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Abstract—This paper presents a selection hyper-heuristic
algorithm to solve the multi-compartment vehicle routing
problem whose optimization objective includes vehicle fixed
cost, total distance cost and carbon emissions cost. A multi-
armed bandit method is used as high-level selection strategy to
adaptively select low-level heuristics based on their cumulative
rewards during the optimization process. To ensure effective
exploration of the solution space, a ruin-and-recreated low-level
heuristic has been developed, incorporating six commonly-used
neighborhood operators. For the candidate solution obtained by
low-level heuristic, a native acceptance rule is implemented to
allow accepting inferior solutions by a certain probability, there-
by maintaining the diversification of solutions. Experimental
results on benchmark instances reveal that the proposed algo-
rithm can effectively solve the problem addressed in this paper
and its standard problem. When compared with existing state-
of-the-art approaches, the proposed algorithm demonstrates
superior performance and stability.

Index Terms—multi-compartment vehicles; vehicle routing
problem; hyper-heuristic; carbon emission; multi-armed ban-
dit;

I. INTRODUCTION

W ITH the rapid development of society economic,
global warming has become a real problem, which

poses a threat to the survival of human beings and animals
on earth [1]. It is generally believed that greenhouse gases are
the main cause of global warming. In order to combat with
the global warming, it is crucial to reducing the greenhouse
gases emissions especially carbon dioxide. Many countries
have developed relevant policies to achieve low carbon
or carbon neutral targets. According to the International
Energy Agency data statistics, carbon dioxide emissions
from transportation sector are to blame for about 23% of
the worlds total carbon emission in 2021. For transport
companies, reducing transport costs and carbon emission has
become an issue that cannot be ignored in their development
process. Therefore, planning the routes of transport vehicles
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and taking into account both economic and carbon costs are
essential for transport logistic companies.

Multi-compartment Vehicle Routing Problem (MCVRP)
is a new variant of Vehicle Routing Problem (VRP)[2,3].
Different from traditional VRP, MCVRP uses the vehicles
with multiple compartments to transport multiple types of
products together. MCVRP has been received much atten-
tion in recent years [4], especially in the fields of petrol
distribution [5, 6], waste collection [7], agricultural food
transportation [8], and cold chain logistics [9], etc. Due to
the higher complexity of MCVRP, some heuristics methods,
such as ant colony optimization [10, 11], genetic algorithm
[6], artificial bee colony [5], variable neighborhood search
[5, 6] and iterated local search [12], have been developed.
These algorithms have inspired the research of MCVRP, but
they still need to be improved. Taking into account the great
application value of MCVRP, it is worth investigating it fur-
ther. It is a great challenge to develop an efficient algorithm
for MCVRP especially for the complex real application.

Hyper-heuristic is a novel general-purpose heuristic al-
gorithm that operates on the space of heuristics instead of
solution space [13, 14]. A high-level strategy intelligently
manages a set of pre-designed and problem-dependent low-
level heuristics (LLHs), selecting or generating LLHs to
solve cross-domain problems or different variants within
the same domain. Hyper-heuristic has been successfully
developed for some VRP variants [15-18]. To the best of my
knowledge, there is currently no hyper-heuristic for MCVRP.
The successful experience in VRP filed using hyper-heuristic
algorithms encourages us to develop one for MCVRP.

In this paper, we aim to develop a hyper-heuristic for
MCVRP considering carbon emission. The key contributions
of this study is described. Firstly, we propose a selection
hyper-heuristic, namely HHMAB, to tackle MCVRP whose
objectives include fixed cost, operation cost and carbon
emission costs. Secondly, we adopt a multi-armed bandit
method with upper bound as a high-level selection strategy to
select appropriate low-level heuristic by historical outcomes.
For each solution obtained by the chosen low-level heuristic,
we apply a naive acceptance rule to facilitate a broader
acceptance of potentially worse solutions, as a high-level
acceptance strategy. Thirdly, we have designed six regular
neighborhood structures and an operator based on the ruin-
and-recreate principle, in order to improve the solution.
Finally, we conducted several experiments to assess the
efficacy of the suggested algorithm. Additionally, we exam-
ined the functionalities of the devised high-level selection
strategy and move acceptance strategy, and analyzed the
influences of ruin-and-recreate low-level heuristic and its
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different destruction strength.
The remainder of this paper is described as follows. Sec-

tion II summaries the related work about MCVRP and hyper-
heuristic. Section III gives the description and mathematic
model of the issued problem. The proposed algorithm is in-
troduced in Section IV. Section V provides the experimental
results and correlative analysis. Finally, we conclude and give
the research directions in future.

II. RELATED WORK

A. Multi-compartment vehicle routing problem

The MCVRP was early applied in petroleum products
supplying, and the first study about it was provided by
Brown and Graves [19]. After that, the MCVRP-related
researches have been developed vigorously, owing to increas-
ing availability of multi-compartments vehicles in different
application fields. The general MCVRP only considers the
capacity constraint, which differs from Capacitated Vehicle
Routing Problem (CVRP) simply in the used vehicles. On
this basis, many MCVRP variants are derived by adding path
length limits [5-6, 11], time windows [20], multiple depots
[21], flexible compartment sizes and other attributes. The
relevant reviews of MCVRP can be found in [4, 22-23].

