
 

 
Abstract—Modern satellite positioning primarily uses global 

navigation satellite system (GNSS) signals collected by multiple 
satellites and obtains specific location information through 
calculations. However, the nonlinear propagation of the signal 
between the satellite and receiver caused by reflection or 
scattering due to buildings forms a non-line-of-sight (NLOS) 
signal, which significantly degrades positioning accuracy. 
Therefore, distinguishing and eliminating NLOS signals is the 
best way to improve the accuracy of modern satellite navigation. 
Initially, algorithms and physical models were established to 
eliminate NLOS signals. Then, some machine learning models 
were developed that appeared to be able to better solve the 
problem, such as the gradient boosting decision tree, support 
vector machine, convolutional neural network (CNN), and long 
short term memory (LSTM) network. However, adapting the 
same model to different environments and the fine extraction of 
the original features of the signal are challenges that remain 
unresolved. Therefore, this paper proposes a neural network 
based on the attention mechanism, called the environmental 
transformer (ET), that can extract both the satellite visibility 
features of the signal and the environmental features around 
the GNSS signal receiver. In the binary classification task of 
distinguishing between NLOS and LOS signals, an ET can 
reach an accuracy of 87.45%, which is higher than that of 
previously mentioned models. The results also show that the 
adaptability of an ET to different environments has greatly 
improved. This paper also explains the working principle of an 
ET through attention visualization. 
 

Index Terms—Attention mechanism, deep learning, GNSS, 
NLOS, signal visibility classification 

I. INTRODUCTION 

S society continues to develop, the environment in which 
users use positioning has become more complex. In the 

first Fresnel zone of a global navigation satellite system 
(GNSS) signal receiver, an object blocks the radio waves, 
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causing direct waves to be reflected with a phase difference. 
This signal is called the non-line-of-sight (NLOS) signal, and 
its formation process is shown in Fig. 1. At this time, the 
wireless signal can only reach the receiving end through 
reflection, scattering, and diffraction. This multipath effect 
causes a series of problems, such as asynchronous delay, 
signal attenuation, polarization change, and link instability. 
When the antenna height of the GNSS signal receiver is low 
and the propagation distance is long, the path difference 
between the direct wave and the reflected wave will severely 
reduce the satellite positioning accuracy. 
 

 
Fig. 1. Formation process of an NLOS signal. 

 
Currently, the main method used to reduce the error caused 

by the NLOS signal on positioning is to identify the NLOS 
signal from the GNSS signal receiver and eliminate it. In [1], 
one of the most direct methods mentioned is to model the 
environment or develop new algorithms to identify the NLOS 
and line-of-sight (LOS) signals. In [2], the common 
algorithms mentioned include residual tests, LS algorithms, 
identify and discard techniques, and robust estimators. 
However, as the surrounding environment becomes more 
complicated, physical modeling and algorithms become 
extremely difficult. In [3], another proposed method is to use 
other indirect quality information (such as the 
carrier-to-noise ratio) to detect those measurement values 
that contain multipath errors. However, with the continuous 
changes in the external environment, in most cases, many 
multipath or NLOS errors do not follow the expected 
behavior. 

Even though traditional mathematics and modeling cannot 
solve the problem of eliminating NLOS signals, recently, 
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popular machine learning algorithms have provided a new 
solution that can model the problem even without 
algorithmically simulating the complex principles, allowing 
machines to replace humans in classifying the visibility of 
signals in terms of tuning and learning parameters. In what 
follows, we first introduce some commonly used machine 
learning methods.In [4–5],  research based on the gradient 
boosting decision tree showed a relatively high accuracy rate 
that could be achieved for signal reception classification in 
contrast with the distance-weighted k-nearest neighbor and 
adaptive network-based fuzzy inference systems. Moreover, 
research based on support vector machines has achieved 
good results[6–9]. However, in the face of such a 
complicated black-box problem, the tuning of 
machine-learning models remains a big problem. Recently, 
deep learning technology has been developed rapidly, and it 
can be seen as a smarter mechanism than machine learning, 
as it can learn more advanced functions from the given data 
by continuously deepening the neural network. Next, we 
introduce the application of common deep-learning neural 
networks in signal visibility classification. In [10], the 
researchers proposed using the recurrent neural network 
model, which takes a series of channel state information to 
identify the corresponding channel condition. This paper uses 
the CNN-LSTM module, into which CIR data were directly 
input. In [11], a CNN was employed for exploring and 
extracting features automatically, and then the CNN outputs 
were fed into the LSTM network for classification. In [12], 
researchers also used the combination of a fully 
convolutional neural network (FCNN) and LSTM to extract 
signal visibility features and signal timing features 
simultaneously. Transfer learning can also be applied to 
signal visibility classification. Another paper [13] proposed a 
transfer-learning-based NLOS identification method for 
classifying the NLOS. 

