
 

  

Abstract—This paper proposes a long short-term memory 

(LSTM) neural network method for designing digital finite 

impulse response (FIR) low-pass, high-pass, band-pass, and 

band-stop filters. We first establish a mathematical model of the 

digital FIR filter to derive its practical amplitude response. 

Then, the amplitude error between the expected and practical 

amplitude responses is calculated. The objective of designing a 

digital FIR filter is to achieve the amplitude error minimization. 

Therefore, we propose an LSTM neural network to minimize 

the amplitude error, thereby obtaining the coefficients for the 

digital FIR filter. Several design examples and comparisons 

with back propagation neural network (BPNN), traditional 

neural network (TNN), and the rectangular window method 

illustrate the performance of our proposed LSTM neural 

network design. These design examples and comparisons 

highlight the improvements in the passband peak-to-peak 

deviation, the stopband attenuation and mean square error 

(MSE). However, these improvements result in higher 

computational complexity. Consequently, a tradeoff exists 

among the passband peak-to-peak deviation, the stopband 

attenuation, MSE, and computational complexity. 

 
Index Terms—Optimal design, Digital FIR filter, Amplitude 

error, Long Short-Term Memory, Neural network 

 

I. INTRODUCTION 

HE development of modern electronic systems is closely 

related to advancements in digital signal processing 

(DSP) technology [1-4]. Digital finite impulse response   

(FIR) filters play a crucial role in digital signal processing 

(DSP) systems. They are extensively used for signal filtering 

[5], channel equalization [6], and data interpolation or  
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extraction [7] 

Digital FIR filters are typically categorized into four types: 

Type I, Type II, Type III, and Type IV [8-9]. Among these 

types, only the Type I FIR filter can be used to design 

low-pass, high-pass, band-pass, and band-stop filters. 

Therefore, the optimal design of Type I digital FIR filter has 

attracted the attention of many scholars. 

The window function is widely used for designing Type I 

digital FIR filters due to its simplicity and low computational 

complexity. However, the window function method has 

worse effectiveness [10-13]. Currently, Type I digital FIR 

filter can be designed by minimizing the amplitude error 

between its expected and practical amplitude responses. For 

example, the least squares (LS) method can be used for 

minimizing this amplitude error [14]. Additionally, the 

non-iterative weighted least squares (WLS) method can also 

be employed for minimizing the amplitude error between the 

expected and practical amplitude responses [15]. All of these 

methods can be used to design Type I digital FIR filter and 

demonstrate superior effectiveness compared to the window 

function. 

Machine learning is a popular research topic and one of its 

primary objectives is to minimize the amplitude error 

between the expected and practical parameters in the specific 

application [16-18]. For example, Y. Chen proposes a 

nonlinear voltage prediction method based on long 

short-term memory (LSTM) neural network to minimize the 

amplitude error between the expected and practical nonlinear 

voltages [19].  A. Pranolo et al. propose using an LSTM 

neural network to minimize the amplitude error between the 

expected and practical rainfall values for more accurate 

forecasts [20]. X. Qing et al. propose a solar prediction 

scheme based on LSTM neural network. This scheme 

minimizes the amplitude error between the expected and 

practical hourly day-ahead solar irradiance values [21]. 

These papers demonstrate that the LSTM neural network 

performs more effectively than the back propagation neural 

network (BPNN). Although these papers do not specifically 

address the use of the LSTM neural network for designing 

digital FIR filter, they provide valuable insights into 

designing digital FIR filter. 

At present, only a limited number of papers have proposed 

to design digital FIR filter using machine learning methods. 

Among these papers, a traditional neural network (TNN) is 

proposed to design digital FIR filter [22]. Comparing with the 

window function, this TNN-based design achieves reduced 

passband peak-to-peak deviation and smaller stopband 

attenuation. An innovative BPNN method is proposed to 

design digital FIR filter [23]. Test results indicate that this 

BPNN-based design achieves reduced passband 
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peak-to-peak deviation and smaller stopband attenuation 

comparing to the TNN-based design and the rectangular 

window design. 

An LSTM neural network is proposed to design digital FIR 

filter in this paper. In the LSTM model, the LSTM neurons 

utilize sigmoid and tanh activation functions to capture 

complex relationship between the input data and expected 

amplitude response, thereby enhancing learning capabilities. 

