

Abstract—The flexibility and intermittency of wind speed is a

crucial factor for its prediction. Research in this domain
necessitates integrating diverse data to enhance model precision
and reliability to meet the growing demand for wind energy in
both the energy sector and the global economy. To this end, this
work adopts the Kepler optimization algorithm (KOA), which
utilizes the position of each planet as a candidate solution. The
optimization process then involves random updates to these
candidate solutions, aiming to enhance wind speed prediction
using the CNN-LSTM-Attention model. Specifically, it
enhances the interpretability of the KOA for the global
optimization problem. By using 1800 time moments of wind
speed data with multidimensional features, the proposed hybrid
model with KOA has been shown to outperform other
optimization methods, demonstrating impressive performances
in terms of mean absolute percentage error (MAPE), mean
absolute error (MAE), runtime, root mean square error
(RMSE), and R². Hence, these results indicate its potential for
improving wind speed prediction, which could open a novel
direction in this field.

Index Terms—Deep learning, Kepler optimization algorithm,
CNN-LSTM-Attention, Hybrid model, Wind speed prediction

Manuscript received March 17, 2024; revised September 7, 2024. This
work was supported in part by the Special Projects in Key Fields of Ordinary
Universities of Guangdong Province under Grant 2021ZDZX1087, in part
by the Guangzhou Science and Technology Plan Project under Grants
2024B03J1361, 2023B03J1327, and 2023A04J0361, in part by the
Guangdong Province Ordinary Colleges and Universities Young Innovative
Talents Project under Grant 2023KQNCX036, in part by the Special Fund
for Science and Technology Innovation Strategy of Guangdong Province
(Climbing Plan) under Grant pdjh2024a226, in part by the Key Discipline
Improvement Project of Guangdong Province under Grant 2022ZDJS015,
and in part by the Research Fund of Guangdong Polytechnic Normal
University under Grant 2022SDKYA015.

Yuesheng Huang is an undergraduate student of School of Computer
Science, Guangdong Polytechnic Normal University, Guangzhou, 510665
China (e-mail: yorksonhuang@gmail.com).

Jiawen Li is an assistant professor of School of Computer Science,
Guangdong Polytechnic Normal University, Guangzhou, 510665 China.
(corresponding author, phone:+86-020-38256730; fax: +86-020-38257901;
e-mail: lijiawen@gpnu.edu.cn).

Yushan Li is an undergraduate student of School of Computer Science,
Guangdong Polytechnic Normal University, Guangzhou, 510665 China
(e-mail: leannlee133@gmail.com).

Routing Lin is an undergraduate student of School of Computer Science,
Guangdong Polytechnic Normal University, Guangzhou, 510665 China
(e-mail: linrouting96@gmail.com).

Jingru Wu is an undergraduate student of School of Computer Science,
Guangdong Polytechnic Normal University, Guangzhou, 510665 China
(e-mail: JingRuWu1023@gmail.com).

Leijun Wang is an assistant professor of School of Computer Science,
Guangdong Polytechnic Normal University, Guangzhou, 510665 China
(e-mail: wangleijun@gpnu.edu.cn).

Rongjun Chen is a professor of School of Computer Science, Guangdong
Polytechnic Normal University, Guangzhou, 510665 China (e-mail:
chenrongjun@gpnu.edu.cn).

I. INTRODUCTION

ITH the rapid development of the global economy,
there is a growing need for solutions to address issues

like energy shortages and environmental pollution [1].
Shifting from traditional energy structures and enhancing the
utilization of renewable energy have become primary
objectives for numerous countries. Wind energy is a
renewable source that holds the potential for extensive
development [2]. Therefore, the expansion of wind energy
significantly contributes to addressing challenges in energy
structure, managing atmospheric haze, and transforming
modes of economic development [3–5]. Achieving
high-precision wind speed prediction is essential for
optimizing the utilization of wind power. Nevertheless,
accurate prediction continues to be a challenge due to the
flexibility and intermittency of wind speeds [6]. In this regard,
synthesizing diverse data is vital to enhancing the accuracy
and reliability of models, which is crucial for addressing the
escalating demand for wind energy in both the energy sector
and the global economy.

