
 

  

Abstract—In recent years, the rapid development of 

technologies such as artificial intelligence, cloud computing, 

data mining, and mobile internet has significantly transformed 

educational methodologies. Online learning, an emerging 

educational paradigm, has garnered considerable attention for 

its accessibility and convenience. Although online education 

platforms offer learners a high degree of freedom, they lack 

personalized guidance, leading to challenges such as 

“Information Overload” and “Knowledge Loss”. These 

challenges primarily manifest as learners struggling to identify 

resources that match their preferences and needs, adversely 

affecting their learning efficiency and outcomes. To address 

these challenges, this paper proposes an exercise 

recommendation algorithm that combines the emerging fields 

of reinforcement learning and recommendation systems to help 

learners find suitable exercise resources. Initially, we use a 

knowledge tracking model to assess the potential knowledge 

level of learners. Following this, the Deep Q Network algorithm 

is utilized to modify learners' exercise records by removing 

unsatisfactory exercises that learners may have mistakenly 

selected during the learning process. Based on the modified 

record of exercises and the knowledge levels of learners, the 

algorithm recommends appropriate exercises. Finally, 

extensive experiments have demonstrated the effectiveness of 

our method. 

 
Index Terms—online education, knowledge tracking, 

reinforcement learning, exercise recommendation, Deep Q 

Network 

 

I. INTRODUCTION 

ith the development of emerging information and 

communication technologies, including mobile 

communication, the Internet, the Internet of Things, cloud 

computing, Big Data, and artificial intelligence, human 

ways of thinking, production, living, and learning are 

undergoing significant changes. Modern education is 

evolving towards a paradigm characterized by networking, 

digitalization, personalization, ubiquity, and intelligence. 

Numerous new educational models have emerged, such as 

mobile learning, generalized learning, intelligent learning, 

and blended learning. 

Online learning has gained significant traction in recent 

years, standing out as a favored avenue for personalized 

education. It has drawn in a multitude of learners thanks to 

its user-friendly nature, inclusiveness, and the vast array of 
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educational materials available. In the realm of these 

modern, web-based educational platforms, learners are 

granted greater freedom in managing their study schedules, 

are exposed to a multitude of learning methodologies, and 

have access to an extensive pool of resources. They can 

independently tailor their learning process to suit their 

individual situations and preferences. 

However, online education platforms, in contrast to 

traditional classrooms, lack the capability to offer real-time 

supervision and direct guidance to learners, leading to 

challenges such as “Information Overload” and “Knowledge 

Loss”. These problems primarily manifest in learners often 

needing to spend a considerable amount of time finding 

suitable learning resources amid an extensive array of 

resources of varying quality. Consequently, exercise 

recommendation algorithms, designed to provide guidance 

and assistance to learners, have increasingly become a 

significant research focus. 

One direction of exercise recommendation algorithms is 

based on the collaborative filtering algorithm [1]. These 

methods take into account learners’ characteristics and 

preferences, making recommendations based on similar 

users or exercises. Salehi et al. [2] considered the 

characteristics and learning order of learners and learning 

resources, and recommended high-quality learning resources 

through both implicit and explicit collaborative filtering 

algorithms. Segal et al. [3] combined the collaborative 

filtering algorithm with Social Choice theory and proposed 

an algorithm to customize learning resources and 

examinations for learners. Zhao et al. [4] improved the 

efficiency of recommendations by utilizing attribute 

information such as user gender and topic interests. 

Another direction of exercise recommendation algorithms 

is based on knowledge tracking algorithms. These 

algorithms assess learners’ potential knowledge levels from 

their exercise histories, forecast their potential performance 

with different learning resources, and then recommend 

exercises to address their specific learning deficits. Hudak et 

al. [5] recommend learning resources by analyzing learners' 

learning processes and current states. Dwivedi et al. [6] 

assess learners’ knowledge levels based on their grades and 

recommend elective courses accordingly.  