It can also enhance the expressiveness of the network by 

stacking multiple LSTM layers. In addition, adaptive 

parameter adjustment using optimization algorithms. In our 

proposed design, Adam is used for minimizing the amplitude 

error between the expected and practical amplitude responses. 

Comparing with traditional digital FIR filter design methods, 

this continuous optimization improves filter performance and 

provides greater flexibility and adaptability. The main 

advantages of this method include memory cells, gating 

mechanisms, end-to-end learning, gradient change 

stabilization, global optimization, generalization, and 

iterative optimization. In our proposed design based on 

LSTM neural network, these features can effectively 

minimize of the amplitude error between the expected and 

practical amplitude responses, thereby improving filter 

performance. 

The key contributions of this paper are outlined below: 

1) We propose a digital FIR filter design based on LSTM 

neural network. This design aims at minimizing the 

amplitude error between the expected and practical amplitude 

responses, thereby obtaining the coefficients for the digital 

FIR filter. 

2) We conduct a comprehensive analysis of the 

effectiveness, mean square error (MSE), and computational 

complexity of our proposed design based on LSTM neural 

network. Comparing with BPNN-based, TNN-based, and 

rectangular window designs, our proposed design 

outperforms in terms of the passband peak-to-peak deviation, 

the stopband attenuation, and MSE. However, these superior 

performances result in higher computational complexity. 

The organization of this paper is as follows. In Section II, 

we derive the amplitude error equation between the expected 

and practical amplitude responses of the digital FIR filter. 

Section III introduces the LSTM algorithm and the LSTM 

neural network model in detail. Section IV details and 

evaluates the simulation results. Section V provides the 

conclusion. 
 

II. AMPLITUDE ERROR EQUATION 

Based on [22] and [23], the transfer function of the digital 

FIR filter can be written as: 

( ) ( )
0

N
n

n

G z g n z−

=

=                            (1)
 

If the digital FIR filter satisfies ( ) ( )g n g N n= −  and N 

denotes an even number, the entire sequence will then be 

symmetric with respect to 
2

Nn = . This digital FIR filter is 

commonly referred to as Type I linear phase filter. In addition, 

if it also satisfies ( ) ( )
2 2

g gN Nk k− += , the frequency response  

   

 
Fig. 1.  LSTM neural network internal architecture. 
 

 

of Type I digital FIR filter can be given by: 

( ) ( ) ( ) ( )

( ) ( )

2
22

1

2
2

1

2 2

2

N
NN j kjj

k

N
Nj k

k

N NG e g e g k e

Ng k e





− −−

=

− +

=

= + −

+ +





      (2) 

Based on the well-known Euler formula, Eq. (2) is thus 

rewritten as: 

( ) ( ) ( ) ( )
2

2

1

2 cos
2 2

N
Njj

k

N NG e g g k k e
 

−

=

 
 = + −
 
 

   (3) 

Therefore, the practical amplitude response can be expressed 

as: 

( ) ( ) ( )
0

cos
M

j

k

k

A G e a k 
=

= =                (4) 

where 
2

NM = , ka  is the coefficient of the digital FIR filter. 

Further, 

( )

( )

0

2 1,2, ,

k

k

a g M k

a g M k k M

 = =


= − =
               (5) 

Assigning ( )L   as the expected amplitude response. The 

amplitude error ( )e   between the expected and practical 

amplitude responses is calculated as: 

( ) ( ) ( )

( ) ( )
0

cos ,  
M

k

k

e L A

L a k W

  

  
=

= −

= − 
         (6) 

Consequently, the coefficients ( )0 , , , ,k Ma a a  can be 

obtained by minimizing this amplitude error ( )e  .  

In the interested frequency band W , the continuous 

frequency variable   is discretized into a assigned of 

uniformly distributed frequency points ,  1,2, ,r r R = , 

where R denotes the total number of discrete frequency points. 

Therefore, Eq. (6) is rewritten as: 

( ) ( ) ( )
0

cos  ,  1,2, ,
M

r r k r

k

e L a k r R  
=

= − =     (7) 

Therefore, the minimization of ( )e   is converted to the 

minimization of ( )re   for achieving the coefficients 

( )0 , , , ,k Ma a a  for the digital FIR filter. 
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Fig. 2.  Structure of LSTM neural network. 