Time series forecasting (TSF) is a common approach to
obtaining accurate predictions in real-time applications, and
it is becoming increasingly popular in many areas of daily life
[7]. It plays a key role in problems with a temporal
characteristic, as forecasting the future through time series is
beneficial in numerous areas, such as financial indices,
weather, medical monitoring, and energy consumption [8],
highlighting TSF's relevance for wind speed prediction. For
example, Wu et al. [9] combined time fusion transformers
and multivariate time series to predict wind speed. Yu et al.
[10] utilized the time series cross-correlation network for
wind speed prediction. Chen et al. [11] used multifunctional
interpolation techniques on large-scale wind speed time
series to predict offshore wind speed. Besides, heuristic
optimization algorithms are extensively used in TSF due to
their high predictive performance and ability to effectively
reduce computational complexity. For instance, Chen and
Zhang [12] introduced the gray wolf optimization algorithm
to optimize the deep echo state model by minimizing learning
errors. Kuranga et al. [13] proposed a model optimized by a
multicluster particle swarm to improve prediction accuracy.
Shen et al. [14] developed a hybrid dynamic ensemble
pruning framework (DEPF) by combining heuristic
optimization algorithms and the meta-learning paradigm to
enhance prediction accuracy.

Furthermore, prediction methods are generally categorized
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into physical, statistical, neural network, and hybrid
approaches [15–17]. For instance, artificial neural network
(ANN) is a commonly used method for wind speed prediction,
and approaches that incorporate statistical algorithms with
ANNs have garnered significant attention [18]. Alternatively,
by utilizing the automatic spatial feature extraction of
convolutional neural network (CNN) and the robust
capabilities of long short-term memory (LSTM) to obtain
short-term and long-term temporal components, the
CNN-LSTM model is a suitable solution for handling diverse
prediction horizons. This hybrid model extracts features,
processes variable-length sequences, and reduces
computation and training time to achieve strong performance
in wind speed prediction [19]. Meanwhile, an attention
mechanism can be included [20], which has the key
capability to process vital information by using limited
resources and suppressing irrelevant data. Its essence lies in
the allocation of input weights to prioritize important features.
For example, Ren et al. [21] demonstrated that including the
attention mechanism allows the assignment of distinct
weights to feature vectors in the hidden layer, identifying key
features during the training stage and ultimately enhancing
prediction accuracy.

Recently, Abdel-Basset et al. [22] proposed the Kepler
optimization algorithm (KOA), a population-based
meta-heuristic technique designed for solving continuous
optimization problems. It has achieved significant advances
in tackling a diverse set of continuous optimization problems
by efficiently exploring the solution space and converging
toward near-optimal solutions. Motivated by the success of
KOA in optimizing various tasks, we employ it to fine-tune
the parameters of the CNN-LSTM-Attention model
specifically tailored for wind speed prediction tasks. This
technique has thus far been applied only to weather
prediction [23] and has not yet been employed in wind speed
prediction. By optimizing the model parameters using the
KOA, we aim to achieve enhanced prediction accuracy and
robustness in capturing the intricate spatiotemporal dynamics
inherent in wind speed data. Therefore, this proposed hybrid
model not only builds upon the advancements in deep
learning methods for wind speed prediction but also further
enhances model performance and applicability in TSF
scenarios by integrating appropriate optimization algorithms,
potentially opening a novel direction in this field.

The rest of this paper is organized as follows: Section II
introduces the CNN-LSTM-Attention model with the KOA.
Section III describes the experiment conducted for validating
the method. Section IV presents the comprehensive results
and evaluations. Finally, Section V presents the conclusion.

II. PROPOSED METHODOLOGY

A. Kepler Optimization Algorithm (KOA)
In the KOA, each planet and its position represent a

candidate solution. The optimization process involves random
updates to candidate solutions based on the best solution so far,
enhancing the exploration and utilization of the search space.
This process primarily involves initializing planetary
positions and velocities, evaluating each planet using the
fitness function, renewing the velocity and position of each
planet, updating the position of the optimal solution, and

iteratively repeating these steps until the stopping condition is
met. These steps enable KOA to systematically explore and
utilize the search space throughout the optimization process.
Therefore, we include it to optimize hyperparameters within
the CNN-LSTM-Attention model, enabling a reduction in the
error of wind speed prediction. The details of KOA are
described below:

The first stage is the initialization process, where N planets
are distributed randomly in a d-dimensional space, forming a
set known as the population. The set denotes the decision
variables of the optimization problem:

(1)

where Xi is the i-th candidate solution in the search space. N
denotes the total number of candidate solutions in the search
space. d means the dimensionality of the problem to be
optimized. and refer to the upper and lower bounds
of the j-th decision variable, respectively, and rand[0, 1] is a
randomly generated number between 0 and 1. It is also used
for the orbital eccentricity e of the i-th object, and the orbital
period Ti is produced using normally distributed random
numbers. By combining these variables, a series of candidate
solutions with potential optimization values can be acquired.
Then, the gravitational force between the XS and the Xi is:

(2)

where and are the normalized planetary masses of Xs

and Xi, respectively, and ε denotes a small value used to
control the range of gravitational influence. µ represents the
universal gravitational constant, which is the fundamental
constant of gravitational interaction between objects. ei is the
eccentricity of the planetary orbits, which takes a range of
values between 0 and 1 and is used to introduce a certain
stochastic character to the KOA. r1 shows the Euclidean
distance between XS and Xi and is normalized to obtain the
value of , a measure of the distance between planets.

Mathematically, the problem of calculating the speed of an
object orbiting the Sun can be represented using a double
equation. Then, to enhance the diversity of the search, the
distance between a randomly chosen solution and the current
solution can be utilized as a measure and incorporated into the
velocity calculation. To prevent convergence to local minima,
a step size determined by the distance between the lower and
upper bounds of the optimization problem can be applied,
ensuring the stability of planetary velocities [24]. Similarly,
the distance between solutions can be employed as a measure
and integrated into the velocity calculation. Moreover, to
enhance the diversity of solutions, a second step size can be
included, broadening the exploitability of the search space by
reducing the magnitude of the velocity variation. The
objective of these strategies is to sustain planetary velocity
throughout the optimization process and minimize the risk of
converging to local minima. Thus, by incorporating the
distance between solutions and introducing varying step sizes,
the diversity of the search can be enhanced:

(3)
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(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

where denotes the velocity of object i at time t. r3 and r4

are random values between 0 and 1. Similarly, r5 and r6 are
also the random values. Xa and Xb are randomly selected
solutions from the population. is the distance between the
optimal solution XS and the target Xi at time t. means
the normalization of the Euclidean distance between XS and Xi.

The second stage is to update the object position and the
KOA accomplishes this aim via two primary steps: one is the
exploration phase, and another is the exploitation phase. It
searches the objects distant from the Sun to discover novel
solutions, whereas utilizing solutions near the Sun is accurate
because it seeks novel locations in proximity to the best
solutions. After the preceding steps, (13) is adopted to renew
the position of each object located away from the Sun:

(13)

where means the novel position of object i at t+1, XS(t)
denotes the best position of the Sun so far, refers to the
velocity required for object i to attain the novel position, and F
indicates a flag to alter the direction of search.

The above reveals the optimal solution when the distance
between the planets and the Sun is minimal, and its core is
randomly exchanged with (13) to enhance exploration and
exploitation. The randomized exchange ensures that KOA can
dynamically adjust its search strategy according to the local
characteristics of the optimization, prompting convergence
speed and solution quality. In detail, KOA optimizes the
exploitation operator when the planet is near the Sun and the
exploration operator when the Sun is at a greater distance. For
a large value of h, the exploration operator is adopted to
extend the distance of the planet's orbit from the Sun. On the
other side, for a small value of h, the exploration operator is
utilized to explore the region around the current best solution.
That means the exploitation operator is employed to exploit
the region around the best solution when the distances
between the Sun and the planets are smaller. This way can be
further enhanced by randomizing the exchange with (14) for
the exploration and exploitation operators:

(14)

where h means an adaptive factor controlling the distance
between the current planet and the Sun at time t.

The third stage is to iterate the optimal solution, and
employing an elitist strategy can beneficially direct the search
in an evolutionary or optimization algorithm by preserving the
current best solution or individual. In each generation,
exclusively the top-performing individuals are designated as
elites and seamlessly transition to the next generation,
ensuring the optimal positioning of the Sun and the planets:

(15)

Through the aforementioned optimization, parameters such
as the learning rate and weights in the network model can be
fine-tuned to minimize prediction errors.