Nevertheless, prevailing algorithms often concentrate 

exclusively on either the preferences or the knowledge 

levels of learners. We contend that optimal exercise 

recommendations should consider both aspects: learners' 

preferences and their knowledge requirements. Furthermore, 

amidst a plethora of exercise options, learners may 

inadvertently opt for exercises that do not resonate with their 

genuine interests, which could result in a lack of earnest 

engagement with these exercises. Consequently, an 
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overreliance on exercise data to assess learners' preferences 

and knowledge levels may introduce considerable 

inaccuracies into the recommendation process. 

In conclusion, this paper proposes an exercise 

recommendation algorithm based on reinforcement learning, 

named RLER (Reinforcement Learning Exercise 

Recommender). RLER utilizes reinforcement learning to 

filter out exercises that learners have mistakenly selected. 

The specific contributions of this paper are as follows: 

1) We consider learners’ preferences and learning levels, 

enhancing the precision of learner modeling. 

2) We have developed a model that leverages the Deep Q 

Network algorithm to modify learners' exercise records. 

This model is designed to filter out exercises that were 

erroneously selected, enabling the algorithm to make 

more accurate exercise recommendations based on the 

modified records and the learners' potential knowledge 

levels. 

3) We compared the RLER model with five advanced 

exercise recommendation algorithms in two real 

datasets. The results of these experiments robustly 

demonstrate the superior effectiveness of the RLER 

model. 

II. RELATED WORKS 

A. Recommendation Algorithm 

Personalized recommendation algorithms primarily 

recommend satisfactory items to users based on their 

preferences. Common recommendation algorithms can be 

categorized into three types: content-based, collaborative 

filtering-based, and deep learning-based recommendation 

algorithms. 

The content-based recommendation algorithm is one of 

the earliest used. It was initially applied to address the 

personalized recommendation problem in the Fab system 

and later extended to fields such as music recommendation 

systems, e-commerce recommendation systems, and news 

recommendation systems. The underlying concept of these 

algorithms is straightforward: they recommend items to 

users that are similar to items they have liked in the past. 

Content-based recommendation algorithms require only user 

preference and item feature information; they do not rely on 

user evaluations of the items. For newly added items, these 

algorithms can extract features to recommend new items, 

effectively addressing the cold-start problem for new items 

and avoiding issues with sparse rating information. However, 

these recommendation algorithms still face the cold-start 

problem for new users because the content-based 

recommendation model cannot obtain users’ interest models. 

The recommendation algorithm based on collaborative 

filtering is currently the most widely used method. This 

algorithm relies on user preference evaluation data for items 

and predicts items that the user may like. A typical 

collaborative filtering algorithm involves establishing a 

scoring matrix containing 𝑚  users and 𝑛  items, then 

calculating missing scores for items using existing scores in 

the matrix to make recommendations. 

The recommendation algorithm based on deep learning 

extracts latent features of users and items, generating 

recommendations based on these features. He et al. [7] 

proposed a neural network-based collaborative filtering 

model. The fundamental concept of this model is similar to 

traditional collaborative filtering algorithms, which involve 

computing the similarity between users and items. This 

model simulates user-item interactions through a multilayer 

perceptron, where the output of one layer serves as the input 

for the next.  

B. Knowledge Tracking Model 

Knowledge tracking is a widely used technology in 

personalized guidance. Its task is to automatically track 

changes in a learner’s knowledge level based on their 

historical learning trajectory, accurately predict their 

performance in future learning activities, and provide 

corresponding assistance.  

The knowledge tracking task can be formalized as follows: 

given a learner's historical learning interaction sequence 

𝑋𝑡 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑡)  on a specific learning task, the 

objective is to predict the learner's performance on the 

subsequent interaction 𝑥𝑡+1 . Each interaction 𝑥𝑡 is 

characterized as (𝑞𝑡 , 𝑎𝑡) , where 𝑞𝑡  represents the exercise 

chosen by the learner at time 𝑡 , and 𝑎𝑡  represents the 

answering situation of the learner at time 𝑡 . Knowledge 

tracing models can be roughly divided into those based on 

probabilistic graphical models [8], matrix factorization, and 

deep learning [9].  

C. Reinforcement Learning 

Reinforcement learning is an important branch of 

machine learning. Unlike supervised and unsupervised 

learning, reinforcement learning autonomously learns 

through interaction with the environment. Due to its robust 

performance in managing intricate decision-making 

problems that require dynamic interaction and long-term 

strategizing, reinforcement learning has found extensive 

applications in fields such as robotic control [10] and game 

design [11]. 