Although the recognition rate of NLOS signals using many 
deep learning techniques is already excellent, some problems 
remain that have not been resolved, such as identifying the 
relationship between the different dimensions of the feature 
vector of the input neural network or learning how to make 
the same neural network show strong adaptability in different 
environments. Therefore, to better solve the above problems, 
this paper proposes a new deep learning network based on the 
attention mechanism in [14], which can not only extract 
signal visibility features in complex environments but also 
enhance the adaptability of the network to different 
environments. This network is inspired by the transformer, 
and thus called the environmental transformer (ET). 

The contributions of this paper are as follows. First, this 
paper proposes a new neural network based on the attention 
mechanism. Second, to improve the adaptability to the 
environment, this paper uses the environment feature 
extraction network. Finally, this paper establishes the 
relationship between different dimensions in a sample vector 
through the attention weight visualization. 

The rest of this article is organized as follows. In Section 2, 
this paper describes the proposed ET neural network in detail 
and explains the reasons for the setting of each part of the 
neural network. In Section 3, this paper extracts the feature 
vectors of five dimensions through calculations for the 
network to perform feature extraction. In Section 4, the 
binary classification results from multiple perspectives are 
analyzed. In Section 5, the effect of different dimensional 
feature vectors through attention weight visualization is 

analyzed. We explain the reasons for choosing the attention 
mechanism to construct and verify the improvement of the 
environmental feature extraction network for environmental 
adaptability. Finally, Section 6 summarizes the whole article 
and puts forward an application prospect. 

II. SYSTEM ARCHITECTURE 

The proposed ET neural network architecture for GNSS 
satellite visibility is shown in Fig. 2. To initially extract the 
characteristics of the NLOS and LOS signals, we preprocess 
the original GNSS signal into a five-dimensional feature 
vector consisting of pseudo-range measurement, Doppler 
measurement, the azimuth angle, the elevation angle, and the 
carrier-to-noise density ratio. Then, we call the number of 
feature vectors input to the neural network each time the 
batch size, and input all the feature vectors in a batch into the 
environmental block to extract the environmental 
information around the GNSS receiver. At the same time, we 
input each feature vector into the encoder block, extract the 
satellite visibility information from it through the attention 
mechanism, and finally combine the two to obtain a GNSS 
satellite visibility prediction that is adaptable to the 
environment. As shown in Fig. 2, the ET deep learning neural 
network draws on the ideas of the transformer model in [14] 
and the encoder-decoder model[15–16] using the adapted 
transformer's encoder layer, the self-made environmental 
layer, and the decoder layer to obtain the GNSS satellite 
visibility classification results. Next, this paper introduces the 
specific details of each part of the ET neural network and the 
reason for the setting of each part. 
 

A. Attention mechanism 

Since this is the first time the attention mechanism has 
been introduced in satellite visibility classification, we first 
introduce the attention mechanism [16–18]. 
 
a. The contrast between attention and non-attention 

Non-attention: For example, in the traditional FCNN layer, 
each input has its corresponding output, and the finally 
learned network is equal to each input. This undifferentiated 
feature extraction is called non-attention feature extraction. 

Attention mechanism: This involves paying attention to 
queries. For any given query, the attention mechanism uses 
attention for pooling and biases the selection toward sensory 
input. In the context of the attention mechanism, these 
sensory inputs are called key-value pairs. Each key 
corresponds to a value, and this correspondence is 
non-attentive. Different attention mechanisms can be 
designed to allow different queries to interact with key-value 
pairs that are attentive. In this way, queries can extract more 
subtle features from sensory input. This feature extraction 
mechanism is called attention. 
 
b. Attention mechanism 

This paragraph explains the attention mechanism in Fig. 3. 
First, enter the ith query and m key-value pairs. Next, use the 

function to represent the importance of the key to the query, 

which expresses the attention weight, as shown in (2) and (3). 
Then, after passing through the soft-max layer, the attention 
weight is multiplied by the value to obtain the probability 
distribution of the value corresponding to each key. Finally, 
the attention output is obtained after adding m results. In [16], 
the whole process is called attention pooling, as shown in (1)  
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Fig. 2. The basic architecture of the ET neural network. 

and (4). The attention mechanism used here is additive 
attention. 