B. CNN-LSTM-Attention Model

The CNN-LSTM-Attention model not only accounts for
the relationship among the multidimensional features of wind
speed but also focuses on the temporal dependence of
ambient data across various periods. Particularly, it includes
the attention mechanism to assign weights to the output of
each LSTM step. As a result, this hybrid model can
accurately predict variations in wind speed data. Its details
are described as follows:

Firstly, the CNN is employed to extract features from
multidimensional time series data containing wind speed data,
as it effectively captures feature relationships across both
spatial and temporal dimensions. A common approach in
wind speed prediction involves utilizing the sliding window
method to transform the problem into a supervised learning
task. This process entails dividing the historical wind speed
data into two segments: one for model training and the other
for model validation. Additionally, this study examines the
influence of various periods on wind speed. Therefore, the
Pearson correlation coefficient is applied to identify the four
time periods most strongly correlated with wind speed
changes, which are then used as new features. To enhance
prediction accuracy, new features derived from wind speed
data are incorporated, and CNN is employed to extract these
features as inputs for the subsequent stage. To this end, a
single layer of convolution followed by a pooling operation is
applied. The initial convolutional operation incorporates a
total of 64 filters with a filter size of 10, and the output of the
CNN serves as the input to the LSTM.

Secondly, the LSTM is employed to acquire the temporal
dependencies inherent in the wind speed data. It mainly
mitigates the issue of gradient vanishing present in traditional
recurrent neural network (RNN) and is appropriate for
capturing long-range dependencies in time series data.
Utilizing the LSTM allows effective modeling of temporal
features in wind speed data, allowing the use of past
observations for predicting future variations. The LSTM
mainly incorporates a memory cell and a gating mechanism,
which facilitates automatic learning and adjustment of
time-step information for extracting features essential for
wind speed prediction. Its computation can be expressed as:
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Fig. 1. The overall architecture of the proposed hybrid CNN-LSTM-Attention model with KOA.

(16)

(17)

(18)

where ft, it, and ot represent the forgetting gate, input gate,
and output gate, respectively.

Here, the forgetting gate ft is for handling how much of
the cell state ct from the previous time is retained at the
current time t. Similarly, the input gate it is for handling how
much of the current transient state is input to the ct, and the
output gate ot is for handling how much of the current cell
state is output as a hidden layer. Then, the state of the current
input unit is derived from the input xt of the network at the
current time t and the ht-1 of the LSTM hidden layer output at
the last time t-1 [25]:

(19)

where wc is the weight matrix, bc is the offset term, and tanh
refers to the hyperbolic tangent function.

Now, the hidden layer output value of ht and output xt of
the LSTM at the current time t is calculated by:

(20)

(21)

where ⊙ means multiply by the element.
Thirdly, the attention mechanism is incorporated to assess

the output of the LSTM at each time step. By prioritizing the
significance of distinct time steps, the accuracy of predicting
wind speed changes can be enhanced accordingly. The
attention weights are automatically adjusted based on the
significance of the features, and the attention-weighted
LSTM outputs are used to forecast future data changes in
wind speed via a fully connected network. Typically, the
attention mechanism enhances the quality by allocating
distinct weights to various parts of the model, directing more
attention to components relevant to the task. Xie et al. [26]
claimed that directly feeding data into the LSTM increases
the complexity of the network model, and the data possess

varying levels of importance for the prediction. In this
context, with an increase in the prediction step size, a greater
amount of historical data is needed. Consequently, a tailored
attention layer is incorporated behind the LSTM to fine-tune
the final output by introducing suitable weights to the
outputs of the LSTM steps.

For better illustration, the overall architecture is presented
in Fig. 1. The self-attention layer uses the output from each
iteration of the LSTM as input and acquires the weights of
each output vector following the Softmax operation.
Subsequently, each LSTM output is multiplied by its weight
and summed to generate the weighted vector. Finally, these
weighted vectors are applied to the final outputs through the
fully connected layer:

(22)

(23)

(24)