The standard reinforcement learning model includes four 

basic elements: environment, action, reward and status. The 

interaction process between the agent and the environment 

can be summarized as follows: The agent chooses an action 

𝑎𝑡  in the current state 𝑆𝑡 .The environment calculates the 

state 𝑆𝑡+1 of the agent at the next moment according to the 

action selected by the agent and provides the agent with a 

reward value 𝑟𝑡.The agent assesses the quality of its chosen 

action based on the reward value and continues to select 

actions in the succeeding state, persisting in this process 

until the termination condition is met. 

Traditional value-based or strategy-based reinforcement 

learning algorithms are limited in that each state and action 

is marked by a unique identifier. This limitation leads to 

problems such as large storage requirements, long training 

times, and poor training outcomes when the state space is 

too large. Consequently, researchers have shifted their focus 

to exploring the potential of neural networks to address the 

challenges associated with traditional reinforcement learning. 

The DeepMind team ingeniously integrated neural networks 

with the Q-Learning algorithm, proposing the DQN (Deep Q 

Network) algorithm [12]. This innovative approach aims to 

mitigate the substantial spatial and temporal demands 

associated with the Q-Learning algorithm. 

Engineering Letters

Volume 32, Issue 10, October 2024, Pages 1947-1956

 
______________________________________________________________________________________ 



 

III. METHOD 

A. Symbol Definition 

The symbols in this paper are provided in Table I. 
 

TABLE I 

SYMBOL DEFINITION AND MEANING 

Symbol Definition Symbol Meaning 

𝑆 = {𝑆1, 𝑆2, ⋯ , 𝑆𝑀} learners' historical learning records 

𝑆𝑖 = {𝑆1
𝑖 , 𝑆2

𝑖 , ⋯ , 𝑆𝑡
𝑖} historical learning records of learner 𝑖 

𝑆𝑡
𝑖 = {𝑒𝑡

𝑖 , 𝑎𝑡
𝑖 } 

exercises and performances chosen by 

learner 𝑖 at time 𝑡 

 𝑒𝑡
𝑖 exercise chosen by learner 𝑖 at time 𝑡 

 𝑎𝑡
𝑖  performance of learner 𝑖 at time 𝑡 

𝐸 = {𝐸1, 𝐸2, ⋯ , 𝐸𝑀} 
learners' historical exercise records

（excluding learners' performance） 

𝐸𝑖 = {𝐸1
𝑖 , 𝐸2

𝑖 , ⋯ , 𝐸𝑡
𝑖} historical exercise records of learner 𝑖 

𝐾𝑖 = {𝑘1
𝑖 , 𝑘2

𝑖 , ⋯ , 𝑘𝑁
𝑖 } potential knowledge level of learner 𝑖 

𝑆𝑡̅
𝑖 

one-hot vector representation of learner 𝑖 
's learning records at time 𝑡 

𝐸̃𝑖 
low-dimensional vector representation of 

learner 𝑖 's exercise records 

𝐸̂𝑖 
exercise record of learner 𝑖 after 

modification 

 

Specifically, compared to exercise records, historical 

learning records also include learners' performance. 

B. Model Overview 

This paper proposes an exercise recommendation method 

that utilizes the reinforcement learning DQN algorithm, 

referred to as RLER. The structure of the RLER model is 

shown in Figure 1: 

 

 
Fig. 1.  Structure of RLER model 

 

This model consists of three parts: the knowledge 

tracking model, the personalized recommendation model, 

and the exercise record modification model. The knowledge 

tracking model calculates the learner’s potential knowledge 

level, which is then used to construct features for the 

personalized recommendation model and represent the state 

in the exercise record modification model. The personalized 

recommendation model recommends suitable exercises for 

learners and provides the reward function for the exercise 

record modification model. The exercise record 

modification model adjusts the learner’s historical exercise 

records based on the reward function provided by the 

personalized recommendation model, determining whether 

the modifications are beneficial or detrimental, with the aim 

of enhancing the accuracy of exercise recommendations. 