 

III. DIGITAL FIR FILTER DESIGN BASED ON LSTM NEURAL 

NETWORK 

A. LSTM algorithm 

As an extension of recurrent neural network (RNN) 

[24-27], LSTM [28-31] excels at predicting time series data. 

The LSTM model features specialized memory cells that 

replace the hidden layer neurons found in standard RNNs. 

The crucial element is the state of these memory cells. The 

LSTM model updates and maintains the memory cell states 

by processing information through its gate mechanisms. 

These gate mechanisms consist of the input gate, forget gate, 

and output gate. Fig. 1 illustrates the internal architecture of 

the LSTM neural network. 

Firstly, in the “forget layer,” the forget gate ( )t
f  uses the 

current time step input ( )t
x  and the previous time step output 

( )1t
h

−
 as input (t represents the current time step, (t-1) 

represents the previous time step, the initial value of ( )1t
h

−
 is 

0). The forget gate ( )t
f  is calculated using the sigmoid 

activation function: 

( ) ( ) ( )1
( )f h f ft t t

f V V h b
−

= + +x                 (8) 

where   denotes the sigmoid activation function 

( )
1

1 x
x

e


−
=

+
, fV  and h fV are the weight matrix and 

recurrent weight of the forget gate, respectively, and fb  

represents the corresponding bias. 

Secondly, in the “input layer,” the input gate ( )t
i  is 

calculated using the sigmoid activation function:  

( ) ( ) ( )1
( )i h i it t t

i V V h b
−

= + +x                   (9) 

where iV  and h iV  are the weight matrix and recurrent weight 

of the input gate, respectively, and ib  represents the 

corresponding bias. 

And then, the current time step candidate value 
( )t

C  is 

calculated using the tanh activation function: 

( ) ( ) ( )1
( )C hC Ct t t

C tanh V V h b
−

= + +x            (10) 

where tanh denotes the tanh activation function 

( )
x x

x x

e e
tanh x

e e

−

−

−
=

+
, CV  and hCV  are  the  weight  matrix  and 

 

 
 

recurrent weight of the candidate value, respectively, and cb  

represents the corresponding bias. 

The current time step cell state ( )t
C  is determined by the 

forget gate ( )t
f , the input gate ( )t

i , the previous time step cell 

state ( )1t
C

−
 (the initial value of ( )1t

C
−

 is 0), and the current 

time step candidate value 
( )t

C : 

( ) ( ) ( ) ( ) ( )1t t t t t
C f C i C

−
= +                     (11) 

In the “output layer,” the output gate ( )t
o  is calculated 

using the following sigmoid activation function: 

( ) ( ) ( )1
( )o ho ot t t

o V V h b
−

= + +x                   (12) 

where oV  and h oV are the weight matrix and recurrent weight 

of the output gate, respectively, and ob  represents the 

corresponding bias. 

Finally, the current time step cell state ( )t
C  is processed by 

the tanh activation function and multiplied by the output gate 

( )t
o  to obtain the current time step output ( )t

h : 

( ) ( ) ( )
( )

t t t
h o tanh C=                           (13) 

 

B. LSTM neural network model 

As described in Section I, the LSTM neural network        

can minimize of the amplitude error between     the expected 

and practical parameters in specific          applications. 

Therefore, to obtain the coefficients ( )0 , , , ,k Ma a a for the 

digital FIR filter, the LSTM neural network is employed to 

minimize the amplitude error ( )re  . Table I outlines the 

algorithm process of the LSTM neural network. 

Fig. 2(a) illustrates the structure of the LSTM neural 

network, while Fig. 2(b) shows a schematic of its unfolded 

architecture. Fig. 2 illustrates the input of the LSTM neural 

network as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( )0 1

1,cos , ,cos , ,cos

, , , , ,

T

r r r

T

m M

m M

x x x x

  =   

 =
 

I
      (14) 

where ( ) ( )cos rm
x m= . Additionally, r

w  represents the 

weight matrix connecting the input layer to the LSTM1 layer: 
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1 2, , , , ,r r r r r

u U
 =  w w w w w                  (15) 

with 

( ) ( ) ( ) ( )0 , 1 , , ,
, , , , ,r r r r r

u u u m u M u
w w w w =

 
w             (16) 