For basic MCVRP, exact methods based on branch and
bound were developed to solve small scale problem [24, 25].
Muyldermans and Pang [7] presented a guided local search
metaheuristic for the MCVRP and revealed the benefits of co-
collection delivery by multi-compartment vehicles. Reed et
al. [10] demonstrated the efficiency of an ant colony system
for CVRP and MCVRP, which combined with 2-opt local
search and k-means clustering method. In addition, they also
gave a kind of generation strategy of MCVRP benchmark
instances. Guo et al. [26] proposed an improved ant colony
optimization algorithm combined with two types of variable
neighborhood descent methods to solve 14 instances.

Fallahi et al. [27] introduced maximum route length
constraints into their MCVRP model, and then proposed a
memetic algorithm (MA) and a tabu search to solve the distri-
bution of cattle food. The MA combined with path relinking
and they both integrated with a local search procedure.
The experimental results revealed their good performance.
Abdulkader et al. [11] proposed an ant colony algorithm
(ACS) by hybridizing several local search procedures to solve
28 new generated benchmark instances. The experimental
results show their algorithm was superior to the method
provided by [10]. Silvestrin and Ritt [28] dealt with a
MCVRP problem that a customer may be visited multiple
times by different vehicles and proposed an iterated tabu
search (ITS) algorithm to solve single-visit and multi-visit
MCVRP. Kaabachi et al. [5] presented a hybrid self-adaptive
variable neighborhood search and artificial bee colonies
approach to solve the petrol replenishment problem. These
two algorithms were firstly tested on a set of randomly-
generated small-sized MCVRP and benchmark instances pro-
posed by [11]. The results still demonstrate that the proposed
algorithms outperformed the existing methods developed
by [10-11, 28]. Yahyaoui et al. [6] developed an adaptive
variable neighborhood search and a genetic algorithm based
on the partially matched crossover to solve the same problem
defined in [5]. Hou et al. [12] presented a hybrid iterated

local search for MCVRP, which is combined with a large
neighborhood search as perturbation method and a simulated
annealing-based acceptance rules. The results prove that the
proposed method outperforms existing state-of-the-art six
MCVRP algorithms. Recently, Guo et al. [29] addressed
the MCVRP problem considering carbon emissions, whose
optimization objective is the total transport cost rather than
the total distance. They designed a three-dimensional ant
colony optimization (TDACO) approach to solve this prob-
lem. Extensive experiment results show that TDACO can
perform well on the issued problem and standard MCVRP.

B. Hyper-heuristic for specific VRP

Hyper-heuristic utilizes high-level strategy to select or
generate heuristics, which can effectively solve cross-domain
problem. In VRP fields, there are some successful specifi-
cally designed hyper-heuristics for basic VRP and variants.
Marshall et al.[30] designed six selection methods and eight
acceptance criteria to construct forty-eight combinations to
compare their performance over randomly generated in-
stances of CVRP. Garrido and Castro [15] presented a hill-
climbing based hyper-heuristic to solve CVRP by employing
some constructive-perturbative pairs of low-level heuristics to
construct and improve partial solutions. Garrido and Riff [16]
proposed an evolutionary-based hyper-heuristic approach for
solving dynamic vehicle routing problem, which includes
constructive, perturbative and noise heuristics three types of
low-level heuristics in their collaborative framework. Tarhini
et al. [31] proposed an evolutionary Cuckoo Search-based
hyper-heuristic for the Vehicle Routing with Prioritized Cus-
tomers (VRPC) and compared it with the modified Clarke
Wright algorithm. The results indicate the solution selected
by the proposed hyper-heuristic outperformed the modified
Clarke Wright algorithm.

Recently, there emerge some hyper-heuristics which use
machine learning methods as high-level strategy to evaluate
and select low-level heuristics. Sabar et al. [17] proposed
an effective hyper-heuristic for a large-scale vehicle routing
problem with time windows (VRPTW), which uses column
generation to construct an initial solution and then employs
a multi-armed bandit selection approach to select low-level
heuristics. Qin et al. [18] develops a hyper-heuristic based on
policy-based reinforcement learning for heterogeneous vehi-
cle routing problem (HVRP), which aims to minimize the
maximum routing time of vehicles. Hou et al. [32] presented
a two-stage selection hyper-heuristic for CVRP, which takes
a set partitioning procedure as post-optimization technology.
In the selection hyper-heuristic framework, a multi-armed
bandit method is used to select low-level heuristics and the
routes of improved solutions found at each iteration are
recorded. Then, a set partitioning model was constructed
according to the recorded routes, and was solved by CPLEX
12.6. The results on 82 CVRP instances reveal that the two-
stage method is superior to existing CVRP approaches.

From this knowable, the excellent performance of the
hyper-heuristic methods for VRP and its variants indicates
that the hyper-heuristic algorithm has great application po-
tential in solving MCVRP.
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III. PROBLEM DESCRIPTION AND FORMULATION

A. Problem Description

The multi-compartment vehicle routing problem can be
described as follows. Suppose that there is a depot denoted
as 0 and n customers in a region. There are some homoge-
neous multi-compartment vehicles located at the depot. Each
customer has m different types of products to be served.
Each vehicle has m compartments whose capacities may be
different to serve different products. The product m must be
located in its dedicated compartment, which just picks up
product m. The vehicle starts from the depot, visits some
customers, and then returns to the depot. Each customer is
visited only once by only one vehicle. At any time, the total
load of different products must not exceed the capacity of
the compartment. Additionally, the total travel distance that
is traveled by every vehicle cannot exceed the predefined
maximum route length. The optimization objective of the
addressed problem in this paper is to minimize the total
cost including vehicle fixed cost, total distance and carbon
missions cost.

TABLE I gives the definitions of parameters and decision
variable for the addressed problem in this paper.