The flow chart of the RLER model is shown in Figure 2: 

 

 
Fig. 2.  Flow chart of RLER model 

C. Knowledge Tracking Model 

Common personalized recommendation models, whether 

they are matrix factorization models, recurrent neural 

network models, or models utilizing attention mechanisms, 

all address the problem of exercise recommendation by 

modeling learner features based on their exercise records. 

However, they do not take into account the learner’s 

performance on the exercises, which might lead to the 

following issues. 

Assuming that learner 𝑖  and learner 𝑗  have similar 

exercise records, but their performance on the exercises 

differs. If learner 𝑖 completes most of the exercises correctly, 

and learner 𝑗  completes most of them incorrectly, the 

exercises they choose next are likely to be different. 

Therefore, constructing a learner's profile based solely on 

the exercises they choose is not sufficiently accurate. RLER 

takes into account the learner's knowledge level when 

modeling their characteristics. 

RLER employs the DKT model [9], a knowledge tracking 

model based on the LSTM (Long short-term memory 

network). The DKT model can assess the learner’s potential 

knowledge level through their performance on learning 

records. The structure of the DKT model is shown in Figure 

3. 

Input of DKT model is the learner's learning record 𝑆𝑖 =

{𝑆1
𝑖 , 𝑆2

𝑖 ,⋅⋅⋅, 𝑆𝑡
𝑖}, the learning record of the learner 𝑖 at time 𝑡 is 
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specifically expressed as 𝑆𝑡
𝑖 = {𝑒𝑡

𝑖 , 𝑎𝑡
𝑖 } . 𝑒𝑡

𝑖  represents the 

exercise selected by learner 𝑖 at time 𝑡, and 𝑎𝑡
𝑖  represents the 

performance of learner 𝑖 on the exercise (1 means that the 

exercise is done correctly, 0 means that the exercise is done 

wrong). First, convert 𝑆𝑡
𝑖 into a one-hot vector through one-

hot encoding and record it as 𝑆𝑡̅
𝑖, and input it into the LSTM. 

 

 
Fig. 3.  DKT model 

 

LSTM is an enhanced recurrent neural network that can 

address the issue of RNN’s inability to handle long-distance 

dependencies. The structure of LSTM is shown in Figure 4. 

 

 
Fig. 4. Structure of LSTM 

 

By using LSTM, the DKT model can comprehensively 

consider learners’ past and current performance to determine 

their potential knowledge level. The forget gate  𝑓𝑡   in 

LSTM is consistent with the idea that learners tend to 

decrease their mastery of previously learned knowledge over 

time. The DKT model inputs the features extracted by 

LSTM into the hidden layer, and finally outputs the 

prediction result from the output layer. 

The output of DKT represents the probability of learners 

answering each exercise correctly, which is recorded as    

the potential knowledge level of learner 𝑖 denoted by  𝐾𝑖 =

{𝑘1
𝑖 , 𝑘2

𝑖 , ⋯ , 𝑘𝑁
𝑖 }. 

D. Personalized Recommendation Model 

The personalized recommendation model constructed in 

this paper has two functions: recommending exercises for 

learners and providing the reward function for exercise 

record modification model. The recommend-dation model 

mainly consists of three parts: Embedding layer, GRU layer, 

and Fully Connected layer. The structure of the personalized 

recommendation model is shown in Figure 5. 

The function of the Embedding layer is to map the record 

of exercises completed by learner 𝑖  denoted as  𝐸𝑖 =

{𝐸1
𝑖 , 𝐸2

𝑖 , ⋯ , 𝐸𝑡
𝑖}   into a low-dimensional vector 𝐸̃𝑖 =

{𝐸̃1
𝑖 , 𝐸̃2

𝑖 , ⋯ , 𝐸̃𝑡
𝑖}. 

The GRU layer is a gated recurrent unit layer, which is an 

improved recurrent neural network model. Its function is to 

extract the sequence features of exercise records. GRU has 

two operations: update gate and reset gate. The GRU layer 

calculates the output of the reset and update gates based on 

the input at the current time and the network hidden state at 

the previous time. It then computes the candidate hidden 

state according to the input at the current moment and the 

output of the reset gate. Finally, the final hidden state is 

obtained based on the candidate hidden state and the 

updated gate output, and the current output is derived from 

the hidden state. 