                   (1) 

                         (2) 

              (3) 

             (4) 

（  are learnable parameters） 

In short, the output of attention pooling is the result of 
queries having a different weight for each key-value pair after 
the attention evaluation has been performed on all key-value 
pairs. Attention pooling includes the concept of active search 
features. 

B. Encoder block 

As shown in Fig. 2, the encoder block contains four parts. 
First, to extract the visibility characteristics of satellite 
signals, each sample is input independently into the 
multi-head attention. Then, the add&norm block is used to 
prevent gradient explosion or overfitting problems in the 
model. Next, through the FCNN block, a linear factor is 
added to the model and the output size is adjusted. Finally, 
the add&norm block is set again to normalize the data for 
further training. By continuously optimizing the model, we 

can set n to 2, which represents two cycles of training carried 
out. Next, we focus on the multi-head attention mechanism 
and the add&norm block in the encoder block. 

Keys ValuesQuery i

Key 1Query Value 1

Softmax

Key mQuery Value m

Softmax

Output

 
Fig. 3. The basic framework of the attention mechanism. 

 
a. Multi-head attention block 

To obtain the satellite signal visibility feature from 
different angles, the model can learn different behaviors 
based on the same attention mechanism and then combine the 
different behaviors as output. As shown in Figure 4, n copies 
of queries, keys, and values are copied and then input into 
different attention blocks. Each attention block, shown in Fig. 
3, is called an attention head, and “num heads” represent the 
number of attention blocks. Then, the output of n attention 
layers is spliced, the dimensionality of the output is adjusted 
through the FCNN layer, and finally, the output is obtained. 
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To this end, multiple sets of different linear projections that 
have been learned independently can be used. Finally, the 
different outputs of attention pooling are concatenated into a 
vector through splicing. Overall, a multi-head attention block 
can capture all aspects of the feature details so that the 
outputs are more detailed, comprehensive, and 
representative. 
 

Queries Keys Values

FCNN

Attention block Attention block

Concatenation

FCNN

FCNN FCNNFCNN FCNN FCNN

 
Figure 4. The basic framework of the multi-head attention mechanism. 

 
b. Add&norm block 

Inspired by the transformer model, this block consists of 
two parts, and its purpose is to increase the robustness of the 
neural network and increase the prevention of over-fitting 
problems. 
 Residual block [19–20]: 

Because the neural network based on the attention 
mechanism is relatively deep, the problems of gradient 
disappearance and gradient explosion are prone to occur 
during general training. Jump links can obtain activation 
from a specific network layer and then quickly provide 
feedback to the next layer, or even to a deeper layer of the 
neural network. Therefore, as shown in Fig. 5 and (5), we add 
residual blocks between the attention blocks. 
                                                (5) 

               
Fig. 5. The basic framework of a residual connection. 

 
The role of the dropout layer is to reduce the complex 

coadaptation relationship between neurons. Therefore, it is 
not guaranteed that every two hidden nodes will appear at the 
same time each time, so the updating of the weights will no 
longer depend on the common implicit nodes with a fixed 
relationship. This approach prevents certain features from 
being effective only under other specific features. From this 
perspective, a dropout is akin to L1 and L2 regularity, and 
reducing the weight makes the network more robust to the 
loss of specific neuron connections. 
 
 Layer normalization [21]: 

To overcome the problem of abnormal data scale 
distribution during the training process, we also adopt the 
layer normalization method, which can ensure that the mean 
value in each layer is 1 and that the variance is 0. 