B. Mathematical Model

First of all, we give the definition of the optimization
objective. The objective consists of fixed cost, total operation
cost and carbon emission cost.

(1) Fixed cost
The fixed cost is related to the number of vehicle, which

includes vehicles purchase or rent cost, driver wages and
other cost. It is defined in Eq. (1), w1 is the cost coefficient
per vehicle.

F1 = w1

∑
k∈K

∑
j∈V

x0jk (1)

(2) Operation cost
The operation cost is correlation with total travel distance

and it is calculated by Eq. (2), where w2 is cost of per unit
distance.

F2 = w2

∑
k∈K

∑
i∈V

∑
j∈V

dijxijk (2)

(3) Carbon emission cost
Carbon emission cost mainly is related to fuel consump-

tion. Like Guo et al.[29], we also adopt the comprehensive
modal emission model(CEME) [33,34] to accurately calcu-
late the cost of carbon emission. The fuel consumption in
liter between node i and node j is calculated by Eq. (3),
which includes engine, vehicle weight and vehicle driving
three components. c1, c2 and c3 are the coefficients of each
component. So, the total carbon emission cost is calculated
by Eq. (4), where w3 is the cost of per liter.

FCij = c1dij/vij + c2dij(W + lij) + c3dijvij
2 (3)

F3 = w3

∑
k∈K

∑
i∈V

∑
j∈V

FCijxijk (4)

According to the values of parameters of CEME proposed
by Guo et al. [29], W is set to 6350 kg, vij is set to constant
35 km/h. The values of c1, c2 and c3 are calculated to be
3.66, 8.4 ∗ 10−6 and 1.09 ∗ 10−5 respectively. It should be
noted that the unit of each variables has been uniformed. The

fuel consumption is gotten by Eq.(3) in liter. The value of
three weight coefficients w1, w2 and w3 are set to 300, 5,
and 12.6 respectively.

Then, based on the above analysis, the mathematical
formulation of the issued MCVRP is defined based on [12],
and its description is as follows.
Minimize:

Z = F1 + F2 + F3 (5)

Subject to: ∑
k∈K

∑
i∈C

xijk = 1,∀j ∈ C (6)

∑
k∈K

∑
j∈C

xijk = 1,∀i ∈ C (7)

∑
i∈C

x0ik =
∑
j∈C

xj0k = 1,∀k ∈ K (8)

dim ≤ Qk
im ≤ Qm,∀i ∈ V, k ∈ K,m ∈M (9)

(Qk
im + qjm)xijk ≤ Qk

jm,∀i ∈ V, k ∈ K,m ∈M (10)∑
i∈V

∑
j∈V

dijxijk ≤ Lmax,∀k ∈ K (11)

xijk ∈ {0, 1},∀i ∈ V, j ∈ V, i 6= j, k ∈ K (12)

Eq. (5) defines the composition optimization objective. Con-
straints (6) and (7) ensure that every customer must be served
only once by one vehicle. Constraint (8) indicates that every
vehicle must start from the depot and end at the depot.
Constraint (9) ensures that the total quantity of each product
must not exceed the capacity of the compartment at any time.
Constraint (10) represents the accumulation of each product
in a vehicle. Constraint (11) states the total travel distance
of each vehicle cannot exceed the maximum route length.
Constraint (12) defines the value of decision variable xijk.

IV. PROPOSED ALGORITHM

A. Description of HHMAB

The proposed algorithm is a single-solution based selec-
tion hyper-heuristic. It starts with a single solution obtained
by sweep algorithm, and then iteratively executes the opti-
mization process until it meets with termination condition.
During each iteration, a high-level selection strategy chooses
one low-level heuristic, which is then applied to the current
solution in order to generate a new candidate solution. For the
new obtained solution, the move acceptance rule is employed
to decide to accept or refuse it. The pseudocode of HHMAB
is described in Algorithm 1.

B. High-level Selection Strategy

1) Multi-armed Bandit Selection Method: The primary
role of high-level selection strategy is to select one suit-
able low-level heuristic from a set of pre-defined low-level
heuristics during the optimization process. It is important to
design the evaluation and selection mechanism of low-level
heuristic so as to improve the solution quality of the selection
hyper-heuristic. The commonly used selection approaches,
such as random, greedy[35], probability matching(PM)[36]
and adaptive pursuit strategy (AP)[37] have been applied
in selection hyper-heuristics. To some extent, the selection
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TABLE I
SYMBOLS DEFINITION OF PARAMETERS

Parameters Description

V sets of depot and customers,V = {0, 1, 2, ...n} = {0}
⋃

C.

C sets of customers, C = {1, 2, ...n}.
K sets of multi-compartment vehicles, K = {1, 2, 3, ...k}.
M sets of types of products, M = {1, 2, 3, ...m}.
dim total demand of product of type m of customer i.
Qim capacity of compartment that product of type m is placed.
Qk

im total quantity of product of type m by vehicle k after visiting node i.
dij distance cost between node i and node j.
vij speed of vehicle between node i and node j. vij is a constant.
lij total load of products when the vehicle travels between node i and node j.
W vehicle weight. W is a constant.
Lmax maximum route length of each path.
xijk xijk is a decision variable. if the vehicle k directly visits node j after visiting node i, xijk = 1;otherwise xijk = 0.