 

 
Fig. 5.  Structure of personalized recommendation model 

 

The update gate in the GRU determines the extent to 

which the state information from the previous time step and 

the current input is retained and passed to future time steps. 

The calculation formula is given in (1). 

 𝑧𝑡 = 𝜎 (𝑊𝑧 ∙ [ℎ𝑡−1, 𝐸̃𝑡
𝑖
])                        (1) 

Where 𝐸̃𝑡
𝑖  represents the low-dimensional vector 

representation of the exercises completed by learner 𝑖  at 

time 𝑡. ℎ𝑡−1 represents the hidden state information at time 

𝑡 − 1. 𝑊𝑧  represents the weight of the update gate. 𝜎(∙) is 

activation function. 

The reset gate of the GRU determines the amount of state 

information to be forgotten at the previous moment. The 

calculation formula is shown in (2). 

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝐸̂𝑡
𝑖])                          (2) 

Where  𝑊𝑟 represents the weight of the reset gate. 

The calculation formula of the current memory content is 

shown in (3). 

    ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ∙ [𝑟𝑡 ∗ ℎ𝑡−1, 𝐸̂𝑡
𝑖])               (3) 

Where 𝑊ℎ represents the weight of the hidden layers. The 

product of the corresponding elements of the output of the 

reset gate 𝑟𝑡and the hidden state information ℎt-1 determines 

the information to be retained at the previous moment. * 

represents the matrix dot product. 

 The calculation formula of the final memory of the 

current time step is shown in (4). 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡                  (4) 
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Where (1 − 𝑧𝑡) ∗ ℎ𝑡−1 represents the amount of 

information from the previous moment retained to the final 

memory at the current moment, and 𝑧𝑡 ∗ ℎ̃𝑡  represents the 

amount of the current memory content retained to the final 

memory at the current moment. 

The role of the Fully Connected layer is to calculate the 

probability of each exercise being selected based on the 

characteristics of learner 𝑖. The calculation formula is shown 

in (5). 

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑗 ∙ [𝐾𝑖 , ℎ𝑡] + 𝑏𝑗)             (5) 

Where 𝑊𝑗 is the weight of the fully connected layer.𝑏𝑗 is 

the bias of the fully connected layer. 𝐾𝑖 = {𝑘1
𝑖 , 𝑘2

𝑖 , ⋯ , 𝑘𝑁
𝑖 }   

is the potential knowledge level of learner 𝑖 calculated by 

the DKT model. [𝐾𝑖 , ℎ𝑡] is to splice the potential knowledge 

level with the learner characteristics output by the GRU 

layer. 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(∙) is the activation function, which limits 

the output value between 0-1.  

The personalized recommendation model employs cross-

entropy as the loss function for training. The calculation is 

detailed in (6). 

𝐿(𝑝, 𝑞) = − ∑ 𝑝𝑖 𝑙𝑜𝑔(𝑞𝑖)                    𝑀
𝑖=1 (6) 

Where 𝑀  is the number of learners. 𝑝𝑖 is the real 

probability of learner 𝑖 ’s choice of exercises at the next 

moment. 𝑞𝑖  is given by the recommendation model to 

represent the predicted distribution of learner 𝑖’s choice of 

exercises at the next moment. 

E. Exercise Record Modification Model 

The exercise record modification model modifies learners’ 

exercise records by removing as many unsatisfactory 

exercises as possible that learners may have mistakenly 

selected. 

Reinforcement learning generally consists of four parts, 

namely Action, State, Reward, and Algorithm. The details 

of the introduction will be explained next. 

1) Action 

The exercise record modification model is to eliminate 

the exercises that the learners are not satisfied with. Thus, 

the action 𝑎𝑡  of each step has only two values. 𝑎𝑡 = 0 

means to delete the exercise in the exercise record. 𝑎𝑡 = 1 

means to keep the exercise. 

2) State 

The state of learners is represented by (7). 