C. Environment blocks 

To increase the adaptability of the network to different 
environments and to extract the satellite visibility 
information contained in the environment, we set up two 
environment blocks. Environment block 1 performs a rough 
extraction of the surrounding environment to remove some of 
the noise information from the environment. Environment 
block 2 makes use of attention to perform the fine extraction 
of environmental information. 
 
a. Environment block1 

As shown in Fig. 2, through the combination of the 
multi-head attention block and the add&norm block network, 
all the data in a batch_size are received as a sample to 
perform the preliminary extraction of data features. At the 
same time, it is confirmed that the network does not have 
overfitting problems. All of the data in a batch are input at the 
same time, meaning that the input contains both NOLS and 
LOS features. Therefore, the output of this block is not useful 
for distinguishing NOLS from LOS features, but precisely 
because the sampling time and sampling location of these 
similar data are similar, the output of this block contains the 
environmental information of the sampling location and 
sampling time. Hence, this block is called the preliminary 
extraction of environmental information. Through the 
optimization of the model, we finally set n to 2, which means 
that using environmental block 1 twice can achieve a better 
rough extraction of environmental information. 
 
b. Environment block 2 

As shown in Fig. 3, the internal structure of environmental 
block 2 is also composed of a multi-head attention block and 
add&norm block networks. A feature vector containing all 
environmental information can be obtained through block 1, 
using it as the indexed object (keys and values) and using the 
output of the encoder block as queries to perform the in-depth 
extraction of environmental features. Therefore, through 
environmental block 2, each query obtains the corresponding 
more detailed environmental information. The output of 
environmental block 2 is the environmental information 
ultimately used. 

D. Decoder block 

After performing dropout processing on the output of 
environmental block 2, we splice the output with the output 
of the encoder block to obtain the NLOS feature information 
of each signal and its corresponding environmental 
information. In this block, FCNN adds a linear factor to the 
network and shrinks its dimension to the size required for the 
output. Finally, the GNSS satellite visibility classification 
result is obtained. 

E. Training network 

The goal of deep learning is to adjust the parameters of each 
layer of learning. These parameters represent the relationship 
between the existing feature data and the label; thus, when 
new features are input, the prediction of the label can be 
achieved. The feature data here refers to the data received 
from the GNSS receiver, which includes five features. 
Moreover, the label refers to the result of satellite visibility 

Engineering Letters

Volume 32, Issue 10, October 2024, Pages 2012-2022

 
______________________________________________________________________________________ 



 

classification, which includes the NLOS or LOS signal. In the 
training process, each batch of feature data is input into the 
network to obtain the corresponding output. Then, the 
consistency of the output label and that of the real label are 
estimated through the loss function. In the ET network, the 
loss function is defined as the binary cross entropy of satellite 
visibility prediction. The cross entropy loss value is obtained 
after 50 epoch training iterations, as shown in Fig. 6. 
 

 
Fig. 6. Cross-entropy loss curve. The abscissa is the number 
of epochs, and the ordinate is the binary cross-entropy loss. 

 
After calculating the consistency between the output label 

and the real label, we use back-propagation to estimate the 
input gradient of each node. In [22], the gradient descent 
optimization method was used to update each parameter. In 
this paper, the optimizer chosen is Adam. After applying the 
trained network, we can predict the corresponding satellite 
visibility. 

III. GNSS FEATURE EXTRACTION 

The dataset used in this experiment is an open-source 
dataset from the smartLoc project. Fig. 7 is the top view of 
the data collection site. The specific settings of the 
experiment collection can be found on the official website of 
the smartLoc project. 
 

   
Berlin Potsdamer Platz Berlin Gendarme market 

   
Frankfurt am Main Tower    Frankfurt am Main Westend Tower 

Fig. 7. Top views of the four data collection sites in Berlin and Franklin. 

 

A deep learning neural network can extract feature 
information from the raw data received by the GNSS receiver 
to classify NLOS and LOS signals. However, the original 
signal contains too much noise, which leads to some network 
parameters only learning the rules of the noise, or else due to 
the existence of noise, effective gradient descent cannot be 
performed. Therefore, to effectively learn the information of 
all aspects of the signal while ensuring that the characteristics 
of the signal are not reduced, we summarize the five aspects 
of the feature dimension: pseudo-range measurement, 
Doppler measurement, azimuth angle, elevation angle, 
carrier-to-noise density ratio. 

A. Pseudo-range measurement 

Pseudo-range can be defined as the difference between the 
local time the signal is received (i.e., the local clock face time) 
and the characteristic time value carried by the signal. The 
measured pseudo-ranges are used to form an equation set 
with the three-dimensional coordinates of the GNSS receiver 
antenna phase center and the satellite clock error as 
unknowns, and the three-dimensional coordinates of the 
GNSS receiver antenna phase center are then obtained using 
the least square method. This method can be used for the 
static or dynamic positioning of GNSS receivers. Therefore, 
pseudo-range measurement is a feature that the ET neural 
network should learn. 