III. EXPERIMENT

As deep learning models typically require a specific input
data format, the experimental data should be preprocessed,
primarily involving the conversion of raw feature data and
wind speed data into a 4-dimensional tensor suitable for
model processing. In this experiment, wind speed data was
collected from a region over 1800 time points across 18
different locations. The feature data contains 18 attributes
pertinent to wind speed prediction, with wind speed data
serving as the target variable. Subsequently, the data requires
reshaping to adapt it to a format suitable for processing by the
deep learning model. The MATLAB 'reshape' function is
used. By specifying the appropriate dimensions, the feature
data is transformed into a tensor with dimensions
representing the number of samples, the number of features,
the number of time steps, and the number of days. This
transformation yields several benefits. Firstly, it allows the
data to be fed directly into the deep learning model for
training and prediction without additional processing or
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tuning. Secondly, representing the data as a 4-dimensional
tensor better preserves the spatio-temporal information that
can improve prediction accuracy. Finally, as the deep
learning model is adept at handling specific input data
formats, the transformed data can leverage the model's
expressive power more effectively. To facilitate reproducible
research and positively impact the academic community, all
experimental data and source codes are available at
https://github.com/Yorkson-huang/CNN-LSTM-Attention-P
rediction.

IV. RESULTS AND DISCUSSION

A. Prediction Results
Fig. 2 displays the variation of RMSE with the number of

iterations and the loss function's change curve over iterations,
using the CNN-LSTM-Attention with KOA. Here, the
RMSE describes the standard deviation of the difference
between the predicted values and the true values, and this
curve shows the variation in prediction error in each iteration.
Meanwhile, the loss function indicates the disparity between
the predicted values and the true values, and the loss
function’s change curve provides insights into the
convergence of the model during the training phase. It is
common to evaluate models by examining convergence
behaviors, and such metrics are vital as they provide a
tangible measure of the model's accuracy and robustness
over iterations, ensuring that the model generalizes well to
unseen data.

Through the comparative analysis of the curves in Fig. 2,
it is evident that during the model training process,
compared to the loss function, the RMSE decreases more
rapidly and significantly with the number of iterations. Thus,
the significant decrease in RMSE observed is indicative of
the hybrid model’s superior predictive capabilities. This
convergence pattern, with a more rapid reduction in RMSE
compared to the loss function, demonstrates our approach’s
effectiveness in enhancing prediction accuracy and
improving upon traditional methods.

To further investigate parameter optimization using KOA,
it is necessary to establish an initial solution space by
randomly generating initial planetary positions, with each
planet's position corresponding to a candidate solution.
Typically, increasing the number of initialized planetary
positions broadens the search space, providing more initial
candidate solutions. This practice enhances the likelihood of
discovering the globally optimal solution, as a higher
number of initial solutions allows for a more thorough
exploration of the search space. However, increasing the
number of initialized planetary positions may lead to higher
computational costs, as each requires fitness calculations
and iterative updates. Consequently, a balance between
computational cost and search range must be maintained
when determining the number of initialized planetary
positions.

Fig. 3 illustrates the loss iteration curve for each case with
varying initial numbers of planets (Nplan) and mean
absolute percentage error (MAPE). The evaluation metrics
include Nplan, the number of training iterations, and the
value of the loss function. Here, Nplan indicates the number
of initial planets used in the training process, the number of

training iterations represents the frequency and extent of the
training process, and the value of the loss function represents
the loss at each iteration. Meanwhile, Fig. 4 depicts the
adaptation curves under different initial planetary positions.
The results validate that when Nplan is set to 7, the MAPE is
only 0.0973, minimizing error and exhibiting optimal
predictions. The choice of Nplan, similar to hyperparameter
tuning in neural networks, plays a vital role in the model's
training dynamics and overall performance. Thus, by setting
Nplan to 7, the hybrid model achieves a MAPE of 0.0973,
indicating high accuracy and demonstrating the model's
robustness in minimizing prediction errors. This value is
significant as it highlights the optimal configuration for the
training process, akin to fine-tuning strategies in advanced
deep learning models.

B. Ablation Experiment Results
To thoroughly investigate the inclusion or removal of

specific attention mechanisms and optimization algorithms
in the network model, an ablation experiment is conducted
comparing CNN, CNN-LSTM, and CNN-LSTM-Attention
in terms of MAPE, MAE, runtime, RMSE, and R². This
evaluation comprehensively assesses the performance under
different conditions and determines the impact of either the
optimization algorithm (KOA) or the attention mechanism,
and demonstrates that the CNN-LSTM-Attention model
with KOA achieves superior performance on the evaluation
metrics. The performance results of the different models are
listed in Table I.