Algorithm 1 HHMAB
Input: maximum iteration number maxiter, neighborhood

list size nb, scaling factor C, the destruction strength list
plist and maximum trail number iter
Output: the best solution S∗

1: Get the list of low-level heuristic hList and initialize its
related parameters values;

2: Generate an initial solution Sc by the modified sweep
algorithm;

3: S∗ = Sc;
4: iteration variable t = 0;
5: while t < maxiter do
6: if one or more LLHs that has not been used then
7: cLLH Randomly select one LLH from hList;
8: else
9: Select one LLH cLLH that makes Eq.(13) have

maximum value;
10: Apply cLLH to current solution Sc and transfer

parameters nb,plist and iter, then get a new solution
Sn;

11: Calculate the score and accumulative reward of the
chosen LLH;

12: if Sn meets the acceptance rule then
13: Sc = Sn;
14: if Sn is superior to S∗ then
15: S∗ = Sn;
16: t++;
17: return S∗;

method with excellent performance both take into account
both exploitation and exploration.

Multi-armed bandit method (MAB), a specific reinforce-
ment learning method, is an online selection mechanism
that select appropriate arm to make the expected reward
maximum. For the selection hype-heuristic, the selection of
low-level heuristic(LLH) is similar with the arm selection
in MAB problem. Inspired by the successful experience of
MAB as high-level selection strategy[17,32,38], we use an
MAB with upper confidence bound method as the selection
mechanism, where each LLH can be considered as an arm
in MAB problem. At the beginning of execution, the used

number and the cumulative reward value of each pre-defined
LLH are both set to 0. If there exists one or more low-
level heuristics that have not been used, a random selection
strategy is applied, which selects one LLH randomly from the
set of low-level heuristics. Once the chosen LLH is executed,
the evaluation score will be calculated. For the chosen LLH,
the values of related parameters and its cumulative reward
are also updated. When all the low-level heuristics have been
used once, the LLH that has the largest value defined in Eq.
(13), will be selected in the subsequent execution process.

qi(t) + C ×

√√√√2× ln
∑K

j=1 nj(t)

ni(t)
(13)

In Eq.(13), qi(t) is the empirical reward, which indicates the
empirical reward of ith low-level heuristic obtained from
begin to the time t. qi(t) is calculated by the Eq.(14).

qi(t+1) =
ni(t−1) × qi(t) + ri(t)

ni(t)
(14)

Where ri(t) the score is based on credit score assignment of
the ith low-level heuristic at time t .

The second component in Eq. (13) is an upper confidence
bound that is related to the number of used times ni(t). K is
the number of low-level heuristics. The parameter C controls
the balance between the exploitation and exploration.

2) Score Assignment Mechanism: The high-level strategy
of hyper-heuristic is responsible for selecting appropriate LL-
H during optimization process. The performance evaluation
of each LLH is very important and it decides which one is
the best suitable to be executed next. The main function of
the credit score assignment is to record how well each LLH
is executed.

When one selected LLH is applied on the current solution,
a new solution will be generated. The difference between the
optimization objective values of current solution and new
solution could reflect the performance of chosen LLH. But,
the difference value is usually large at early stage and it
will be small or not change with the execution of the search
process. It is obvious that the raw change of optimization
objective cannot be suitable to measure the performance
of LLH in the overall search process. Thus, we take the
improvement rate as the score of chosen LLH, as defined in
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Eq. (15).

r =
f(Sc)− f(S

′
)

f(Sc)
× 100 (15)

Where f(S) and f(S
′
) are the objective values of current

solution and the new solution.

C. Move Acceptance Strategy

The move acceptance strategy determines accept or reject
the neighborhood solution that is found by the chosen LLH.
To keep the diversification of solutions, we adopt naı̈ve
acceptance rule to decide the new solution whether to be
accepted or rejected, defined in Eq. (16).

Sn =

{
R, f(R) ≤ f(S)
R, f(R) > f(S), p ≥ 0.5, p ∈ [0, 1]

}
(16)

Where S and R are current solution and new solution
respectively, and their objective values are denoted as f(S)
and f(R); p is a random number between 0 and 1. If R is
better or equals to S, R replaces S. Otherwise, R replaces
S with 50% probability. The naı̈ve acceptance rule allows
accepting worse solutions with certain probability, which can
enhance the solution’s diversity and may lead the algorithm
to find better solutions in the follow-up search.

D. Low-level Heuristics

The proposed algorithm designed a set of neighborhood
operators as low-level heuristics, both of which are problem-
specific operators. The pool of low-level heuristics used in
this paper includes six regular local-search based neighbor-
hood operator and one ruin-and-recreate local search method.

1) Local search-based Low-level heuristics: There are six
local-search based operators are designed to generate a new
neighborhood solution by modifying the current solution
without violating any problem constraints. It is worth noted
that each node or edge move excludes the depot in order
to keep the solution feasible. The descriptions of them are
given as follows.

(1) One Point Move. Randomly select one node and move
it to another position in the same route or another different
route.

(2) Two Points Swap. It consists of inter-route and intra-
route operators. Two different customers are randomly se-
lected from the same route or two different routes and then
their positions are exchanged.

(3) Point Edge Swap. Randomly select one node and an
edge in the same route or from two different routes, and then
swap them.

(4) 2-opt. In a route, two non-adjacent edges are chosen
randomly and then the nodes between them are reversed to
create a new route. It is a classical operator for travelling
salesman problem.

(5) Or-opt. Select a sequence of nodes and shift them to
another position in the same route or to another different
route. The number of moved nodes is usually an integer
within a range. In this paper, when this operator is executed,
the range is set to [2, 4].

(6) Cross. It occurs between two different routes. T-
wo edges are selected and then broken to get four route
segments. Then, two new edges are added respectively to

(a) original solution (b) partial solution

(c) new solution

Fig. 1. example of the ruin-and-recreate operator

connect two segments from two different routes to form two
new routes.

