy, "Group counseling optimization,"
Applied Soft Computing, vol. 22, pp585-604, 2014.
R. Cheng and Y. Jin, "A social learning particle swarm optimization
algorithm for scalable optimization," Infor Applied Soft Computing, vol. 22, pp585-604, 2014.

R. Cheng and Y. Jin, "A social learning particle swarm optimization

Racorithm for scalable optimization," Information Sciences, vol. 291,

P. G. Kuo and C. H. Lin, "Cultu R. Cheng and Y. Jm, "A social learning particle swarm optimization
algorithm for scalable optimization," Information Sciences, vol. 291,
pp43-60, 2015.
H. C. Kuo and C. H. Lin, "Cultural evolution algorithm for global
opti algorithm for scalable optimization," Information Sciences, vol. 291,

p44. E. Kuo and C. H. Lin, "Cultural evolution algorithm for global

optimizations and its applications," Journal of applied research and

technology, pp43-60, 2015.
H. C. Kuo and C. H. Lin, "Cultural evolution algorithm for global
dortinizations and its applications," Journal of applied research and
technology, vol. 11, no. 4, pp510-522, 2013.
K. Salimifard, J. Li, D. M H. C. Kuo and C. H. Lin, "Cultural evolution algorithm for global
optimizations and its applications," Journal of applied research and
technology, vol. 11, no. 4, pp510-522, 2013.
K. Salimifard, J. Li, D. Mohammadi and R. optimizations and its applications," Journal of applied research and

125] K. Salimifard, J. Li, n. 0. App510-522, 2013.

125] K. Salimifard, J. Li, D. Mohammadi and R. Moghdani, "A multi

objective volleyball premier leag technology, vol. 11, no. 4, pp510-522, 2013.

K. Salimirard, J. Li, D. Mohammadi and R. Moghdani, "A multi

dobjective volleyball premier league algorithm for green scheduling

identical parallel machines with splitting jo
- K. Salimifard, J. Li, D. Mohammadi and R. Mo
objective volleyball premier league algorithm for
identical parallel machines with splitting jobs," Ap
vol. 51, no. 7, pp4143-4161, 2021.
I. Derrac, S. Garc 'ia, D. Molina, and objective volleyball premier league algorithm for green scheduling

identical parallel machines with splitting jobs," Applied Intelligence,

vol. 51, no. 7, pp4143-4161, 2021.

[26] J. Derrac, S. Garc 'ia, D. Molina, and F dentical parallel machines with splitting jobs," Applied Intelligence,
vol. 51, no. 7, pp4143-4161, 2021.
J. Derrac, S. Garc 'ia, D. Molina, and F. Herrera, "A practical tutorial
on the use of nonparametric statistical tes vol. 51, no. 7, pp4143-4161, 2021.

J. Derrac, S. Garc'ia, D. Molina, and F. Herrera, "A prace

on the use of nonparametric statistical tests as a meth

comparing evolutionary and swarm intelligence algorithm

E. Rashedi, [26] J. Derrac, S. Garc'ia, D. Molina, and F. Herrera, "A practical tutorial

on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms," Swarm

and Evolut
-
- on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms," Swarm
and Evolutionary Computation, vol. 1, no. 1, pp3-18, 2011.
E. Rashedi, E. Rashedi and H. N comparing evolutionary and swarm intelligence
and Evolutionary Computation, vol. 1, no. 1, pp?
E. Rashedi, E. Rashedi and H. Nezamabadi-Pou
survey on gravitational search algorithm," Swa
survey on gravitational search algo and Evolutionary Computation, vol. 1, no. 1, pp3-18, 2011.