  𝑆 = [𝑘1, 𝑘2, … , 𝑘𝑁, 𝑝1, 𝑝2, … , 𝑝𝑁]                  (7)                  

Where 𝑘1, 𝑘2, … , 𝑘𝑁  represents the potential knowledge 

level of the learner, provided by the knowledge tracking 

model. 𝑝1, 𝑝2, … , 𝑝𝑁 is the low dimensional vector 

representation of the learner’s exercise record and position 

identifier, which is used to record the modified position. 

3) Reward 

The reward function of the exercise record modification 

model is given by the personalized recommendation model. 

The reward function is shown in (8). 

𝑅𝑒𝑤𝑎𝑟𝑑 = {
𝑝(𝑒𝑡𝑎𝑟𝑔𝑒𝑡|𝐸̂𝑖) − 𝑝(𝑒𝑡𝑎𝑟𝑔𝑒𝑡|𝐸𝑖)        𝑖𝑓  𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 

0                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (8) 

Where 𝑒𝑡𝑎𝑟𝑔𝑒𝑡  is the exercise that the learner actually 

chooses at the next moment. 𝑝(𝑒𝑡𝑎𝑟𝑔𝑒𝑡|𝐸𝑖)  represents the 

probability of selecting the target exercise according to the 

modified exercise record. 𝑝(𝑒𝑡𝑎𝑟𝑔𝑒𝑡|𝐸𝑖)   represents the 

probability of selecting the target exercise based on the 

original exercise record.  

The exercise record modification model adopts the 

Monte-Carlo update strategy. The reward function is 

obtained only after the modification of the entire learning 

record of a learner is completed, at other times, the reward 

function is set to 0. 

4) Algorithm 

The exercise record modification model adopts the Deep 

Q Network algorithm, which combines a neural network 

with the Q-Learning algorithm. The structure of DQN is 

shown in Figure 6. 

The loss function for training and updating the parameters 

of the DQN model is based on the squared difference 

between the actual value and the predicted value. This loss 

function is represented in (9). 

  𝐿(𝜃) = (𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎 𝑄𝜃̄ (𝑠𝑡+1,𝑎) − 𝑄𝜃(𝑠𝑡 , 𝑎𝑡))
2

       (9) 

Where 𝑄𝜃(𝑠𝑡 , 𝑎𝑡)  represents the predicted value of the 

reward that will be obtained by choosing action  𝑎𝑡 in the
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Fig. 6. Training process of the exercise record modification model 
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state 𝑠𝑡 , which is calculated by the prediction Q network. 

𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑄𝜃̅(𝑠𝑡+1, 𝑎)   represents the real value of the 

reward that can be obtained by choosing action 𝑎𝑡 in state 𝑠𝑡. 

𝑄𝜃̅(𝑠𝑡+1, 𝑎) is calculated by the target Q network, indicating 

the maximum reward value that can be obtained in the next 

state 𝑠𝑡+1. 𝑟𝑡 is the current reward value that can be obtained 

by the reward function (8). 

The gradient of the loss function is as (10). The network 

parameters are updated according to the gradient descent. 

𝜕𝐿(𝜃)

𝜕𝜃
= (𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎 𝑄𝜃̄ (𝑠𝑡+1, 𝑎) − 𝑄𝜃(𝑠𝑡 , 𝑎𝑡))

𝜕𝑄𝜃(𝑠𝑡,𝑎𝑡)

𝜕𝜃
    (10)       

IV. EXPERIMENT AND RESULT 

A. Datasets 

In this experiment, we utilized two real-world datasets of 

learner exercise records: ASSISTments09 and 

ASSISTments12. These datasets, widely used in educational 

research, contain authentic student response records 

collected from the ASSISTments online learning platform, 

developed by Worcester Polytechnic Institute in the United 

States. Details of the ASSISTments09 and ASSISTments12 

datasets are provided in Table Ⅱ.  