Here, ( ),

r

m u
w  represents the weight connecting the 𝑚-th unit 

in the input layer to the 𝑚-th time step of the 𝑢-th LSTM unit 

in the LSTM1 layer. 
r

q  is the weight matrix connecting the LSTM1 layer to the 

LSTM2 layer: 

1 2, , , , ,r r r r r

u U
 =  q q q q q                  (17) 

with 

( ) ( ) ( ) ( )0 , 1 , , ,
, , , , ,r r r r r

u u u m u M u
q q q q =

 
q              (18) 

Here, ( ),

r

m u
q  is the weight connecting the m-th time step of the 

u-th LSTM unit in the LSTM1 layer to the m-th time step of 

the u-th LSTM unit in the LSTM2 layer.  

In the LSTM1 layer, the m-th time step input of the u-th 

LSTM unit in the LSTM1 layer is: 

( ) ( ) ( )

( ) ( )

1 , ,

,
=cos  

r r

t m u m m u

r

r m u

x x w

m w

=
                    (19) 

When 0m = , the m-th time step input is only ( )1 ,

r

t m u
x . 

However, when 1,2, ,m M= , in addition to ( )1 ,

r

t m u
x , the 

m-th time step inputs of the u-th LSTM unit contain ( )1 1 ,

r

t m u
C

−
 

and ( )1 1 ,

r

t m u
h

−
, where ( )1 1 ,

r

t m u
C

−
 is the previous time step cell 

state and ( )1 1 ,

r

t m u
h

−
 is the previous time step output. 

According to the principles of the LSTM algorithm 

described in Section III.A, as represented by Eq. (8) to          

Eq. (13), the outputs at the m-th time step are represented by 

( )1 ,

r

t m u
C  and ( )1 ,

r

t m u
h . Here, ( )1 ,

r

t m u
C  serves solely as the input at 

the (m+1)-th time step. In addition to being used as the input 

at the (m+1)-th time step, ( )1 ,

r

t m u
h  is also used to generate the 

m-th time step input ( )2 ,

r

t m u
x  for the u-th LSTM unit in the 

LSTM2 layer: 

( ) ( ) ( )2 1, , ,

r r r

t m u t m u m u
x h q=                            (20) 

In the LSTM2 layer, similar to the u-th LSTM unit in the 

LSTM1 layer, the input at the m-th time step consists solely of 

( )2 ,

r

t m u
x  when 0m = . However, when 1,2, ,m M= , in 

addition to ( )2 ,

r

t m u
x , the m-th time step inputs of the u-th 

LSTM unit in the LSTM2 layer include ( )2 1 ,

r

t m u
C

−
 and ( )2 1 ,

r

t m u
h

−
, 

where ( )2 1 ,

r

t m u
C

−
 and ( )2 1 ,

r

t m u
h

−
 denote the cell state and output 

of the previous time step, respectively. 

The outputs ( )2 ,

r

t m u
C  and ( )2 ,

r

t m u
h  at the m-th time step of the 

u-th LSTM unit in the LSTM2 layer can be calculated using 

Eq. (8) – Eq. (13). ( )2 ,

r

t m u
C  and ( )2 ,

r

t m u
h  are used as inputs only 

at the (m+1)-th time step when 1,2, , 1m M= − .  

Furthermore, ( )2 ,

r

t M u
h  denotes the output of the u-th LSTM 

unit in the LSTM2 layer when m M= . 

The input 
r

ox  of the output layer can be calculated as: 

2

r r r

o tx = h β                             (21) 

TABLE I 
ALGORITHM PROCESS 

Input: 

Training assigned: 

( ) ( ) ( )1,cos , ,cos , ,cos
T

r r rm M      

Expected response: ( )     1,2, ,rL r R =  

Learning rate:   

Process: 

1.Calculate the m-th time step input ( )1 ,

r

t m u
x of the u-th 

LSTM unit based on Eq. (19). 

2.Calculate the m-th time step outputs ( )1 ,

r

t m u
C and 

( )1 ,

r

t m u
h of the u-th LSTM unit in the LSTM1 layer based 

on Eq. (8) – Eq. (13). 

3.Generate the m-th time step input ( )2 ,

r

t m u
x  of the u-th 

LSTM unit in the LSTM2 layer based on Eq. (20). 