B. Doppler measurement 

The frequency change formed by the Doppler effect is 
called the Doppler shift, and it is proportional to the relative 
speed and frequency of vibration. Based on the magnitude of 
the Doppler frequency shift, the relative velocity of the 
target's radial movement to the radar can be measured, and 
according to the time difference between the transmitted 
pulse and the received time, the distance of the target can be 
measured. At the same time, the frequency filtering method 
can be used to detect the Doppler frequency spectrum of the 
target and filter the spectrum of the interference clutter so that 
the radar can distinguish the target signal from the strong 
clutter. Thus, we select Doppler measurement as the feature 
vector for the ET neural network to learn. 

C. Carrier-to-noise ratio 

The quality of GNSS measurements is also often evaluated 
by its corresponding carrier-to-noise ratio, which describes 
the signal strength of the received signal relative to the noise 
power density of the receiver front end. Therefore, this paper 
uses the carrier-to-noise ratio as an input feature to classify 
the visibility of satellites. 

D. Azimuth angle 

The azimuth angle of a satellite is a geometric parameter 
describing its position. Considering the spatial correlation 
between different satellites, it is only indirectly related to the 
GNSS measurement quality. This relationship is difficult to 
express using traditional models, but it may be feasible to use 
deep learning methods, which are conducive to extracting 
abstract representations. Hence, we choose the azimuth angle 
as a feature for the ET neural network to learn. The 
calculation formula of the azimuth angle is given below. 

                              (6) 
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Fig. 8. Process of parameter learning 

from the beginning (random seed = -50, epoch = 0) to the end (epoch = 50). 

 

In (6),  and  represent the length of the "East" and 

"North" components of the satellite position, respectively, in 
the East-North-Up (ENU) coordinates relative to the receiver 
position. 

E. Elevation angle 

The quality of GNSS measurement is closely related to the 
elevation angle. If the satellite has a higher elevation angle, it 
is more likely to be blocked by buildings, resulting in NLOS 
signals. Therefore, we choose elevation angle as a feature for 
the learning of the ET neural network. As (7) shows, the 
elevation angle can be calculated from the GNSS raw data 7. 

                                    (7)  

In (7),  represents the upward component length of the 

satellite position in the ENS coordinates for the position of 
the GNSS receiver.  represents the distance between the 

satellite and the GNSS receiver. Although the exact location 
of the satellite is unknown, it is still possible to estimate the 
location of the satellite based on the ephemeris by combining 

the latitude and longitude of the GNSS receiver; finally, an 
elevation angle can be obtained within the error range. 

IV. EXPERIMENTAL RESULTS 

This section analyzes the satellite visibility prediction 
results of the ET neural network from multiple angles 
through different binary classification evaluation indicators. 

A. Experimental setup 

The performance of the proposed ET neural network in 
predicting satellite visibility is verified using real data 
collected from the four places mentioned in the figure. The 
training portion of the network was trained for 50 epochs, and 
the test portion of the network took one-twentieth of all data 
for testing. The deep learning network was built and trained 
based on the Pytorch and Jupyter lab platforms. 

B. ET network results 

The satellite visibility prediction result is compared with 
the true label, as shown in Fig. 8. The left and right images in 
Fig. 8 show the comparison between the neural network 
prediction results and the label after 50 epochs of the training 
and untrained parts of the network, respectively (for 
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visualization, nine batches are randomly selected for 
observation). From the end of the parameter learning, this 
network has a good learning ability for two kinds of signals, 
rather than being biased toward only one kind of signal. At 
the same time, most of the learned probabilities tend to be 1 
or 0, instead of 0.5, which indicates an excellent learning 
effect. Moreover, even if the signal changes rapidly between 
the two signals, the network can effectively distinguish 
between the two signals. 
 

 
Fig. 9. P-R curve of satellite visibility prediction results. 

 

 
Fig. 10. ROC curve of satellite visibility prediction results. 

 
The final satellite visibility prediction is determined in a 

binary form based on a threshold. In this study, we set the 
threshold to 0.5. This approach means that if the probability 
of satellite visibility prediction is over 0.5, it will be classified 
as NLOS; otherwise, it will be classified as LOS. The results 
of the satellite visibility prediction confusion matrix are 
shown in Table. The confusion matrix consists of four parts: 
true positive (TP), false positive (FP), false negative (FN), 
and true negative (TN). The values of FN and FP are 
relatively low and relatively close, proving that the ET neural 
network is more accurate in judging positive and negative 
examples. After comparison with the true visibility label, we 
find that the results can reach an accuracy rate of 87.45% (an 
average of ten times that of the prediction results). The values 
of FN and FP are relatively low and relatively close, proving 
that the ET neural network is more accurate in judging 
positive and negative examples. 