TABLE I
ABLATION EXPERIMENT RESULTS

Model MAPE MAE Runtime
(s) RMSE R²

CNN 0.1772 19.2719 12 2.97 0.8613

CNN-LSTM 0.1648 18.3871 16 3.25 0.8626

CNN-LSTM-
Attention 0.1330 23.8934 18 2.41 0.8953

CNN-LSTM-
Attention
with KOA

0.0973 13.0910 24 1.78 0.9306

As shown in Table I, concerning the MAPE, the proposed
model achieves the lowest MAPE of 0.0973, while the
CNN-LSTM-Attention model follows with a MAPE of
0.1330. Compared to the proposed model, the MAPE of both
CNN-LSTM and CNN are higher. The MAE trends are
consistent, with the proposed model achieving the best value
at 13.0910. Such results validate that the combination of the
attention mechanism and KOA optimization can result in a
smaller average error and more accurate predictions.
Subsequently, regarding the runtime, the proposed model
takes 24 seconds, while the CNN-LSTM-Attention model
uses 18 seconds, and the CNN model runs the fastest at only
12 seconds. Such differences are reasonable, as models with
more components require relatively longer runtime.
Additionally, in the evaluation based on RMSE, the
proposed model achieves an RMSE of 1.78, whereas the
CNN-LSTM-Attention model has an RMSE of 2.41, the
CNN-LSTM model 3.25, and the CNN model 2.97. Also,
the proposed model achieves the highest R² of 0.9306,
indicating a better fitting effect than the others. Therefore,
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when considering the above metrics as overall concerns, the
CNN-LSTM-Attention model with KOA performs well.
From the ablation experiment, it is evident that the proposed
model's impressive performance is due to its capability to
provide highly accurate predictions, which is vital for
applications requiring precision, such as wind speed
prediction. These advancements also position the proposed
model as a valuable contribution to deep learning, revealing
its potential for impressive performance in related prediction
applications.

C. Performance Evaluation
In the field of time-series data prediction, various

algorithms have been used to optimize neural network
hyperparameters, including evolutionary algorithms and
metaheuristic methods such as simulated annealing (SA),
genetic algorithm (GA), and particle swarm optimization
(PSO). Each offers unique properties for navigating the

complex search space of hyperparameters. In this paper, the
KOA is applied to optimize the proposed model, and to
validate its effectiveness, a comprehensive evaluation is
conducted by comparing its optimization performance with
the aforementioned algorithms, as listed in Table II.

TABLE II
PERFORMANCE EVALUATION OF DIFFERENT OPTIMIZATION ALGORITHMS

Optimization MAPE MAE Runtime
(s) RMSE R²

CNN-LSTM-
Attention with

SA
0.1091 16.9459 25 1.97 0.8863

CNN-LSTM-
Attention with

GA
0.1107 17.0491 27 1.89 0.8728

CNN-LSTM-
Attention with

PSO
0.1075 14.9064 35 2.30 0.9135

CNN-LSTM-
Attention
with KOA

0.0973 13.0910 24 1.78 0.9306

Fig. 2. Variation of RMSE and the loss function with the number of iterations using the proposed hybrid model.

Fig. 3. The optimal predictions with different initial planets (Nplan).
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Fig. 4. The adaptation curves under different initial planets (Nplan).

From Table II, the KOA distinguishes itself across
various metrics, indicating its effectiveness in optimizing
model performance for wind speed prediction. On one hand,
it achieves the best results in terms of MAPE and MAE, with
the lowest values. This outcome indicates the KOA's
exceptional capability in enhancing prediction accuracy,
which is vital for ensuring reliable and precise forecasts in
time-series applications. On the other hand, the KOA
completes its run in just 24 seconds. This swift convergence
highlights its computational effectiveness, making it
well-suited for real-time environments where rapid model
adaptation is imperative. Furthermore, the performance of
the KOA extends to the evaluation of RMSE and R²,
displaying its superiority as a valid optimization approach
for neural network models in wind speed prediction tasks.
The remarkable outcomes indicate that the proposed model
provides a significant improvement in wind speed prediction
over existing optimization algorithms, reinforcing the value
of the KOA in developing high-precision, efficient
predictive models for time-series data. This property is also
significant for deep learning applications, as the balance
between accuracy and computational effectiveness is often
crucial in dynamic environments.