[27] E. Reshed ind H. Nezamabadi-Pour, "A comprehensive

survey on gravitational search algorithm," Swarm and evolutionary

computation, vol. 41, pp141-158, 2018. E. Rashed, E. Rashedi and H. Nezamabadi-Pour, "A comprehensive
survey on gravitational search algorithm," Swarm and evolutionary
computation, vol. 41, pp141-158, 2018.
O. K. Erol and I. Eksin, "A new optimization method: B
-
-
-
- survey on gravitational search algorithm," Swarm and evolutionary
computation, vol. 41, pp141-158, 2018.
O. K. Erol and I. Eksin, "A new optimization method: Big Bang-Big
Crunch," Advances in Engineering Software, vol. 37, computation, vol. 41, pp141-158, 2018.

[28] O. K. Erol and I. Eksin, "A new optimization method: Big Bang-Big

Crunch," Advances in Engineering Software, vol. 37, no. 2,

pp106-111, 2006.

[29] E. Rashedi, H. Nezamabadi-p O. K. Erol and I. Eksnn, "A new optimization method: Big Bang-Big
Crunch," Advances in Engineering Software, vol. 37, no. 2,
cpp106-111, 2006.
E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, "GSA: A
Gravitational Search A Crunch," Advances in Engineering Software, vol. 37, no. 2,

ppl06-111, 2006.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, "GSA: A

Gravitational Search Algorithm," Information Sciences, vol. 179, no.

13, pp2232-2248, pp106-111, 2006.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, "GSA: A

Gravitational Search Algorithm," Information Sciences, vol. 179, no.

13, pp2232-2248, 2009.

R. A. Formato, "Central force optimization: A new de E. Rashedi, H. Nezamabadi-pour, and S. S
Gravitational Search Algorithm," Information Sc
13, pp2232-2248, 2009.
R. A. Formato, "Central force optimization: *A*
gradient-like optimization metaheuristic," Opse
pp25-51, 2009. Gravitational Search Algorithm," Information Sciences, vol. 179, no.

13) B. A. Formato, "Central force optimization: A new deterministic

gradient-like optimization metaheuristic," Opsearch, vol. 46, no. 1,

pp25-51, 2009 13, pp2232-2248, 2009.

R. A. Formato, "Central force optimization: A new deterministic

R. A. Focioui, "Application metaheuristic," Opsearch, vol. 46, no. 1,

pp25-51, 2009.

A. Recioui, "Application of a galaxy-based sea R. A. Formato, "Central force optimization: A new deterministic
gradient-like optimization metaheuristic," Opsearch, vol. 46, no. 1,
pp25-51, 2009.
A. Recioui, "Application of a galaxy-based search algorithm to
MIMO system gradient-like optimization metaheuristic," Opsearch, vol. 46, nc
pp25-51, 2009.
A. Recioui, "Application of a galaxy-based search algorithm
MIMO system capacity optimization," Arabian Journal for Scie
and Engineering, vol. pp25-51, 2009.

[31] A. Recioui, "Application of a galaxy-based search algorithm to

MIMO system capacity optimization," Arabian Journal for Science

and Engineering, vol. 41, no. 9, pp3407-3414, 2016.

[32] L. Abualigah, A. Reciour, "Application of a galaxy-based search algorithm to
MMO system capacity optimization," Arabian Journal for Science
and Engineering, vol. 41, no. 9, pp3407-3414, 2016.
L. Abualigah, K. H. Almotairi, M. Abd Elaziz MIMO system capacity optimization," Arabian Journal for Science

and Engineering, vol. 41, no. 9, pp3407-3414, 2016.

L. Abualigah, K. H. Almotairi, M. Abd Elaziz, M. Shehab and M.

Altalhi, "Enhanced flow direction arithm and Engineering, vol. 41, no. 9, pp3407-3414, 2016.

L. Abualigah, K. H. Almotairi, M. Abd Elaziz, M. Sheha

Altalhi, "Enhanced flow direction arithmetic optimization

for mathematical optimization problems with applicatio [32] L. Abualigah, K. H. Almotairi, M. Abd Elaziz, M. Shehab and M.