4.Calculate the m-th time step outputs ( )2 ,

r

t m u
C  and 

( )2 ,

r

t m u
h of the u-th LSTM unit in the LSTM2 layer based 

on Eq. (8) – Eq. (13). 

5.Obtain the output ( )2 ,

r

t M u
h  of the u-th LSTM unit in the 

LSTM2 layer. 

6.Calculate the input r

ox  of the output layer based on          

Eq. (21). 

7.Calculate ( )rA   based on Eq. (24). 

8.Calculate the parameter 
rJ  based on Eq. (26). 

9.Update ( ),
r

m u
w  , ( ),

r

m u
q , r

u  and r  based on Eq. (27) – 

Eq. (31). 

10.Combine the (r+1)-th LSTM neural network input 

with the updated ( ),
r

m u
w , ( ),

r

m u
q , r

u , and r , and repeat 

the same process from Step (1) to Step (9)  until r R= . 

11.When the maximum number of iterations is reached, 

the execution of the LSTM neural network is halted. 

Purpose: Find the coefficients of digital FIR filter 

 

with 

( ) ( ) ( ) ( )2 2 2 2 2,1 ,2 , ,
, , , , ,r r r r r

t t M t M t M u t M U
h h h h =

 
h           (22) 

1 2, , , , ,
T

r r r r r

u U    =  β                 (23) 

Here, 
r

u  denotes the weight connecting the u-th LSTM unit 

in the LSTM2 layer to the output layer. 

The output ( )rA  of the output layer can be calculated as: 

( ) ( )r r

r oA f x = −                             (24) 

where r  is threshold value of the output layer and ( )f  is 

the activation function. 

According to the basic principle of the digital FIR filter 

[22], the expected amplitude response ( )rL   can be 

expressed as: 

( )
1  in the passband

   1,2, ,
0  in the stopband

r

r

r

L r R






= =


     (25) 

Consequently, the parameter 
rJ  used to update the 

weights in the LSTM neural network can be written as: 

( ) ( )
2

2

1
2

1 ( )
2

r r r

r

J L A

e

 



= −  

=
   1,2, ,r R=     (26) 

Using Adam as the optimizer. To achieve the amplitude error 

minimization, ( ),

r

m u
w , ( ),

r

m u
q , 

r

u , and r should be updated 

as:   
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Fig. 3.  Frequency response of low-pass digital FIR filter design using various methods. 
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1,2, ,

r R

m M

u U

=

=
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with 

( )
( )

( )

( )

( )

( )

1 1

1 1

, ,

,

, , ,

r r

t m u t m ur r

m u r r r

t m u t m u m u

h xJ
w

h x w

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where   is the learning rate. The updated values ( ),

r

m u
w , 

( ),

r

m u
q , 

r

u , and r  will be utilized in combination with the 

input of the (r+1)-th LSTM neural network. This process is 

repeated as described in Section III.B until r R= . Upon 

reaching the maximum number of iterations, the LSTM 

neural network stops, allowing for the determination of the 

coefficients for the digital FIR filter. 

 

IV. SIMULATION RESULTS 

The performance of our proposed design of digital FIR 

filter based on LSTM neural network is verified using serval 

different design examples. In these design examples, the 

digital FIR filter order N is assigned to 40. The number of 

discrete frequency points R is assigned to 2837. Furthermore, 

the activation function ( )f and the learning rate   are 

assigned to ( ) Linearf =  and 0.1 = , respectively. 

A. Analysis of effectiveness 

Design example 1: Low-pass digital FIR filter 

In this design example, the passband and stopband cutoff 

frequencies are individually assigned to 0.45π and 0.55π. 

Fig. 3 illustrates the frequency response of the low-pass 

digital FIR filter design using various methods such as LSTM 

neural network, BPNN, TNN, and rectangular window. The 

passband peak-to-peak deviation p p − , the maximum 

stopband attenuation  maxs , and the minimum stopband 

attenuation  mins  are summarized in Table II. It can be 

known from Table II and Fig. 3 that p p −  of our proposed 

design based on LSTM neural network is 0.9132 dB. 

However, p p −  of BPNN-based, TNN-based, and 

rectangular window designs are 1.0195 dB, 1.1629 dB, and 

1.2104 dB, respectively. These values are all higher than 

p p −  obtained by our proposed design based on LSTM 

neural network. 