 
TABLE  Ⅱ  

DATASET DESCRIPTION 

Dataset name 

Number 

of 

learners 

Number of 

exercises 

Number 

of 

submitted 

records 

Average 

number of 

submissio

ns 

ASSISTments

09 
3840 26583 341357 88.89 

ASSISTments

12 
42058 110512 6017201 143.07 

 

B. Experimental Analysis 

We use Hit Ratio, Normalized Discounted Cumulative 

Gain, Mean Reciprocal Rank, and Mean Average Precision 

as metrics. The RLER model proposed in this paper is 

compared with three classical recommendation algorithms 

based on Collaborative Filtering and Matrix Decomposition 

(FM, MLP, and DeepFM), an algorithm based on Recurrent 

Neural Network (LSTM), and an algorithm based on 

attention mechanism (NAIS) [13]. 

The experimental analysis is conducted across the 

following three dimensions: 

1) Performance of RLER model 

Firstly, we verify the changes in recommendation 

performance of the RLER model proposed in this paper after 

considering learners’ potential knowledge level and 

modifying their exercise records. Baseline is a personalized 

recommendation model that only considers learners’ 

preferences. Baseline+dkt considers learners’ potential 

knowledge level during recommendation. RLER model 

proposed not only considers learners’ potential knowledge 

level, but also modifies learners’ exercise records. 

Figure 7-12 shows the comparison results of baseline, 

baseline+dkt, and RLER on the four metrics of HR, NDCG, 

MAP, and MRR.  

As shown in Figure 7-9, in the dataset ASSISTments09, 

adding the learner’s potential knowledge level to the 

learner’s characteristics, HR increased by 2.5%-3.8%, 

NDCG increased by 1.7%-2.5%, and MAP@20 increased 

by 1.65%, MRR@20 increased by 1.24%. After modifying 

the exercise records, HR increased by 8.0%-9.8%, NDCG 

increased by 4.5%-5.6%, MAP@20 increased by 5.02%, 

and MRR@20 increased by 4.9%. 

As shown in Figure 10-12, in the dataset ASSISTments12, 

adding the learner’s potential knowledge level to the 

learner’s characteristics, HR increased by 2.2%-3.4%, 

NDCG increased by 1.7%-2.4%, MAP@20 increased by 

1.8%, and MRR@20 increased by 1.4%. After modifying 

the exercise records, HR increased by 9.5%-11.2%, NDCG 

increased by 5.4%-6.5%, MAP@20 increased by 6.4%, and 

MRR@20 increased by 5.6%. 

In summary, we can draw three conclusions: 

◼ Considering the learner’s potential knowledge level when 

modeling the learner’s characteristics can enhance the 

effectiveness of the recommendations. 

◼ After using the reinforcement learning algorithm to 

modify the learner’s exercise records, the 

recommendation effect has been greatly improved both in 

hit rate and sorting ability. 

◼ Compared to dataset ASSISTments09, dataset ASSIST-

ments12 contains more exercises and the average number 

of submissions by learners, indicating that learners are 

more likely to mistakenly select unsatisfactory exercises.  

Therefore, after modifying the learner’s exercise records, 

the recommendation effect is improved more significantly. 

 

 
Fig. 7. HR of the data set ASSISTments09 

 

 
Fig. 8. NDCG of the data set ASSISTments09 
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Fig. 9. MAP@20 and MRR@20 of the data set ASSISTments09 

 

 
Fig. 10. HR of the data set ASSISTments12 

 

 
Fig. 11. NDCG of the data set ASSISTments12 

 

 
Fig. 12. MAP@20 and MRR@20 of the data set ASSISTments12 

 

 

 

2) Comparison with other advanced methods 

Secondly, we compare the RLER model with other 

personalized recommendation models.  

As shown in Figure 13-15, in the dataset ASSISTments09, 

compared with other models, the RLER model increased by 

at least 7.5% for HR@5, 6.5% for HR@10, 3.8% for 

NDCG@5, and 4.4% for NDCG@10. MAP@20 has 

increased by at least 3.3%, and MRR@20 has increased by 

at least 3.0%. These data show that the RLER model 

outperforms other models both in accuracy and ranking 

performance in the dataset ASSISTments09. 

As shown in Figure 16-18, in the dataset ASSISTments12, 

compared with other models, the RLER model increased by 

at least 8.5% for HR@5, 8.7% for HR@10, 5.2% for 

NDCG@5, and 5.6% for NDCG@10. MAP@20 has 

increased by at least 5.1%, and MRR@20 has increased by 

at least 4.6%. These data show that the RLER model 

outperforms other models both in accuracy and ranking 

performance in the dataset ASSISTments12. 