Altalhi, "Enhanced flow direction arithmetic optimization algorithm

for mathematical optimization problems with applications of data

clustering," Engin
-
-
- Altalhi, "Enhanced flow direction arithmetic optimization algorithm
comathematical optimization problems with applications of data
clustering," Engineering Analysis with Boundary Elements, vol. 138,
Ph3-29, 2022.
B. S. Yıl for mathematical optimization problems with applications of data
clustering, "Engineering Analysis with Boundary Elements, vol. 138,
pp13-29, 2022.
B. S. Yildiz, A. R. Yildiz, N. Pholdee, S. Bureerat, S. M. Sait and V.
Pat clustering," Engineering Analysis with Boundary Elements, vol. 138,
pB. 3-29, 2022.
B. S. Yıldız, A. R. Yıldız, N. Pholdee, S. Bureerat, S. M. Sait and V.
Patel, "The Henry gas solubility optimization algorithm for optimum pp13-29, 2022.

[33] B. S. Yildiz, A. R. Yildiz, N. Pholdee, S. Bureerat, S. M. Sait and V.

Patel, "The Henry gas solubility optimization algorithm for optimum

structural design of automobile brake components," Materials B. S. Yildiz, A. R. Yildiz, N. Pholdee, S. Bureerat, S. M. Sait and V.
Patel, "The Herry gas solubility optimization algorithm for optimum
structural design of automobile brake components," Materials Testing,
vol. 62, no. Patel, "The Henry gas solubility optimization algorithm for optimum
structural design of automobile brake components," Materials Testing,
vol. 62, no. 3, pp261-264, 2020.
B. S. Yildiz, N. Pholdee, N. Panagant, S. Bureerat, structural design of automobile brake components," Materials Testing,
vol. 62, no. 3, pp261-264, 2020.
B. S. Yildiz, N. Pholdee, N. Panagant, S. Bureerat, A. R. Yildiz, and S.
M. Sait, "A novel chaotic Henry gas solubility vol. 62, no. 3, pp261-264, 2020.

[34] B. S. Yıldız, N. Pholdee, N. Panagant, S. Bureerat, A. R. Yildiz, and S.

M. Sait, "A novel chaotic Henry gas solubility optimization algorithm

for solving real-world engineering pro B. S. Yildiz, N. Pholdee, N. Panagant, S. Bureerat, A. R. Yildiz, and S.
M. Sait, "A novel chaotic Henry gas solubility optimization algorithm
for solving real-world engineering problems," Engineering with
Computers, pp1-1 M. Sart, "A novel chaotic Henry gas solubility optimization algorithm
for solving real-world engineering problems," Engineering with
Computers, pp1-13, 2021.
F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk and W.
A for solving real-word engineering problems," Engineering with

Computers, pp1-13, 2021.

[35] F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk and W.

Al-Atabany, "A modified Henry gas solubility optimization for

s Computers, pp1-13, 2021.

E. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk and W.

Al-Atabany, "A modified Henry gas solubility optimization for

solving motif discovery problem," Neural Computing and

Applications,
- F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk and W.
Al-Atabaary, "A modified Henry gas solubility optimization for
solving motif discovery problem," Neural Computing and
Applications, vol. 32, no. 14, pp10759-10 Al-Atabany, "A modified Henry gas solubility optimization for
solving motif discovery problem," Neural Computing and
Applications, vol. 32, no. 14, pp10759-10771, 2020.
[36] S. Ekinci, B. Hekimoğlu, and D. Izci, "Oppositio solving motif discovery problem," Neural Computing and
Applications, vol. 32, no. 14, pp10759-10771, 2020.
S. Ekinci, B. Hekimoglu, and D. Izci, "Opposition based Henry gas
solubility optimization as a novel algorithm for Applications, vol. 32, no. 14, pp10759-10771, 2020.