Additionally, the maximum stopband attenuation  maxs  

achieved by these various methods such as LSTM neural 

network, BPNN, TNN, and rectangular window are        

-123.9678 dB, -98.5941 dB, -86.3435 dB, and -88.6180 dB, 

respectively. Moreover, the minimum stopband attenuation 

 mins  of these four optimal designs are individually  

-40.8170 dB, -29.0640 dB, -25.9529 dB, and -26.5051 dB. 

Our proposed design based on LSTM neural network 

achieves lower maximum and minimum stopband 

attenuations compared to the other three optimal designs. 

Design example 2: High-pass digital FIR filter 

In this design example, the passband and stopband cutoff 

frequencies are individually assigned to 0.55 π and 0.45 π. 

Fig. 4 illustrates the frequency response of the high-pass 

digital FIR filter design using various methods such as LSTM 

neural network, BPNN, TNN, and rectangular window. It can 

be known from Table II and Fig. 4 that p p −  of our proposed 

design based on LSTM neural network is                                     

0.3280 dB. However, p p −  of BPNN-based, TNN-based, and 
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TABLE II 

SUMMARY OF THE PASSBAND PEAK-TO-PEAK DEVIATION, THE MAXIMUM AND MINIMUM STOPBAND ATTENUATION 

Design Example Method p p −
 

 maxs   mins  

Low-pass digital FIR filter 

LSTM neural network 0.9132 dB -123.9678 dB -40.8170 dB 

BPNN [23] 1.0195 dB -98.5941 dB -29.0640 dB 

TNN [22] 1.1629 dB -86.3435 dB -25.9529 dB 

Rectangular window [11] 1.2104 dB -88.6180 dB -26.5051 dB 

High-pass digital FIR filter 

LSTM neural network 0.3280 dB -123.6654 dB -50.2704 dB 

BPNN [23] 0.9195 dB -105.5801 dB -28.5215 dB 

TNN [22] 1.1232 dB -91.4495 dB -26.0572 dB 

Rectangular window [11] 1.2104 dB -88.6180 dB -26.5051 dB 

Band-pass digital FIR filter 

LSTM neural network 0.1004 dB -117.5967 dB -36.0197 dB 

BPNN [23] 1.2653 dB -90.8968 dB -22.4479 dB 

TNN [22] 1.4228 dB -87.2071 dB -19.9612 dB 

Rectangular window [11] 1.3245 dB -82.2671 dB -20.9115 dB 

Band-stop digital FIR filter 

LSTM neural network 0.2524 dB -114.7023 dB -37.0812 dB 

BPNN [23] 0.9329 dB -100.0401 dB -22.3030 dB 

TNN [22] 1.1210 dB -92.1125 dB -21.7347 dB 

Rectangular window [11] 1.2221 dB -92.9414 dB -21.0732 dB 
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Fig. 4.  Frequency response of high-pass digital FIR filter design using various methods. 

 

rectangular window designs are 0.9195 dB, 1.1232 dB, and 

1.2104 dB, respectively. Comparing with the other three 

designs, our proposed design based on LSTM neural network 

achieves smaller passband peak-to-peak deviation. 

In addition,  maxs  achieved by these various methods such 

as LSTM neural network, BPNN, TNN, and rectangular 

window are -123.6654 dB, -105.5801 dB, -91.4495 dB and 

-88.6180 dB, respectively. And  mins  of these four optimal 

designs are individually -50.2704 dB, -28.5215 dB, -26.0572 

dB and -26.5051 dB. It is evident that our proposed design 

based on LSTM neural network achieves lower maximum 

and minimum stopband attenuations compared to the other 

three optimal designs. 

Design example 3: Band-pass digital FIR filter 

In this design example, the passband cutoff frequencies are 

individually assigned to 0.3 π and 0.7 π, and the stopband 

cutoff frequencies are individually assigned to 0.25 π and 

0.75 π. 

Fig. 5 illustrates the frequency response of the band-pass 

digital FIR filter designed using various methods such as 

LSTM neural network, BPNN, TNN, and rectangular 

window. Table II and Fig. 5 show that p p −  of our proposed 

design based on LSTM neural network is 0.1004 dB. 