Precision refers to the proportion of samples that the model 
predicts to be positive. The recall rate refers to the proportion 
of samples that are predicted to be positive among the 
samples whose model label is positive. Expecting the two 
values to both be relatively high, we use the F1-score to 

represent the harmonic average of the two as the final 
evaluation index of the network's two-classification ability. It 
can be seen from the table that the precision rate is 84.43%, 
that the recall rate is 83.92%, and that the F1-Score is 84.18%. 
Therefore, it can be concluded that the ET neural network has 
relatively good classification ability in the F1-score view. 
However, since the number of NLOS signals in the collected 
data is significantly less than the number of LOS signals, the 
accuracy rate is not sufficient to represent the classification 
ability of the ET neural network. Thus, we introduce the 
receiver operating characteristic (ROC) curve and the 
precision-recall (P-R) curve to represent the classification 
ability of the binary classification network, as shown in in Fig. 
9–10. The horizontal axis of the P-R curve is the recall rate, 
and the vertical axis is the precision rate. For a point on the 
P-R curve, if the result is under that threshold the model 
judges it to be negative, and if the result is greater than the 
threshold, it is a positive sample. The horizontal axis of the 
ROC curve is the FPR, and the vertical axis is the TPR. The 
determination of ROC curve points is the same as that of the 
P-R curve. The AUC represents the area under the ROC 
curve, which characterizes the classifier's ability to rank 
positive samples in front of negative samples. It can be seen 
from Figs. 9-10 that even though the number of samples of 
NLOS and LOS differs, a smoother curve can still be 
obtained, proving that the ET neural network has a good 
classification ability under different thresholds. 
 

TABLE I. CONFUSION MATRIX OF ET NEURAL NETWORK SATELLITE 

VISIBILITY PREDICTION. 

Accuracy: 87.45% 
Truth 

NLOS (P) LOS (N) 

Prediction 
NLOS(T) 33.37%(68917) 6.39% (13200) 

LOS(F) 6.15% (12705) 54.07%(111642) 

 

C. Contrast with other networks in feature extraction 

In [23], the superiority of ET neural networks over other 
networks was demonstrated. This experiment compares the 
ability of ET neural networks with traditional CNN and 
FCNNs+LSTM networks in extracting feature vectors. In 
[24], the CNN neural network used in the experiment was a 
five-layer one-dimensional convolutional network, and the 
network settings of the FCNNs+LSTM can be found in the 
literature [12]. We select the precision rate, recall rate, 
F1-score, and ROC curve as the evaluation indicators. 

It can be seen from Fig. 11 and Table II that the various 
evaluation indicators of the ET neural network are higher 
than the other two neural networks. Next, to explain the 
experimental results, we theoretically analyze the superiority 
of the ET neural network. To visualize the comparison, we 
use a layer of CNN and self-attention to represent CNN and 
ET neural networks. First, as shown in Fig. 12, the CNN 
neural network uses kernels to characterize local features. 
However, for all the data, only one matrix with all the data 
information is obtained through the two-layer CNN. 
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TABLE II. COMPARISON OF PRECISION RATE, RECALL RATE, F1-SCORE RATE 
AND ACCURACY OF ET, CNN, AND FCNNS+LSTM NEURAL NETWORKS. 

 

 Recall Precision F1-Score Accuracy 

CNN 
LOS 88.54% 83.61% 86.00% 

83.15% 
NLOS 75.56% 82.41% 78.83% 

FCNNs+LSTM 
LOS 88.39% 87.54% 87.97% 

85.43% 
NLOS 80.93% 82.15% 81.54% 

ET 
LOS 90.47% 89.79% 90.13% 

87.45% 
NLOS 83.92% 84.43% 84.18% 

 

 
Fig. 11. Comparison of ROC curves of ET, CNN, and FCNNs+LSTM 

neural network. 

However, compared with Fig. 13, five matrices with all the 
information can be obtained through a layer of self-attention. 
Moreover, because of the existence of the attention 
mechanism, the F1 corresponding to the feature vector of 
each dimension not only contains its information but also 
actively weights and receives the features of other 
dimensions. 