S. Ekinci, B. Hekimöğlu, and D. Izci, "Opposition based Henry gas

solubility optimization as a novel algorithm for PID control of DC

motor," Engineering Science and Te
-
-
- 1996.

[40] A. V. Chechkin, R. Metzler, J. Klafter and V. Y. Gonchar, solubility optimization as a novel algorithm for PID control of DC
motor," Engineering Science and Technology, an International
Journal, vol. 24, no. 2, pp331-342, 2021.
[37] W. Cao, X. Liu, and J. Ni, "Parameter Optimizat motor," Engineering Science and Technology, an International

Journal, vol. 24, no. 2, pp331-342, 2021.

W. Cao, X. Liu, and J. Ni, "Parameter Optimization of Support Vector

Regression Using Henry Gas Solubility Optimizat Journal, vol. 24, no. 2, pp331-342, 2021.
W. Cao, X. Liu, and J. Ni, "Parameter Optimization of Support Vector
Regression Using Henry Gas Solubility Optimization Algorithm,"
REEE Access, vol. 8, pp88633-88642, 2020.
D. Moh [37] W. Cao, X. Luu, and J. Ni, "Parameter Optimization of Support Vector
Regression Using Henry Gas Solubility Optimization Algorithm,"
IEEE Access, vol. 8, pp88633-88642, 2020.

[38] D. Mohammadi, M. Abd Elaziz, R. Moghd Regression Using Henry Gas Solubility Optimization Algorithm,"

IEE Access, vol. 8, pp88633-88642, 2020.

D. Mohammadi, M. Abd Elaziz, R. Moghdani, E. Demir and S.

Mirjalili, "Quantum Henry gas solubility optimization alg IEEE Access, vol. 8, pp88653-88642, 2020.

D. Mohammadi, M. Abd Elaziz, R. Moghdani, E. Demir and S.

D. Mohammadi, M. Abd Elaziz, R. Moghdani, E. Demir and S.

diviation," Engineering with Computers, pp1-20, 2021.

J. Sta
-
-
- [42] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang and H.

Liu, "Feature selection: A data perspective," ACM computing surveys

(CSUR), vol. 50, no. 6, pp1-45, 2017.

[43] H. Dai, W. Wu, J. Li, and Y. Yua **ILICT EXECT:**

Liu, "Feature selection: A data perspective," ACM computing surveys

(CSUR), vol. 50, no. 6, pp1-45, 2017.

H. Dai, W. Wu, J. Li, and Y. Yuan, "Incorporating Feature Selection

in the Improved Stacking Algo
- **tters**

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang and H.

Liu, "Feature selection: A data perspective," ACM computing surveys

(CSUR), vol. 50, no. 6, pp1-45, 2017.

H. Dai, W. Wu, J. Li, and Y. Yuan [42] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang and H.

Liu, "Feature selection: A data perspective," ACM computing surveys

(CSUR), vol. 50, no. 6, pp1-45, 2017.

[43] H. Dai, W. Wu, J. Li, and Y. Yua **ILETT EXECTS:**
 I. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang and H.

Liu, "Feature selection: A data perspective," ACM computing surveys

(CSUR), vol. 50, no. 6, pp1-45, 2017.

H. Dai, W. Wu, J. Li, a **ILENT EXECTS:**

1. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang and H.

Liu, "Feature selection: A data perspective," ACM computing surveys

(CSUR), vol. 50, no. 6, pp1-45, 2017.

H. Dai, W. Wu, J. Li, and 2020. [42] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang and H.

Liu, "Feature selection: A data perspective," ACM computing surveys

(CSUR), vol. 50, no. 6, pp1-45, 2017.

[43] H. Dai, W. Wu, J. Li, and Y. Yua **IERRET THEORY COMPUTE:**

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang and H. Liu, "Feature selection: A data perspective," ACM computing surveys (CSUR), vol. 50, no. 6, pp1-45, 2017.

H. Dai, W. Wu, J.
- 2021.