In summary, we can draw four conclusions: 

◼ The improved algorithms based on collaborative filtering 

and matrix decomposition generally do not perform well 

due to data sparsity problems in both datasets, with the 

FM model performing the worst. 

◼ Although the LSTM model based on the recurrent neural 

network considers the temporal relationship, it does not 

account for the different importance of various exercises 

in the exercise records for the recommendation results, 

Although compared with FM, MLP and DeepFM, the 

experimental results are improved, the improvement is 

limited. 

◼ NAIS considers the weight of different exercises for the 

recommended results, resulting in better performance. 

However, it still has drawbacks, such as the fact that it 

does not completely eliminate the effects of wrong choice 

exercises. 

◼ The results of RLER are better than NAIS in all indicators, 

demonstrating the effectiveness of incorporating the 

learner’s knowledge level in exercise recommendation 

and using reinforcement learning to modify the learner’s 

exercise record. By comparing various indexes, our 

proposed method is superior to other methods. 

 

 
Fig. 13. HR@5 and HR@10 of the data set ASSISTments09 
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Fig. 14. NDCG@5 and NDCG@10 of the data set ASSISTments09 

 

 
Fig. 15. MAP@20 and MRR@20 of the data set ASSISTments09 

 

 
Fig. 16. HR@5 and HR@10 of the data set ASSISTments12 

 

 
Fig. 17. NDCG@5 and NDCG@10 of the data set ASSISTments12 

 

 
Fig. 18. MAP@20 and MRR@20 of the data set ASSISTments12 

 

3) Universality of the exercise record modification 

algorithm 

Finally, we verify whether the modified exercise record 

only improves the RLER model or has an effect on all 

recommended models. Figures 19-24 show that under two 

datasets, FM, MLP, DeepFM, LSTM, and NAIS models 

recommend based on original exercise records and modified 

exercise records on HR@10, NDCG@10, MAP@20. 

In the dataset ASSISTments09, recommendations are 

made based on the modified exercise records, HR@10 

Improved by 4.9%-5.7%, NDCG@10 Increased by 2.9%-

3.7%, MAP@20 Improved by 3.0%-3.9%. 

In the dataset ASSISTments12, recommended based on 

modified exercise records, HR@10 Increased by 6.4%-7.5%, 

NDCG@10 Improved by 4.2%-4.7%, MAP@20 Increased 

by 4.5%-5.1%. 

 

 
Fig. 19. HR@10 before and after the modification of the data set 

ASSISTments09 

 

 
Fig. 20. NDCG@10 before and after the modification of the data set 

ASSISTments09 
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Fig. 21. MAP@20 before and after the modification of the data set 

ASSISTments09 

 

 
Fig. 22. HR@10 before and after the modification of the data set 

ASSISTments12 

 

 
Fig. 23. NDCG@10 before and after the modification of the data set 

ASSISTments12 

 

 
Fig. 24. MAP@20 before and after the modification of the data set 

ASSISTments12 

 

In summary, we can draw two conclusions: 

◼ Based on the modified exercise records, the HR and 

NDCG of all comparison models have improved, 

indicating that the learner’s exercise record modification 

algorithm can be applied to any recommendation model.  

◼ Since the exercise record modification algorithm is 

trained based on the personalized recommendation model 

proposed in this paper, the improvement effect on other 

recommendation models is not as significant as on RLER. 

V. CONCLUSION 

In this paper, we propose an exercise recommendation 

method based on reinforcement learning DQN algorithm 

called RLER. Firstly, RLER utilizes the knowledge tracking 

model based on the long-short term memory network to 

assess the learner’s potential knowledge level and 

incorporates it as part of the learner’s characteristics. 

Subsequently, using the Deep Q Network algorithm, the 

exercise record modification model is designed to eliminate 

unsatisfactory exercises that learners mistakenly select 

during the learning process. Finally, based on the modified 

exercise record and learners’ potential knowledge level, 

exercises are recommended for learners. Extensive 

experimental results demonstrate the effectiveness of RLER. 
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