Secondly, for the FCNN neural network, it is also possible 
to obtain the feature information of all data through one layer. 
However, the obtained matrix no longer has the information  
of the original corresponding dimension but has the same 
operation for each characteristic dimension. This is not 
conducive to further extraction of environmental information 
in the LSTM. Moreover, the multilayer FCNN leads to the 
neural network losing its nonlinear characteristics after too 
much linear fitting, which is not conducive to the final 
complex classification. 

Therefore, both theoretically and experimentally, ET based 
on the attention mechanism can obtain better results in 
satellite visibility classification than other neural networks. 

V. INVESTIGATION OF EACH PART OF THE ET NEURAL 

NETWORK 

This section consists of four parts. The first two parts 
introduce the effects of different dimensions of feature 
vectors on classification and the relationship between them, 
as well as introduce what environmental features are 
extracted by environmental block 2 through attention 
visualization. The third part explains the adaptability of the 
ET neural network to different environments. The last part 

compares several different environment extraction methods 
to demonstrate the correctness of the ET neural networks. 
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Fig. 12. CNN network feature extraction diagram. 
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Fig. 13. Self-attention network feature extraction diagram. 
 

A. Visualization of satellite visibility feature extraction 

In this part, the effects of the different dimensions of 
feature vectors on GNSS signal visibility classification and 
the relationship between them are analyzed. As mentioned 
above, the encoder block trains twice in a loop. As shown in 
Fig.14, both the abscissa and the ordinate represent the 
different dimensions of the sample. For the four attention 
heads of the first circle, the attention weight is higher for 
three- to five-dimensional features. The corresponding 
dimensions are the carrier-to-noise density ratio, azimuth 
angle, and elevation angle. This result represents that the first  
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TABLE III. THE ABILITY OF THE ET NEURAL NETWORK TO PREDICT SATELLITE VISIBILITY UNDER DIFFERENT ENVIRONMENTAL CONDITIONS. 

Datasets 
Berlin 

Potsdamer 
Platz 

Berlin 
Gendarme 

market 

Frankfurt am 
Main Tower 

Frankfurt am 
Main Westend 

Tower 

All data 
(Without 

environmental 
block) 

All data 

Accuracy 86.03% 85.78% 87.36% 84.15% 84.35% 87.45% 

F1-Score 83.10% 82.78% 85.37% 81.98% 81.36% 84.18% 

circle of learning gives higher attention to the characteristics 
of these three dimensions. For the four attention heads in the 
second circle, it can be seen that their attention weights are 
higher in the second dimension. Thus, Doppler measurement 
is also important for feature extraction. However, its 
maximum attention weight does not exceed 0.5, meaning that 
the features of these five dimensions do not receive a great 
deal of network attention, but have a learning effect for each 
dimension. In summary, the network more or less extracts the 
response features from the feature vectors of these five 
dimensions and mainly extracts the carrier-to-noise density 
ratio, azimuth angle, and Doppler measurement. 
 

 
Fig.14. The attention weight of the multi-head attention is in the encoder 

block. Besides, the abscissa is a different key, and the ordinate is for different 
queries. The sum of the attention weights of all keys corresponding to each 

query is 1. 

B. Visualization of environmental feature extraction 

In this part, the necessity of setting up an environmental 
block from a visual point of view is explained. As shown in 
Fig. 15, for the multi-head attention mechanism adopted, 
each head learns different environmental characteristics. The 
abscissa represents the preliminary environmental features 
obtained after the environmental feature extraction of each  
feature vector. The ordinate represents the preliminary 
features after feature extraction for each feature vector. The 
shade of red in the figure represents the size of the attention 
weight. Generally, the image is in a diagonal form; that is, 
each preliminary feature pays more attention to its 
corresponding preliminary environment feature in the overall 
environment. The highest attention weight is no more than 
15%, and it can be understood that each preliminary feature is 
not only limited to its corresponding preliminary 
environmental characteristics but also to a certain amount of 
learning for the surrounding environmental characteristics. 
Overall, this paper shows from the attention visualization that 
the network learns the surrounding environment of the signal 
collection site, and that this learning is both targeted and 
extensive. 
 

 
Fig.15. The attention weight of the multi-head attention is in environmental 

block 2. Besides, the abscissa is a different key, and the ordinate is for 
different queries. Moreover, the sum of the attention weights of all keys 

corresponding to each query is 1. 