D. Comparative Study
To extensively evaluate the effectiveness of the proposed

method, we conduct a comparative study with previous
works that adopt deep learning models, as presented in Table
III. The results indicate that the proposed model yields the
highest R², outperforming those models in previous works.
This improvement can be attributed to the incorporation of
the attention mechanism and the KOA optimization, where
the attention mechanism dynamically prioritizes important
features and the KOA optimization ensures efficient
learning and convergence, leading to more accurate

predictions. Therefore, such an advancement enriches neural
network architectures by employing a robust optimization
approach.

TABLE III
A COMPARATIVE STUDY WITH PREVIOUS WORKS

Work Main methodology Dataset Highest
R²

Geng et al.
[27]

Principal component
analysis (PCA)-LSTM

From Fuyun
meteorological
station in China

0.9199

Guo et al.
[28]

Wavelet neural network
(WNN)

From
Dabancheng
wind farm in

China

0.9030

Shu et al.
[29]

Linear fast Fourier
transform rank pooling

multiple-layer
perceptron/long

short-term memory
(LR-FFT-RP-MLP/LST

M)

From
meteorological

data collected at
a wind farm in

China

0.8430

Zheng et al.
[30]

Legendre multi-wavelet
neural network

(LMWNN)

From the
National

Renewable
Energy

Laboratory
(NREL)

0.8600

Parri and
Teeparthi

[31]

Successive variational
mode decomposition

with a transformer based
model that incorporates a

novel query selection
mechanism

(SVMD-TF-QS)

From two wind
farms located in

Leicester and
Portland

0.9190

Jiao et al.
[32]

Autoregressive moving
average-support vector

regression
(ARMA-SVR) and error

compensation

From a wind
farm in China 0.9021

This work CNN-LSTM-Attention
with KOA

From a wind
farm in China 0.9306
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TABLE IV
BENCHMARKING USING OTHER STATE-OF-THE-ART PREDICTION MODELS

Method MAPE MAE Runtime (s) RMSE

Timesnet [33] 0.0969 14.8527 47 0.9367

SOFTS [34] 0.1106 15.1462 28 0.9155

UniTST [35] 0.1413 18.3697 39 0.8964

Itransformer
[36] 0.1094 14.6681 30 0.9209

CNN-LSTM-
Attention
with KOA

0.0973 13.0910 24 0.9306

Finally, benchmarking using other state-of-the-art time
series prediction models has been conducted on the same
wind speed dataset evaluated in this work, and the results are
summarized in Table IV. When comparing the performance
evaluation of these studies, the proposed hybrid model
exhibits an overall advantage. While it generates slight
variation in terms of MAPE (+0.0004) and R² (-0.0061)
compared to the best-performing model, Timesnet [33],
these differences are minor, and our model remains highly
efficient in practical applications because it completes in just
24 seconds, significantly faster than Timesnet's 47 seconds.
This demonstrates that our model maintains operational
efficiency with minimal compromise in prediction
performance compared to the state-of-the-art. Such a
comparison shows that the proposed method excels in
prediction stability and reliability, optimizing time
efficiency while maintaining satisfactory performance.

V. CONCLUSION

In this paper, we design a hybrid CNN-LSTM-Attention
model that incorporates KOA hyperparameter optimization
with the aim of improving wind speed prediction
performance. This model effectively extracts relevant
information from the original wind speed data and optimizes
the neural network parameters accordingly. It also enables
the development of an optimized prediction model that
achieves remarkable results without compromising runtime.
Notably, the proposed model demonstrates robust
performance compared to other optimization algorithms,
such as SA, GA, and PSO, outperforming across various
metrics including MAPE, MAE, runtime, RMSE, and R².
Additionally, benchmarking against other state-of-the-art
time series prediction models shows that the proposed model
demonstrates effective time efficiency while maintaining
satisfactory results. In future work, we will explore its
application in similar scenarios like wind power generation,
which also involves high flexibility and intermittency.
Meanwhile, several advanced neural network models in
related deep learning fields [37–39] will be investigated and
applied for wind speed prediction.
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