In addition, we employ two optimization techniques to
improve the efficiency of these neighborhood operators due
to the complexity of the researched problem. One is to use
neighborhood list to limit the space of search to decrease
computation time. For example, when a node i is selected
by a neighborhood operator, the move operation just only
happens between i and the nodes in its neighborhood list.
The neighborhood list of i is constructed by the top t
nearest nodes in distance, where t is the length of the
neighborhood list. The other technique is to do pre-evaluation
before executing any movement involving edges or nodes.
If the movement results in violating capacity or maximum
route length constraints or causing a bigger increase in the
objective value, the movement will be discarded. In this way,
the algorithm will not do useless search during the execution
process.

2) Ruin-and-recreate Low-level heuristic: Taking into ac-
count the short-sighted shortcoming of local search based
operators, we design a ruin-and-recreate low-level heuristic
to explore relative bigger solution space. It is based on ruin-
and-recreate principle [39], which has excellent performance
in VRP fields by destroying and repairing solution.

Figure.1 shows the illustration of ruin-and-recreate opera-
tor. For an original solution shown in Figure.1 (a), customers
2, 4 and 5 are removed and an infeasible partial solution is
obtained. Then, the removed customers are inserted into the
partial solution to get a new solution. Thus, this operator
can be regarded as a perturbation method to avoid falling
into local optimality too early.

In this paper, we execute the destruction and repair proce-
dures many times and take the best solution found in iteration
process as the output solution. It is designed to exploit the
benefits of destruction and reconstruction to search in bigger
solution space. Algorithm 2 gives the description of the ruin-
and-recreate LLH.

V. COMPUTATIONAL EXPERIMENTS

In this section, we will describe the parameters settings
and conduct several experiments to prove the effectiveness
of the proposed algorithm. First, we employed HHMAB to
solve standard MCVRP problem and compare it with existing

Engineering Letters

Volume 32, Issue 10, October 2024, Pages 2002-2011

 
______________________________________________________________________________________ 



Algorithm 2 ruin-and-recreate LLH
Input: current solution Sc, the destruction strength list plist

and maximum trail number iter
Output: the best solution S

1: Set S = Sc;
2: Set iteration variable t = 0;
3: Get minimize and maximize destruction factor from

plist, and then assign to pmin and pmax respectively;
4: while t < iter do
5: St = Sc;
6: Calculate the number of removed nodes by a number

that is randomly selected between pmin and pmax;
7: Get a removed nodes list rlist from St;
8: Get a partial solution R by removing the nodes in

rlist;
9: while rlist is not null do

10: Select randomly a node i from rlist;
11: Insert i to R by the cheapest insertion procedure

and get a new partial solution R
′
;

12: Remove i from rlist;
13: R = R

′
;

14: if R is superior to S then
15: S = R;
16: t++;
17: return S

eight state-of-the-art approaches. Second, we compared our
proposed algorithm with TDACO [29] and HILS[12] on the
addressed problem in this paper. Then, we carried out two
experiments to verify the effectiveness of multi-armed bandit
high-level selection strategy and native acceptance strategy
used in our proposed algorithm. Finally, for ruin-and-recreate
low-level heuristic, we tested its performance and the impacts
of its different destruction strategies.

A. Experiments Setup and Parameters Settings

The proposed algorithm was programmed by C# in Visual
Studio 2019, which is run on a personal computer with
Intel i5-9500 3.0GHz CPU and 16GB RAM and running
windows 10 64-bit operation systems. HHMAB was tested
on 28 standard MCVRP instances designed by Abdulkader
et al. [11]. Each instance is solved 10 times independently.

The parameters settings of HHMAB are described as
following. The maximum iteration number is set to 200. The
size of neighborhood list is set to 30. The scaling factor C
in MAB is set to 4 according to the preliminary experiment.
The destruction factor list includes 0.05 and 0.4 two numbers.
The maximum attempt iteration number of ruin and recreate
procedure is set to 30.

B. Results on Standard MCVRP

To validate the performance of the HHMAB algorithm, we
use HHMAB to solve MCVRP problem whose optimization
objective is the total distance. Subsequently, we compare
HHMAB with existing state-of-the-art MCVRP methods,
including ACS [10], HAC [11], HAVNS [5], HABC [5],
AVNS [6], GAPMX [6], TDACO [29] and HILS [12]. The
experimental results are shown in Table II.

(a) Maximum Improvement Percentage

(b) Average Improvement Percentage

Fig. 2. comparison of improvement percentage relative to ACS

As reported in Table II, HHMAB achieves the least total
cost among of all the algorithms. Notably, both ACS and
GAPMX fail to find any best solutions. TDACO just finds 1
best solution. On the other hand, HAC and HAVNS achieve
4 and 6 optimal solutions respectively while AVNS obtains
4 best solutions as well. Remarkably, HHMAB, HABC and
HILS successfully hit 10 optimal solutions, demonstrating
their good competition. It indicates that HHMAB possesses
commendable capability in finding superior solutions com-
pared to its counterparts on all instances.

Further, we take ACS as baseline method and compare
HHMAB with HABC, TDACO and HILS algorithms, which
are better than the remaining four comparison algorithms
mentioned earlier. We calculate the improvement percentage
achieved by each of these methods over ACS on every
individual problem instance. The corresponding calculation
results are illustrated in Fig.2.