However, p p −  of BPNN-based, TNN-based, and 

rectangular window designs are 1.2653 dB, 1.4228 dB, and 

1.3245 dB, respectively. These values are all higher than 

p p −  obtained by our proposed design based on LSTM 

neural network. 

Furthermore,  maxs  achieved by these various methods 

such as LSTM neural network, BPNN, TNN, and rectangular 

window are -117.5967 dB, -90.8968 dB, -87.2071 dB, and 

-82.2671 dB, respectively. Moreover,  mins  of these four 

optimal designs are individually -36.0197 dB, -22.4479 dB, 

-19.9612 dB, and -20.9115 dB. Our proposed design based on 

LSTM neural network achieves lower maximum and 

minimum stopband attenuations compared to the other three 

optimal designs. 

Design example 4: Band-stop digital FIR filter 

In this design example, the passband cutoff frequencies are 

individually assigned to 0.25 π and 0.75 π, and the stopband 

cutoff frequencies are individually assigned to 0.3 π and      

0.7 π. 

Fig. 6 illustrates the frequency response of the band-stop 

digital FIR filter design using various methods such as LSTM 

neural network, BPNN, TNN, and rectangular window. Table 

II and Fig. 6 illustrate that p p −  of our proposed design based 

on LSTM neural network is 0.2524 dB. However, p p −  of 

BPNN-based, TNN-based, and rectangular window designs 

are 0.9329 dB, 1.1210 dB, and 1.2221 dB, respectively.   
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Fig. 5.  Frequency response of band-pass digital FIR filter design using various methods. 
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Fig. 6.  Frequency response of band-stop digital FIR filter design using various methods. 

 

Comparing with the other three designs, our proposed design 

based on LSTM neural network achieves smaller passband 

peak-to-peak deviation. 

In addition,  maxs  of these various methods such as LSTM 

neural network, BPNN, TNN, and rectangular window are 

-114.7023 dB, -100.0401 dB, -92.1125 dB, and -92.9414 dB, 

respectively. And  mins  of these four optimal designs are 

individually -37.0812 dB, -22.3030 dB, -21.7347 dB, and 

-21.0732 dB. Comparing with the other three designs, our 

proposed design based on LSTM neural network achieves 

lower maximum and minimum stopband attenuations. 

It is evident from Design example 1, 2, 3, and 4 that our 

proposed design based on LSTM neural network reduces 

passband peak-to-peak deviation, decreases maximum and 

minimum stopband attenuations compared to BPNN-based, 

TNN-based, and rectangular window designs. Additionally, 

the effectiveness of these four digital FIR filter designs is 

ranked from best to worst as follows: 

 

 

 

LSTM neural network PNN 23

 22

Rectangular Window 11

 

 



   (32) 

B. Analysis of MSE and computational complexity  

The passband bandwidth for low-pass, high-pass, and 

band-pass digital FIR filters are assigned to
1 2,p p p   =   , 

the MSE(MSEP) of the passband is expressed as: 

( ) ( )( )

2

1

2

P

2 1

MSE

p

p

R

r r

r R

p p

L A

R



p



p

 

 

p

=

−

=
−



              

(33) 

The passband bandwidth for the band-stop digital FIR 

filter is assigned to
1 2 3 4, ,p p p p p       =     , the 

MSE(MSEP) of the passband can be expressed as: 
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TABLE III 

SUMMARY OF MSE AND COMPUTATIONAL COMPLEXITY 

Design Example Method MSEP MSES CPU running time 

Low-pass digital FIR filter 

LSTM neural network 0.0041 1.2543×10-5 69.7652s 

BPNN [23] 0.0048 0.0001 6.5374s 

TNN [22] 0.0061 0.0005 5.2213s 

Rectangular window [11] 0.9419 0.0001 0.0010s 

High-pass digital FIR filter 

LSTM neural network 0.0003 1.4490×10-6 63.1727s 

BPNN [23] 0.0042 0.0001 6.1184s 

TNN [22] 0.0058 0.0002 5.5392s 

Rectangular window [11] 0.9426 0.0001 0.0010s 

Band-pass digital FIR filter 

LSTM neural network 0.0026 2.6413×10-5 62.3076s 

BPNN [23] 0.0108 0.0004 6.0137s 

TNN [22] 0.0144 0.0009 5.7982s 

Rectangular window [11] 1.1049 0.0005 0.0010s 

Band-stop digital FIR filter 

LSTM neural network 0.0032 1.6057×10-5 67.6546s 

BPNN [23] 0.0080 0.0007 7.5003s 

TNN [22] 0.0119 0.0009 5.2304s 

Rectangular window [11] 0.9114 0.0006 0.0010s 
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  (34) 