C. The adaptability of the network to different environments 

Through experiments, it is found that simply extracting 
features from feature vectors causes some problems. As 
shown in Table III, columns 2 to 5 represent the results 
obtained through the ET neural network using the data 
obtained from the four different collection locations in Fig. 7. 
The sixth and seventh columns use the data of all four 
locations for training, and they either use or do not use the 
environmental block in Fig. 2, respectively. After conducting 
separate training on the data of each collection site, we found 
that the accuracy of the final model obtained from different 
collection sites was different. In addition, the classification 
accuracy obtained by separate training is greater than the 
classification accuracy obtained by data-combined training. 
Therefore, to increase the model's adaptability to the 
environment, we use the attention mechanism to extract 
environmental features. Ultimately, this method achieves 
good results. 

D. Comparison of different environmental feature 
extraction methods 

To prove that the ET neural network uses two layers of 
attention selection to be correct, we contrast it with the model 
a good Seq2seq, which has a strong ability of temporal 
feature extraction to extract environmental features. The 
LSTM and self-attention modules are used as feature 
extraction methods[23–26]. 

As shown in Table IV, it can be seen that the longitudinal 
use of the ET neural network has relatively good performance 
in both indicators. To explain the experimental results, we 
theoretically analyze the correctness of selecting ET nerves. 
To facilitate the analysis, we simplify the LSTM, as shown in 
Fig.16. In Fig.16, feature 2(F2) is obtained through k times of 
LSTM feature extraction, the result of each extraction is input 
into the next LSTM block, and the environment feature is 
finally obtained. However, for the features in a batch, their 
importance is the same. When the batch size is too large, the 
previous feature information will inevitably be weakened.  
Although the result can be optimized by weighting, the result 
is still not ideal. In contrast to the ET model, its principle is  
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TABLE IV. COMPARISON OF SEQ2SEQ (LSTM), SEQ2SEQ (ATTENTION), AND ET NEURAL NETWORKS IN ENVIRONMENTAL FEATURE EXTRACTION. 

 
 
 
 
 
 
 
 

shown in Fig. 12. Each feature vector can be balanced and 
actively extract information. In summary, theoretically, the 
ET model also has better environmental feature extraction 
capabilities. 
 

 
Fig.16. Recurrent neural network environment feature extraction diagram 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, we proposed an environmental transformer 
(ET) neural network based on the attention mechanism. The 
five-dimensional feature vector is extracted from the original 
data as the input of the network. The neural network as a 
whole consists of two parts. The main body is a satellite 
signal visibility classification network based on the 
encoder-decoder architecture. It can extract feature 
information hidden in feature vectors based on additive 
attention. Through the visual analysis of attention, we 
obtained the role and relationship of the input feature vector 
in the classification. Through experiments, we found that the 
performance of traditional classification models for data in 
different environments decreased. Therefore, to increase the 
model's ability to adapt to the environment, we introduced the 
environmental block. This allows the feature vector 
containing satellite visibility information to actively extract 
environmental information from the environmental block. To 
understand the situation of environmental feature extraction, 
we use attention visualization for analysis. Finally, by 
combining the two capabilities, ET can achieve an accuracy 
of 87.45% in the classification of satellite signal visibility. 

In the process of data preprocessing, to reduce the 
influence of noise on ET network training, we determined 
that five-dimensional features can represent satellite signals 
as input. However, the use of five-dimensional features is far 
from sufficient to represent the visibility information of the 
satellite, and some features that are helpful for classification 
are also lost in the process of eliminating noise. Therefore, to 
maximize the use of the satellite's visibility feature 
information, we are more likely to achieve better results 
using the original signal data as input. However, the current 
classification model that uses the original signal as input is 
affected by noise, and the classification result is always 
unsatisfactory. Therefore, the focus of our future research 
will be to reduce the impact of noise by optimizing the 
existing model or adapting the original data to better serve as 
the input feature. 

Recently, multimodal learning has been rapidly developed. 
Therefore, we used the satellite signals received by the GNSS 
receiver as the network's classification input for signal 
visibility. For example, we can also use the picture 
information or video information of the surrounding 
environment as the input of the neural network. By training 
on a multimodal input, it may be possible to extract more 
signal visibility features in the environment, thereby 
obtaining better classification accuracy. Therefore, using 
multimodal learning to simultaneously train different sources 
of information is also an important direction for future 
research. 
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