Seen from Fig. 2, it can be observed that TDACO has
least average and maximum improvement percentage values
compared to others. HABC and HILS were specifically
designed for MCVRP problem, and they exhibit greater
competitiveness when compared against TDACO. However,
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TABLE II
COMPARISON RESULTS OF HHMAB AND OTHER ALGORITHMS ON STANDARD MCVRP

Instance ACS HAC HAVNS HABC AVNS GAPMX TDACO HILS HHMAB

vrpnc1a 569.564 550.70 550.70 550.42 550.70 551 550.70 550.70 550.70
vrpnc1b 569.118 551.94 506.18 502.83 506.18 551 548.77 548.77 548.77
vrpnc2a 957.525 890.68 881.84 890.68 890.68 901 876.76 875.13 870.89
vrpnc2b 954.856 918.96 918.96 914.00 918.96 914 888.92 880.31 884.36
vrpnc3a 964.132 874.07 878.83 875.24 880.84 894 870.80 865.23 865.23
vrpnc3b 959.327 895.26 898.64 895.39 900.63 914 867.51 865.82 865.21
vrpnc4a 1253.860 1126.12 1126.12 1126.12 1126.12 1243 1106.84 1089.91 1095.08
vrpnc4b 1254.510 1159.48 1159.48 1159.48 1159.48 1204 1126.79 1113.15 1110.97
vrpnc5a 1587.020 1444.29 1408.86 1385.71 1408.86 1470 1404.00 1380.69 1401.26
vrpnc5b 1640.590 1525.87 1515.25 1492.02 1515.25 1570 1467.39 1426.27 1415.69
vrpnc6a 573.274 557.49 557.49 557.49 557.49 560 557.49 557.49 557.49
vrpnc6b 573.378 559.37 503.82 503.94 505.56 563 555.43 555.43 555.43
vrpnc7a 997.007 928.24 928.24 928.24 928.24 980 930.16 927.62 932.43
vrpnv7b 969.337 932.67 932.67 932.67 932.67 960 933.76 930.66 932.27
vrpnc8a 963.381 882.96 888.50 885.50 890.20 880 880.75 876.67 876.55
vrpnc8b 976.212 884.85 887.35 885.14 889.30 884 880.89 874.82 874.82
vrpnc9a 1343.08 1228.88 1211.21 1221.00 1211.32 1221 1218.98 1212.66 1213.18
vrpnc9b 1346.63 1226.58 1221.26 1226.00 1220.58 1226 1215.30 1213.66 1214.27
vrpnc10a 1645.58 1511.65 1505.23 1504.68 1505.23 1680 1496.56 1493.77 1483.79
vrpnc10b 1659.94 1526.02 1517.65 1516.86 1517.65 1683 1508.04 1499.63 1501.39
vrpnc11a 1133.880 1110.45 1110.45 1110.45 1110.45 1130 1108.67 1115.97 1114.15
vrpnc11b 1247.490 1221.73 1221.73 1220.43 1221.73 1250 1223.87 1217.47 1210.36
vrpnc12a 911.861 912.64 901.22 901.15 901.36 913 907.76 902.59 905.79
vrpnc12b 970.833 950.79 935.62 923.25 936.25 960 954.43 950.79 950.79
vrpnc13a 1577.45 1556.46 1549.93 1549.82 1550.56 1570 1551.43 1563.66 1555.83
vrpnc13b 1572.11 1550.12 1538.67 1536.38 1540.37 1572 1555.44 1562.46 1557.83
vrpnc14a 914.857 911.35 911.35 911.35 911.35 913 912.59 911.98 911.98
vrpnc14b 970.933 965.84 965.84 965.84 965.84 973 967.80 966.30 966.66
Average 1109.205 1048.41 1040.47 1038.29 1041.21 1076.07 1038.14 1033.20 1032.94

in terms of overall performance, HHMAB has powerful
ability to solve MCVRP problem. The results also mean that
HHMAB can solve effectively standard MCVRP problem.

C. Results on MCVRP with Total Cost

In this section, we conducted a comparative analysis with
state-of-the-art method for the MCVRP considering carbon
emissions, namely TDACO [29]. Moreover, we also modify
HILS [12] to suit the requirements of the addressed problem
owing to its strong performance in solving MCVRP. The
comparison results of three algorithms are shown in Table
III.

The columns labeled Best, Mean and SD represent the best
solution, average solution, and standard deviation respective-
ly. The column T indicates the average computation time
in seconds for each instance. For TDACO, execution time
was determined as 1.2 times the number of customers [29].
Beyond that, bold formatting is used to highlight the optimal
solutions for each instance within all tables for enhanced
clarity.

As shown in Table III, it can be clearly seen that our
proposed algorithm has the best performance. Compared with
TDACO and HILS, HHMAB improves the best total cost
on average by 1.61% and 0.19% respectively. HHMAB is
better than TDACO on all remaining instances expect for
two small instances. The maximum improvement percentage
reaches to 5.15% on instance vrpnc5b. When compared with
HILS, HHMAB obtains 22 best solutions, and the maximum
improvement percentage is 2.10% on instance vrpnc12b.

Although HILS gets 13 best solutions, HHMAB is better
than it for the most instances especially for large-scale
instances. Furthermore, HHMAB demonstrates remarkable
stability among all algorithms based on average standard
deviation values. Finally, the three algorithms exhibit average
computation times of approximately 136, 99 and 94 seconds
respectively. These findings indicate that our proposed algo-
rithm HHMAB stands out as a high-efficiency method. To
sum up, HHMAB is the most efficient and stable method of
three comparison algorithms.