The stopband bandwidth for low-pass, high-pass, and 

band-stop digital FIR filters are assigned to  1 2,s s s  = , 

the MSE(MSES) of the stopband can be expressed as: 
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(35) 

The stopband bandwidth for the band-pass digital FIR 

filter is assigned to    1 2 3 4, ,s s s s s    =  , the 

MSE(MSES) of the stopband can be expressed as: 
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  (36) 

In terms of computational efficiency, on a computer with 

2.8-GHz computer process unit (CPU), the optimal designs 

of low-pass, high-pass, band-pass, and band-stop digital FIR 

filters based on LSTM neural network are taking 69.7652s, 

63.1727s, 62.3076s, and 67.6546s, respectively. The times 

consumed for the BPNN-based optimal design are 6.5374s, 

6.1184s, 6.0137s, and 7.5003s, respectively. For the 

TNN-based optimal design, the times are 5.2213s, 5.5392s, 

5.7982s and 5.2304s, respectively. The rectangular window 

design consistently takes only 0.0010s. 

Table III presents the parameters of passband MSE(MSEP), 

stopband MSE(MSES), and computational complexity        

(i.e. CPU running time) for the optimal designs based on 

LSTM neural network, BPNN, TNN, and rectangular 

window. Table III shows that the passband and stopband 

MSE of our proposed design based on LSTM neural network 

are smaller than those of the other three methods. However, 

this improved performance comes at the cost of increased 

CPU running time. 

 

V. CONCLUSION 

An LSTM neural network is proposed to design digital FIR 

filter in this paper. In the LSTM model, the LSTM neurons 

utilize sigmoid and tanh activation functions to capture 

complex relationship between the input data and expected 

amplitude response, thereby enhancing learning capabilities. 

It can also enhance the expressiveness of the network by 

stacking multiple LSTM layers. In addition, adaptive 

parameter adjustment using optimization algorithms. In our 

proposed design, Adam is used for minimizing the amplitude 

error between the expected and practical amplitude responses. 

Compared to traditional digital FIR filter design methods, 

this continuous optimization improves filter performance and 

provides greater flexibility and adaptability. The main 

advantages of this method include memory cells, gating 

mechanisms, end-to-end learning, gradient change 

stabilization, global optimization, generalization, and 

iterative optimization. In our proposed design based on 

LSTM neural network, these features can effectively 

minimize the amplitude error between the expected and 

practical amplitude responses, thereby improving filter 

performance. 

The simulation results indicate that our proposed design 

based on LSTM neural network achieves peak-to-peak 

deviations of 0.9132 dB for the low-pass filter, 0.3280 dB for 

the high-pass filter, 0.1004 dB for the band-pass filter, and 

0.2524 dB for the band-stop filter. Additionally, the stopband 

attenuations for these four digital FIR filters are as follows: 

[-123.9678 dB, -40.8170 dB], [-123.6654 dB, -50.2704 dB], 

[-117.5967 dB, -36.0197 dB], and [-114.7023 dB, -37.0812 

dB]. The passband MSE of low-pass, high-pass, band-pass, 

and band-stop digital FIR filters are 0.0041, 0.0003, 0.0026, 

and 0.0032, respectively.  The stopband MSE of these digital 

FIR filters are 1.2543×10-5, 1.4490×10-6, 2.6413×10-5, and 

1.6057×10-5, respectively. Compared to the other three 

digital FIR filter designs, our proposed design based on 

LSTM neural network exhibits superior performance. 

However, these improvements result in higher computational 

complexity. Thus, our proposed digital FIR filter design 

based on LSTM neural network is suitable for applications 

where increased computational complexity is acceptable in 

exchange for improved effectiveness. 

In future research, we plan to achieve the hardware 

implementation of digital FIR filter using Intel’s Agilex™ 7 
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FPGA. This will enable a deeper analysis of the performance 

of our proposed digital FIR filter design based on long 

short-term memory neural network. 
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