Further, we calculate the average best solution’s objective
value obtained by TDACO, HILS and HHMAB on different
problem-scale instances, as shown in Table IV. Then, the
average improvement percentage values of HHMAB com-
pared with TDACO and HILS is denoted as g1 and g2 in
Table IV. As shown in the table, three algorithms have al-
most equivalent performance on instances whose customer’s
number is between 50 and 120. Compared to TDACO
and HILS, HHMAB has obvious improvement on large-
scale instances. When the problem-scale of instances reaches
to 150, HHMAB improves 2.38% and 0.16% respectively.
When the number of customers is 199, the improvement
values of HHMAB increase to 3.98% and 0.62%. It follows
from the above that our proposed algorithm has a powerful
ability to solve large-scale problem instances.

D. Analysis of Different High-level Section Strategies

To test the effectiveness of the multi-armed bandit high-
level section strategy, we develop four variants of the pro-
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TABLE III
COMPARISON RESULTS OF HHMAB AND OTHER ALGORITHMS ON MCVRP WITH TOTAL COST

Instance N
TDACO HILS HHMAB

Best Mean SD Best Mean SD Time(s) Best Mean SD Time(s)

vrpnc1a 50 5746 5788 41 5746 5761 20 18 5746 5754 5 33
vrpnc1b 50 5732 5825 83 5732 5732 0 20 5732 5732 0 34
vrpnc2a 75 9668 9784 66 9584 9647 42 31 9551 9645 56 36
vrpnc2b 75 9776 9906 64 9600 9693 61 37 9594 9736 62 32
vrpnc3a 100 8990 9110 66 8902 8934 19 84 8902 8957 23 95
vrpnc3b 100 8999 9175 76 8906 8943 23 66 8906 8958 26 99
vrpnc4a 150 11984 12185 102 11708 11813 77 169 11707 11854 66 153
vrpnc4b 150 12198 12457 106 11824 11941 80 162 11826 11934 59 156
vrpnc5a 199 15738 16137 177 15282 15433 94 328 15268 15514 121 200
vrpnc5b 199 16515 16777 213 15656 16021 134 245 15664 16043 168 198
vrpnc6a 50 5869 5997 79 5795 5809 34 12 5795 5796 4 19
vrpnc6b 50 5841 5968 86 5808 5824 30 11 5780 5786 11 19
vrpnc7a 75 10346 10503 136 10093 10297 78 22 10266 10342 43 28
vrpnv7b 75 10410 10602 141 10264 10367 61 26 10265 10350 52 26
vrpnc8a 100 9076 9501 214 8983 9104 117 73 8983 9058 84 65
vrpnc8b 100 9092 9425 231 8970 9054 100 67 8970 9022 70 68
vrpnc9a 150 13446 13752 240 13196 13290 78 118 13113 13305 91 115
vrpnc9b 150 13379 13715 249 13146 13235 57 111 13149 13251 79 103
vrpnc10a 199 16833 17100 156 16229 16653 236 267 16179 16536 256 201
vrpnc10b 199 16916 17173 150 16605 16816 124 252 16263 16741 201 207
vrpnc11a 120 10481 10531 52 10429 10823 325 116 10407 10609 273 144
vrpnc11b 120 11194 11336 63 11110 11209 92 133 11069 11191 89 138
vrpnc12a 100 9735 9880 129 9489 9608 118 60 9464 9581 130 75
vrpnc12b 100 10191 10322 39 10115 10166 47 76 9903 10104 82 71
vrpnc13a 120 14417 14508 59 14399 14660 221 69 14423 14523 115 89
vrpnc13b 120 14406 14504 64 14440 14515 68 100 14382 14530 45 94
vrpnc14a 100 9844 9880 16 9837 9841 2 57 9836 9841 4 68
vrpnc14b 100 10241 10342 77 10228 10286 66 53 10227 10265 31 61
Average 10967 11149 113 10788 10910 86 99 10763 10891 80 94

TABLE IV
COMPARISON RESULTS OF THREE ALGORITHMS ON DIFFERENT

PROBLEM-SCALE INSTANCES

Nodes TDACO HILS HHMAB g1(%) g2(%)

50 5795 5770 5763 0.58 0.12
75 10050 9885 9919 1.30 -0.34
100 9521 9429 9399 1.28 0.32
120 12625 12595 12570 0.43 0.19
150 12752 12469 12449 2.38 0.16
199 16501 15943 15844 3.98 0.62

posed algorithm to compare their high-level section strate-
gies.

We employ four commonly used selection methods in
hyper-heuristic, namely random selection (SR), roulette
wheel selection (RW), probability matching (PM) and adap-
tive pursuit strategy (AP), to evaluate the performance of
our MAB selection strategy. The four variants, which are
called HH SR, HH RW, HH PM and HH AP respectively,
are based on HHMAB and differ only in terms of their
selection methods. For HH PM and HH AP, the parameters
setting of selection methods can be found in our previous
study[32].

Table V summaries the comparative results of all five
algorithms. Columns BestAvg, SDAvg and TimeAvg denote
the average values of best solutions, standard deviations,
and average computation times across all problem instances

correspondingly. Column BestNum represents the count of
best solutions obtained by each algorithm across all the
problem instances.

As presented in Table V, it is evident that the HHMAB
algorithm outperforms the other four variants. Among of
all algorithms, HH SR performs the poorest due to its
randomness without considering individual performances. In
contrast, the remaining three algorithms and HHMAB utilize
rewards obtained by each LLH to adaptively adjust their
selection probabilities. Obviously, HHMAB shows remark-
able performance and finds 20 best solutions, which has
higher success rate than others. In terms of computation time,
HHMAB requires additional computation efforts to evaluate
low-level heuristics performance. Even so, this slight increase
in execution times does not undermine the effectiveness of
HHMAB. Thus, employing a multi-armed bandit selection
strategy proves effective and suitable for our proposed algo-
rithm.

E. Analysis of Different Acceptance Strategies
In this section, we test the influence of different solution

acceptance strategies on the proposed algorithm. Conse-
quently, we construct two variants based on HHMAB us-
ing All Move(AM) acceptance and Only Improvement(OI)
acceptance. The former always accepts any found solution
regardless of its better or worse. The latter only accepts the
solution better than current solution. These two variants are
denoted as HHMAB AM and HHMAB OI respectively.
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TABLE V
SUMMARY COMPARISON RESULTS OF FIVE ALGORITHMS

Methods BestAvg SDAvg BestNum TimeAvg(s)

HH SR 10821 91 4 61
HH RW 10818 97 8 70
HH SR 10821 95 8 58
HH RW 10818 85 6 59
HHMAB 10763 80 20 94

TABLE VI
COMPARISON OF THREE ALGORITHMS WITH DIFFERENT ACCEPTANCE

STRATEGIES

Methods BestAvg SDAvg BestNum TimeAvg(s)

HH AM 10792 84 12 93
HH OI 10810 87 11 92
HHMAB 10763 80 21 94

TABLE VII
COMPARISON RESULTS OF FOUR ALGORITHMS

Methods BestAvg SDAvg BestNum TimeAvg(s)

HHMAB NR 11160 206 0 4
HHMAB F 10818 87 13 89
HHMAB DR 10810 94 6 88
HHMAB 10763 80 22 94

According to the results of HHMAB and its two variants
reported in Table VI, it reveals that HHMAB achieves the
lowest average total cost, outperforming the comparisons
variants. More specifically, HHMAB obtains 21 best solu-
tions with a success rate of 0.75. In contrast, HHMAB AM
and HHMAB OI find 12 and 11 best solutions respectively,
resulting in a lower success rates. These findings demonstrate
that HHMAB allow for occasional acceptance of worse ones
through a probabilistic mechanism, maintaining algorithmic
diversity. Notably, all algorithms have similar computational
overheads. Overall, HHMAB using a native acceptance rule
can consistently get better solutions in a reasonable execution
time.

F. Analysis of Ruin-and-recreate LLH and its destruction
Strategy

In this section, we analyze the performance ruin-and-
recreate LLH and the impacts of its different destruction
strategy. We construct three variants of HHMAB to carry
out the experiments, namely HHMAB NR, HHMAB F and
HHMAB DR respectively. The first variant removes the ruin-
and-recreate LLH. HHMAB F uses a fixed destruction factor
of 0.2. For HHMAB DR, the destruction factor is randomly
selected from the list {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4}. Then, three variants are used to solve all the problems
and the calculation results are shown in Table VII.

Seen from the Table VII, we have some findings. First, us-
ing ruin-and-recreate LLH in HHMAB algorithm can obtain
better solutions. Among of fours algorithms, HHMAB NR
is the poorest because the neighborhood-based operators just
only explore a relative smaller solution space, resulting in
poor performance. When the ruin-and-recreate LLH is used
in other algorithms, their performance has been significantly

improved. Second, HHMAB achieves the best average solu-
tion among all algorithms. Compared with HHMAB F and
HHMAB DR, HHMAB decreases total cost on average by
0.51% and 0.44% respectively. Besides, HHMAB finds 22
best solutions and performs better on large-scale instances
demonstrating its superior optimization ability. Finally, the
ruin-and-recreate LLH needs more computation times but
does not be time-consuming.

VI. CONCLUSION

This paper deals with the multi-compartment vehicle rout-
ing problem with a focus on carbon emissions. The optimiza-
tion objective comprises of vehicle cost, operation cost and
carbon emissions cost. To tackle this problem effectively,
we designed a selection hyper-heuristic called HHMAB,
which employs multi-armed bandit algorithm as high-level
selection strategy to choose low-level heuristics. The multi-
armed bandit high-level selection can take advantage of the
historical information of low-level heuristics to choose more
appropriate ones during the execution of the hyper-heuristic.
The set of low-level heuristics including six neighborhood
search-based and one ruin-and-recreate operators were de-
veloped to explore the solution space. In addition, we adopt
a probability acceptance rule to determine whether to accept
or refuse newly obtained solutions.

We conduct several experiments to evaluate HHMAB.
The experimental results display the superiority of HHMAB
over the existing methods. For the standard MCVRP prob-
lem, HHMAB is more competitive than eight state-of-the-
art MCVRP approaches. Moreover, we also make some
discoveries from the experimental findings. Firstly, the multi-
armed bandit high-level selection strategy outperforms these
commonly used selection strategies, such as random se-
lection, roulette wheel selection, probability matching and
adaptive pursuit strategy, etc. Secondly, allowing accepting
worse solutions can help keep solutions diversification, which
may lead to find better solutions in the subsequent search
process of the algorithm. Finally, the ruin-and-recreate low-
level heuristic can explore a larger solution space to hit
better solutions. We also find that the destruction strategy,
with a destruction factor randomly selected from a range,
can flexibly adjust the destruction strength, thereby searching
better solution. These strategies mentioned above used in
HHMAB makes it more effective than existing algorithms.

In future, we will extend the suggested algorithm for other
MCVRP problems with additional attributes, such as time
windows, heterogeneous vehicles, and multiple depots, etc.
Additionally, other reinforcement learning methods may be
considered as a high-level selection strategy to effectively
select low-level heuristics.
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